
i

“MODELS FOR IMPROVING OF
SCHEDULING OF TASK AND CHECKING

ITS EFFICIENCY IN CLOUD COMPUTING”

 Thesis
 Submitted for the award of
 Degree of Doctor of Philosophy
 In Computer Science and Engineering
 by
 Arvind Kumar Singh

 Enrollment No: MUIT0117038073

 Under the Supervision of
 Dr. Vaishali Singh

Assistant Professor, Department of Computer Science & Engineering,
 Maharishi University of Information Technology, Lucknow

Under the Maharishi School of Engineering and Technology

 Session 2017-2018

Maharishi University of Information Technology
Sitapur Road, P.O. Maharishi Vidya Mandir Lucknow, 226013

ii

Declaration by the Scholar

I hereby declare that the work presented in this thesis entitled " Models For
Improving Of Scheduling Of Task And Checking Its Efficiency In
Cloud Computing " in fulfillment of the requirements for the award of
Degree of Doctor of Philosophy, submitted in the Maharishi School of
Engineering and Technology, Maharishi University of Information
Technology, Lucknow is an authentic record of my own research work
carried out under the supervision of Dr. Vaishali Singh. I also declare that
the work embodied in the present thesis-

i) is my original work and has not been copied from any journal/ thesis/
book; and

ii) has not been submitted by me for any other Degree or Diploma of any
University/ Institution.

 Arvind Kumar Singh

iii

Maharishi University of Information Technology
Lucknow

Supervisor's Certificate

This is to certify that Mr. Arvind Kumar Singh has completed
the necessary academic turn and the swirl presented by him/her
is a faithful record is a bonafide original work under my
guidance and supervision. He has worked on the topic " Models
For Improving Of Scheduling Of Task And Checking Its
Efficiency In Cloud Computing" under the School of
Engineering and Technology, Maharishi University of
Information Technology, Lucknow.

 Supervisor
 Dr. Vaishali Singh

 Asst. Professor
 Faculty of Engineering & Technology

MUIT, Lucknow
 Date:

iv

ACKNOWLEDGEMENTS

 I extend my deepest gratitude and appreciation to my advisor, Dr. Vaishali Singh,
whose guidance and expertise have been invaluable throughout the entire duration of
my Ph.D. program. His unwavering support, insightful feedback, and encouragement
have been instrumental in shaping the course of my research.

I would like to express my sincere thanks to Vice Chancellor Sir and Dean Research
Sir for their guidance and support in completing my research work. Their intellectual
guidance and scholarly insights have played a crucial role in broadening my
understanding of the subject matter.

I would like to express my sincere thanks to the faculty members department of
Computer Science and Engineering, Maharishi University of Information Technology
for their valuable contributions to my academic development. Their intellectual
guidance and scholarly insights have played a crucial role in broadening my
understanding of the subject matter.

I am indebted to my colleagues and fellow researchers for their collaborative spirit,
stimulating discussions, and shared experiences. Their camaraderie has created a rich
academic environment that has greatly enriched my research endeavors.

My heartfelt thanks go to my friends and family for their unwavering support,
encouragement, and understanding during the challenging phases of my Ph.D.
journey. Their love and belief in my abilities have been a constant source of
motivation.

Lastly, I extend my appreciation to all those who have directly or indirectly
contributed to the successful completion of this thesis. Your support has been crucial
in shaping my academic and personal growth.

Thank you all for being an integral part of my academic journey.

Arvind Kumar Singh
Ph.D. Scholar

Department of Computer Science and Engineering
Maharishi University of Information Technology

v

 ABSTRACT

Cloud computing is a platform that can enable elastic applications in order to manage

a limited number of virtual machines and computing servers to provide application

services at a certain point in time. It is necessary to verify and schedule available

resources in the cloud using an effective task scheduler so that they may be assigned

to customers depending on their demands. Scheduling is the most important task in

any working framework, and it is controlled by the CPU. This is due to the fact that

resources are not stored in a particularly designated manner, but rather in a strictly

handy manner in order to ensure maximum skills. Task scheduling and resource

deployment have been unified controlled by cloud computing service providers

through the use of virtualized technologies in the cloud computing environment.

Cloud computing is a distributed and parallel computing paradigm that is becoming

increasingly popular. This type of cloud computing comprises a group of

heterogeneous linked datacenters that are reliant on virtualization techniques and that

are provided as a dynamically to the customer through a negotiation between cloud

service providers and cloud users. In this research The Deadline-Aware Priority

Scheduling (DAPS) model will be the first of the scheduling models. When using the

Budget-Aware Scheduling (BAS) model, tasks will be scheduled and assigned based

on available resources, with the goal of lowering the total time required to complete

the tasks while staying within the budget constraints. This tool should be flexible

enough to support this environment while also receiving an increasing number of user

requests. The experiments were carried out on the BAS model and compared to state-

of-the-art scheduling algorithms, demonstrating that the BAS minimizes the

makespan, response time, and number of violations for task execution on VMs, as

well as increasing resource utilization and provider profit, and achieving an

acceptable total gain cost for any user. Simulation results indicate that the Deadline

Budget Scheduling (DBS) model outperformed state-of-the-art algorithms in lowering

the makespan and cost in a variety of configurations, including low resources or high

resources model, varied number of jobs and virtual machines (VMs). The violation

ratio is lowered in the DBS model to meet user requirements while enhancing the

provider's profit and resource utilization.

vi

 CONTENTS

Content Details Page No.

Title Page i
Certificate by the Supervisor(s) ii
Declaration iii

Acknowledgements iv

Abstract v

Contents vi-viii

List of Figures ix-x
List of Tables

 xi-xii

CHAPTER 1 INTRODUCTION 1-40

1. 1.1 OVERVIEW 1

2. 1.2 CLOUD COMPUTING 4

1.2.1 Benefits of Cloud Computing 5

1.2.2 Difficulties of Cloud Computing 6

1.2.4 History of Cloud Technology 10

1.2.5 Characteristics of Cloud 11

1.2.6 Service Models of Cloud Computing 12

1.2.7 Disadvantages of Cloud Computing 14

1.2.8 Components of Cloud Computing 14

3. 1.3 CLOUD ARCHITECTURE 15

1.3.1 Cloud Consumer 15

1.3.2 Cloud Auditor 16

1.3.3 Cloud Provider 17

4. 1.4 TASK SCHEDULING 18

1.4.1 The Features of Task Scheduling In the Cloud Computing Environment 25

5. 1.5 TYPES OF SCHEDULING IN CLOUD 27

6. 1.6 PROCESS OF TASK SCHEDULING 29

7. 1.7 THE TARGET OF TASK SCHEDULING IN CLOUD ENVIRONMENT 29

1.7.1 Load balance 30

1.7.2 Quality of Service 30

1.7.3 Economic Principles 30

1.7.4 The best running time 31

1.7.5 The throughput of the system 31

vii

8. 1.8 GUIDELINES OF SCHEDULING 31

9. 1.9 SCHEDULING CRITERIA 33

10. 1.10 TASK SCHEDULING ALGORITHMS IN CLOUD COMPUTING 34

11. 1.11 LOAD BALANCE AWARENESS IN TASK SCHEDULING 35

12. 1.12 OBJECTIVES OF THE STUDY 36

13. 1.13 SIGNIFICANCE OF OUR RESEARCH 37

14. 1.14 PROBLEM STATEMENT 37

15. 1.15 RESEARCH METHODOLOGY 38

1.15.1 Research Design 38

1.15.2 Proposed Models 38

1.15.3 Task scheduling steps 39

1.15.4 Simulation Tool 40

1.15.5 Datasets 40

CHAPTER 2 LITERATURE REVIEW 41-81

CHAPTER 3 ENHANCED TASK SCHEDULING IN CLOUD COMPUTING
BASED ON DEADLINE-AWARE MODEL 83-140

16. 3.1 PREAMBLE 83

17. 3.2 DEADLINE RESTRICTION 84

18. 3.3 TASK SCHEDULING DEPENDENT ON DEADLINE-AWARE MODEL 85

3.3.1. Case Study 88

3.3.2 Steps of Deadline-Aware Priority Scheduling Model 93

19. 3.4. PERFORMANCE METRICS 95

3.4.1 Makespan 95

3.4.2 Response Time (RT) 95

3.4.3 Resource Utilization (RU) 96

3.4.4 Guarantee Ratio (GR) 96

3.4.5 Violation Ratio (VR) 97

3.4.6 Improvement of makespan ratio 97

20. 3.5 OUTCOMES OF EXPERIMENTS AS WELL AS ANALYSIS 97

3.5.1 Implementation Environment 97

3.5.2 Experiments Configuration 97

3.5.3 Dataset 98

21. 3.6 PERFORMANCE ASSESSMENT 102

22. 3.7 EFFICIENT MANAGEMENT OF CLOUD RESOURCES THROUGH
BUDGET-AWARE TASK SCHEDULING TECHNIQUE 115

23. 3.8 BUDGET CONSTRAINT 117

24. 3.9 TASK SCHEDULING DEPENDENT ON BUDGET-AWARE MODEL 117

viii

3.9.1 Application Model 120

3.9.2 Case Study 126

3.9.3 Steps of Budget-Aware Scheduling Model 135

25. 3.10 METRICS OF PERFORMANCE 137

26. 3.11 RESULTS OF EXPERIMENTS AND ANALYSIS 140

3.11.1 Implementation Environment 140

3.11.2 Experiments Configuration 140

3.11.3 Dataset 141

27. 3.12 PERFORMANCE EVALUATION 142

CHAPTER 4 DEADLINE BUDGET SCHEDULING FOR VIRTUAL CLOUD
ENVIRONMENT 157-202

28. 4.1 INTRODUCTION 157

29. 4.2 BUDGET AND DEADLINE CONSTRAINTS 158

30. 4.3 TASK SCHEDULING BASED ON DEADLINE BUDGET MODEL 159

4.3.1 Type of Task Constraint 160

4.3.2 Resources Clustering 160

4.3.3 Scheduling Strategy 161

31. 4.4 PERFORMANCE METRICS 175

32. 4.5 EXPERIMENTAL RESULTS AND ANALYSIS 177

4.5.1 Environment for Implementation 177

4.5.2 Experiments Configuration 178

4.5.3 Dataset 179

33. 4.6 PERFORMANCE EVALUATION 180

34. 4.7 AUTO-SCALING TO MINIMIZE COST AND MEET APPLICATION
DEADLINES IN CLOUD WORKFLOWS 189

4.7.1 Preprocessing 190

4.7.2 Dynamic Scaling-consolidation-scheduling 193

35. 4.8 EVALUATION 196

4.8.1 Application, Workload, and Virtual Machine 197

4.8.2 Cost and Resource Utilization 199

4.8.3 Heavy Workload vs Light Workload 201

4.8.4 Sensitivity to Inaccurate Parameters 203

4.8.5 Mechanism Overhead 205

4.8.6 Proposed addition in Thesis 208-225

CHAPTER 5 CONCLUSION 226-228

36. 5.1 CONCLUSION 226

37. 5.2 CONTRIBUTIONS 229

ix

38. 5.3 WORK DIRECTIONS FOR THE FUTURE 230

REFERENCES 231-242

LIST OF FIGURES

CHAPTER 1

Figure 1.1 Usage of Cloud 5
Figure 1.2 Cloud to denote Internet 11
Figure 1.3 Environment of Cloud Computing 14
Figure 1.4 the Conceptual Reference Model 16
Figure 1.5 Task Scheduling in Cloud Computing 21
Figure 1.6 Task Scheduling Constraints 23
Figure 1.7 Tasks Scheduling in Cloud 24
Figure 1.8 Task Scheduling Process 29

CHAPTER 3

Figure 3.1: Quality of service constraints 85
Figure 3.2: The primary symbols of attributes for our study 87
Figure 3.3: Suggested Deadline-Aware Priority scheduling model 87
Figure 3.4: The VMs obtain the task deadline 91
Figure 3.5: Flowchart of DAPS model 93
Figure 3.6: Dataset fields of DAPS model 99
Figure 3.7: Contrasting of average makespan 104
Figure 3.8: Contrast of mean of total average response time 105
Figure 3.9: Comparison of resource utilization 106
Figure 3.10: Comparison of guarantee ratio 107
Figure 3.11: Quantity of violations 109
Figure 3.12: Violation ratio 112
Figure 3.13: Budget constraint 117
Figure 3.14: Suggested Budget-Aware Scheduling model 119
Figure 3.15: Flowchart of BAS model 121
Figure 3.16: Comparison of average makespan 144
Figure 3.17: Comparison of mean of total average response time 145
Figure 3.18: Comparison of resource utilization 147
Figure 3.19: Number of violations 148
Figure 3.20: Provider profit 150
Figure 3.21: Total gain cost 152
Figure 3.22: Virtual machines usage time (hour) 153

CHAPTER 4

x

Figure 4.1: Metrics under deadline and budget constraints 159
Figure 4.2: Proposed Deadline Budget Scheduling model 161
Figure 4.3: Organogram of the DBS model 162
Figure 4.4: Comparison of average makespan 182
Figure 4.5: Total gain cost 183
Figure 4.6: Number of violations 184
Figure 4.7: Provider profit 185
Figure 4.8: Comparison of resource utilization 186
Figure 4.9: Task bundling 190
Figure 4.10: Deadline assignment 191
Figure 4.11: Parallelism reduction 192
Figure 4.12: Load vector 193
Figure 4.13: Instance consolidation 194
Figure 4.14: Application models 197
Figure 4.15: Workload patterns 198
Table 4.16: VM types and prices 198
Figure 4.16: The performance for pipeline applications 201
Figure 4.17: The performance for parallel applications 202
Figure 4.18: The performance for hybrid applications 202
Figure 4.19: Heavy workload and light workload 203
Figure 4.20: Inaccurate task execution time 204
Figure 4.21: Inaccurate instance acquisition lag 205
Figure 4.22: SCS overhead 206

xi

 LIST OF TABLES

CHAPTER 1

Table 1.1 Comparison of scheduling characteristics in different types of scheduling
techniques 28

CHAPTER 3

Table 3.1: Configuration requirement for the experiments 98
Table 3.2: Experiments done for tasks with various VMs of the DAPS model 100
Table 3.3: Choosing real deadline utilizing DAPS related on deadline constraint and
minimum completion time 101
Table 3.4: Average of makespan of DAPS, GA, Min-Min, SJF and Round Robin
algorithms 103
Table 3.5: Mean of total average response time of DAPS, GA, Min-Min, SJF and
Round Robin algorithms 104
Table 3.6: Resource utilization of DAPS, GA, Min-Min, SJF and Round Robin
algorithms 106
Table 3.7: Guarantee ratio of DAPS, GA, Min-Min, SJF and Round Robin algorithms
 107
Table 3.8: Number of violations of DAPS, GA, Min-Min, SJF and Round Robin
algorithms 108
Table 3.9: Actual deadline for random ten tasks in DAPS, GA, Min-Min, SJF and
Round Robin algorithms 109
Table 3.10: Violation ratio of DAPS, GA, Min-Min, SJF and Round Robin algorithms
 111
Table 3.11: Improvement in makespan ratio for DAPS compared to GA, Min-Min,
SJF and Round Robin algorithms 112
Table 3.12: T-test of DAPS model compared to GA, Min-Min, SJF, and Round Robin
algorithms 113
Table 3.13: Tasks attributes 126
Table 3.14: VMs configurations 126
Table 3.15: Expected gain cost of each task into each VM 127
Table 3.16: Task priority and comparison of length and file size for each task 133
Table 3.17: Performance of each VM 134
Table 3.18: Configuration requirement for the experiments 140
Table 3.19: Experiments conducted for BAS model for tasks with 10 VMs 142
Table 3.20: Average of makespan of BAS, Max-Min, Round Robin and SJF
algorithms 143

xii

Table 3.21: Mean of total average response time of BAS, Max-Min, Round Robin and
SJF algorithms 145
Table 3.22: Resource utilization of BAS, Max-Min, Round Robin and SJF algorithms
 146
Table 3.23: Number of task violations of BAS, Max-Min, Round Robin and SJF
algorithms 147
Table 3.24: Provider profit of BAS, Max-Min, Round Robin and SJF algorithms 149
Table 3.25: Total gain cost of BAS, Max-Min, Round Robin and SJF algorithms 150
Table 3.26: VMs usage time (hour) of BAS, Max-Min, Round Robin and SJF
algorithms 152
Table 3.27: Improvement of cost ratio for BAS compared with Max-Min, Round
Robin, and SJF algorithms 154
Table 3.28: T-test of BAS model compared to Max-Min, Round Robin and SJF
algorithms 155

CHAPTER 4

Table 4.1: Task attributes 164
Table 4.2: VM configurations 164
Table 4.3 Expected deadline and gain cost of each task into each VM 165
Table 4.4: Task constraint type and comparison of length and file size for each task
 171
Table 4.5: Performance of each VM 172
Table 4.6: Configuration requirement for the experiments 178
Table 4.7: Experiments conducted for tasks with different VMs of the DBS model 179
Table 4.8: Average of makespan of DBS, GA, Max-Min, Round Robin and SJF
algorithms 181
Table 4.9: Total gain cost of DBS, GA, Max-Min, Round Robin and SJF algorithms
 182
Table 4.10: Number of violations of DBS, GA, Max-Min, Round Robin and SJF
algorithms 183
Table 4.11: Provider profit of DBS, GA, Max-Min, Round Robin and SJF algorithms
 185
Table 4.12: Resource utilization of DBS, GA, Max-Min, Round Robin and SJF
algorithms 186
Table 4.13: Improvement in makespan ratio for DBS compared with GA, Max-Min,
Round Robin, and SJF algorithms 187
Table 4.14: Improvement of cost ratio for DBS compared with GA, Max-Min, Round
Robin, and SJF algorithms 188
Table 4.15: T-test of DBS model compared to GA, Max-Min, Round Robin, and SJF
algorithms 188

1

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The introduction of cloud computing systems is a watershed moment in modern

information technology (IT), necessitating the development of an efficient and

powerful architecture that can be used to a variety of systems that demand

complicated processing and large-scale data storage. Cloud computing is a platform

that can enable elastic applications in order to manage a limited number of virtual

machines and computing servers to provide application services at a certain point in

time. When it comes to multi-tenant computing environments, the cloud is a good

choice since it allows users to share resources. It is necessary to verify and schedule

available resources in the cloud using an effective task scheduler so that they may be

assigned to customers depending on their demands. With the fast expansion of

contemporary computer systems, the requirement for an effective task scheduler has

become an essential necessity in order to attain and maintain maximum performance

has become an urgent necessity. It is the responsibility of task scheduling algorithms

to map workloads submitted to a cloud environment onto available materials in such a

way that the overall response time and latency are reduced while the throughput and

utilization of resources are maximized. Conventional task scheduling algorithms such

as Shortest-Job-First (SJF), Round Robin (RR), and First-Come-First-Serve (FCFS),

Multilevel queue scheduling (MQ), Max-Min, and Min-Min have achieved

breathtaking results in different computer system types over the years, but they have

always been plagued by major problems such as increased waiting time in RR and

FCFS and starvation in SJF and Max-Min.

Computers and other equipment can benefit from the sharing of hardware resources

and information available through cloud computing, which is primarily driven by the

increase in Internet-related services, as well as the use and delivery model based on,

which is typically delivered via the internet and offers dynamically scalable and often

virtualized resources. Cloud computing has become increasingly popular in recent

years. Virtualization can provide excellent technological support for cloud computing,

and cloud computing may be thought of as a type of application virtualization

2

technology in its own right. A large number of cloud computing research and

development groups, such as Google, IBM, Microsoft, Amazon, Alisoft (formerly

known as Amazon Web Services), Huawei (formerly known as Huawei Web

Services), Baidu (formerly known as Alibaba), and nearly all domestic and

international well-known IT companies have launched a cloud computing solution in

the last few years. At the same time, academic circles both at home and abroad are

conducting extensive research on cloud computing and its essential technology-

related concept.

Cloud Computing alludes to both the applications conveyed as administrations over

the Web and the hardware and systems software in the datacenters that give those

administrations. The administrations themselves have for quite some time been

alluded to as Software as an Administration (SaaS) the datacenter hardware and

software is the thing that we will call a Cloud at the point when a Cloud is influenced

accessible in a compensation as-you-to go way to the overall population, we call it an

Open Cloud; the administration being sold is Utility Computing. We utilize the term

Private Cloud to allude to inner datacenters of a business or other association, not

made accessible to the overall population. Along these lines, Cloud Computing is the

total of SaaS and Utility Computing, yet does exclude Private Clouds. Individuals can

be clients or providers of SaaS, or clients or providers of Utility Computing. Cloud

computing is another innovation used to offer various types of assistance.

Cloud is partitioned into two significant models in particular, service model and

arrangement model. The fundamental three service models are Software as a Service

(SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). The new

four cloud sending models are private cloud, local area cloud, public cloud and half

breed cloud. Certain significant difficulties in cloud computing are Security, Cost and

Service level understanding. Data Transaction Management (DTM) is one of the

challengeable occasions in cloud computing. IaaS is essential to deal with the cloud

transaction management. The data are kept up in the database – as-a-service (DaaS)

model. It has databases in cloud environment and gives highlights like data definition,

data stockpiling and data recovery. The main cloud computing suppliers like Amazon,

Google, IBM, Oracle and Microsoft furnish database – as-a-service with their cloud

3

DaaS arrangements. In Cloud assets are ordinarily flexible, with limitless measure of

figure force and capacity accessible on request and pay-just for-what-you-use.

Cloud Computing has arisen as quite possibly the main new computing procedures in

the undertaking. A blend of advances and cycles has prompted an insurgency in the

manner that computing is created and conveyed to end client. Cloud computing is

characterized by National Institute of Standards and Technology (NIST) as: "a model

for empowering helpful, on demand network admittance to a common pool of

configurable computing resources(e.g., networks, workers, stockpiling applications

and services) that can be quickly provisioned and delivered with insignificant

management exertion or service supplier connection". The cloud computing

worldview upgrades dexterity, scalability, and accessibility for end clients and

ventures. Cloud Computing gives advanced and proficient computing platform, and

decreases equipment and software venture cost, just as carbon impression For

instance, Netflix, as it out growed its data place capacities, settled on a choice to move

its site and web-based feature from a customary data community execution to a cloud

environment. This progression permitted the organization to develop and extend client

base without building and supporting data place impression to meet its development

prerequisites.

Managing the transactions progressively circulated processing system isn't simple, as

it has heterogeneously arranged PCs to take care of a solitary issue. In the event that a

transaction keeps running over some extraordinary sites, it might submit at a few sites

and may disappointment at another site, prompting a conflicting transaction. The

multifaceted nature is increment progressively applications by putting due dates on

the reaction time of the database system and transactions processing. Such a system

needs to process transactions before these due dates terminated. A progression of

simulation examine have been performed to investigate the execution under various

transaction management under conditions, for example, extraordinary workloads,

conveyance strategies, execution mode-dispersion and parallel and so forth. The

planning of information gets to are done with a specific end goal to meet their due

dates and to limit the quantity of transactions that missed due dates. Another idea is

acquainted with deal with the transactions in database measure for beginning site and

4

remote site instead of database estimate processing parameters. With this approach,

the system gives a noteworthy change in execution.

1.2 CLOUD COMPUTING

Cloud computing is characterized as "a model for empowering omnipresent,

advantageous, on request network admittance to a common pool of configurable

computing assets (e.g., networks, workers, storage, applications, and services) that

can be quickly provisioned and delivered with negligible management exertion or

service supplier cooperation". Cloud computing follows compositional plans and

service provisioning models that stray from the customary viewpoints, plan and

services of conventional data innovation. Cloud computing offers data innovation

assets provisioned (primarily through the Internet) in a Service Oriented Architecture

(SOA) where clients just compensation for the assets they devour.

Contrasted with old style Internet and dispersed computing systems, cloud computing

has different distinctive highlights, including pay-more only as costs arise plan of

action, virtualization, huge scope storage offices, support for large data, high process

force, and backing for misusing the strength of both incredible just as ware PCs. This

model of pay-more only as costs arise services offered by cloud computing merchants

gives customers the figment of admittance to endless computing assets. Assets are

totally flexible and can be accommodated as and when required. Associations and

people thusly don't have to make capital interests in computing assets. These

highlights have engaged cloud computing innovations to turn into an alluring service

facilitating and conveyance platform for different associations, instructive

foundations, public area and enterprises like Google, Microsoft, Amazon and

Facebook among others.

It is difficult to characterize what Cloud Computing is on the grounds that various

creators have various definitions on Cloud Computing. In any case, as indicated by

NIST (National Institute of principles and technology)"Cloud Computing is a model

for empowering pervasive, helpful, on-request network admittance to shared pool of

5

configurable computing assets (e.g.., networks, workers, storage and applications)

that can be quickly provisioned and delivered with insignificant management exertion

or service supplier connection”.

Figure 1.1 Usage of Cloud

Cloud Computing has five fundamental qualities (On-request self-service, Broad

network access, Resource pooling, Rapid versatility and Measured service), three

service models (Software as a service, Platform as a service and Infrastructure as a

service) and four arrangement models (Private Cloud, community Cloud, public

Cloud and Hybrid Cloud).

1.2.1 Benefits of Cloud Computing

Cloud Computing enjoys numerous benefits, a few models are:

 Masked intricacy - updates and support of the item or service can be stowed

away from clients, without having them to partake;

 Cost flexibility - with the cloud computing there is no compelling reason to

pay devoted software permit expenses, or to finance the structure of equipment

and introducing software. The point of each business association is to have

more clients and the present business are on the whole online as client

expansion in getting to association application, the measure of data that an

6

application handles is expanding step by step as is the CPU power that can

outfit. Association needs more transfer speed a cloud-based service can

immediately fulfill the need due to the huge limit of the services of distant

workers.

 Scalability - cloud empowers ventures to add computing assets at the time they

are required;

 Adaptability - cloud computing assists ventures with adjusting to different

client bunches with a different arrangement of gadgets;

 Ecosystem connectivity – cloud works with outside joint effort with shoppers

and accomplices which prompts enhancements in efficiency and expanded

development;

1.2.2 Difficulties of Cloud Computing

For those organizations which are anticipating giving cloud resources to their clients,

they should project a picture that shows that they are truly solid to the level of the

electric utility model. This could be an issue for organizations that depend on the

cloud to keep basic business works fully operational. Having the option to keep

significant data secure has consistently been a need in IT, yet with an innovation that

takes data outside of the virtual secure dividers most enterprises have up will raise

warnings. The use of dainty customers might actually be high-jacked if individuals

are imprudent with data. Due to security concerns, cloud merchants generally are

reluctant to introduce contextual investigations about organizations that are as of now

utilizing their services. "Building new services in the cloud or in any event, receiving

cloud computing into existing business setting, overall is a mind boggling choice

including numerous components. Endeavors and associations need to settle on their

decisions identified with services and deployment models just as to change their

operational strategies into a cloud situated plan joined with an exhaustive danger

evaluation work on coming about because of their requirements". By and large, cloud

itself can't encounter disappointment; the service goes down. For instance, when

Gmail had interference for 30 hours on the sixteenth of October, 2008, it was anything

but a cloud disappointment; it was a service disappointment. "Blackout is the most

basic issue that is making news in the cloud computing region. It alludes to the non-

7

accessibility of service in the cloud throughout a specific time". For instance, in 2009,

Microsoft Sidekick blackout brought about a deficiency of the clients data (a huge

number of clients lost their data that were put away in the cloud).

1.2.3 Deployment Models Of Cloud Computing

Four sorts of deployment services accessible in the Cloud they are Private Cloud,

Public Cloud, Hybrid Cloud, and Community Cloud.

There are four fundamental Cloud computing models: public, private, hybrid and

community cloud.

 Public cloud: "The cloud infrastructure is made accessible to the overall

population or a huge industry bunch and is possessed by an association selling

cloud services”. Consumers need to pay just for the time term they utilize the

service, i.e., pay-per-use which helps in diminishing expenses. They are less

secure contrasting with other cloud models since every one of the applications

and data are more opened to malignant assaults. Proposed answer for this

worry is security approval keep an eye on the two sides. Community Cloud is

a kind of infrastructure to share an asset to numerous associations from a

particular community with basic concerns (for example security necessities,

mission, strategy, consistence contemplations). A Community Cloud is a

communitarian exertion in which infrastructure is divided among a few

associations from a particular community with regular concerns (security,

consistence, purview, and so forth), regardless of whether oversaw inside or

by an outsider and facilitated inside or remotely.

8

 Private cloud: "The cloud infrastructure is worked exclusively for an

association. It very well might be overseen by the association or an outsider

and may exist on premise or off premise ". It is a data community possessed

by a cloud computing supplier. "The primary benefit is that it is simpler to

oversee security, upkeep and redesigns and furthermore gives more power

over the deployment and u0se. Contrasted with public cloud where every one

of the resources and applications are overseen by the service supplier, in

private cloud these services are pooled together and made accessible for the

clients at the authoritative level. The resources and applications are overseen

by association itself". Private Cloud is additionally called as inner Cloud or

corporate Cloud. Private Cloud is giving asset, storage of data to a

predetermined number of facilitated services. This Cloud might be overseen

and worked by the association behind a firewall. Private Cloud can get to who

are situated inside the limits of an association. Private clouds are those that are

assembled only for a solitary business. For some, organizations considering

cloud computing, private clouds are a decent beginning stage. They permit the

association to have applications, improvement conditions, and infrastructure

in a cloud, while tending to concerns with respect to data security and control

that can emerge in the public cloud climate. There are two sorts of private

clouds: One sort of private cloud is an On Premises Private Cloud: This

model, otherwise called an "Inward Cloud," is facilitated inside an

association's own data place. A second sort of private cloud is a remotely

9

facilitated Virtual Private Cloud: This private cloud model is facilitated by a

third-gathering Cloud Service Provider.

 Community cloud: "The cloud infrastructure is shared by a few associations

and supports a particular community that has shared concerns (e.g., mission,

security prerequisites, strategy, and consistence contemplations). It very well

might be overseen by the associations or an outsider and may exist on premise

or off premise ". Community Cloud is a kind of infrastructure to share an asset

to numerous associations from a particular community with basic concerns

(for example security necessities, mission, strategy, consistence

contemplations). A Community Cloud is a communitarian exertion in which

infrastructure is divided among a few associations from a particular

community with regular concerns (security, consistence, purview, and so

forth), regardless of whether oversaw inside or by an outsider and facilitated

inside or remotely.

 Hybrid cloud: "The cloud infrastructure is an arrangement of at least two

clouds (private, community, or public) that stay novel substances however are

bound together by normalized or restrictive innovation that empowers data

and application portability(e.g., cloud blasting for load-adjusting between

cloud)". Hybrid cloud is safer approach to control data and applications and

permits the gathering to get to data over the web. This cloud infrastructure is a

mix of at least two unmistakable clouds. In this model an association gives

10

and deals for certain assets in-house and has others given remotely. It offers

the advantages of numerous deployment models to the clients. We can decide

to keep up certain systems and data in-house while utilizing outer services

where they will be more successful for our business. A particularly

consolidated arrangement is known as a Hybrid Cloud. A hybrid cloud is for

the most part best-of-breed. It consolidates the solace level of a private cloud

with the adaptability and flexibility of the public.

1.2.4 History of Cloud Technology

Cloud Computing traces all the way back to 1950 for example the enormous scope

centralized servers were made accessible to huge undertakings. There the centralized

computers' equipment infrastructure was gathered and introduced in worker room; the

clients had the option to get to the data at worker by their imbecilic terminals. Later in

1970, IBM delivered an Operating System (OS) called Virtual Machine (VM) that

permitted administrators to have numerous virtual system on a solitary actual hub.

Each VM runs on visitor OS hand their own memory, CPUs and equipment gadgets

alongside consoles, systems administration and CD-ROMs in spite of the way that

those assets would be shared. Consequently virtualization idea turned into an

innovation driver and it went about as an impetus for some greatest advancements in

computing. In 1990s, the media transmission businesses came to its meaningful

conclusion to-point data association as virtualized private organization associations

with a similar service quality at a diminished rate. So the market pattern changed this

way - "these workers are modest, allowed us to concentrate out how to join them".

This move just cleared the venturing stone for Cloud Computing. A system would

introduce the entirety of the assets as though they were in a solitary actual hub, by

installing a piece of software called hypervisor across numerous actual hubs.

The significant advantage of the idea driving cloud computing is that the normal

client doesn't need a PC that is very incredible to deal with complex database

ordering assignments. With this resource, cloud computing clients from everywhere

the world can appreciate the advantages of colossal processing power without

significant capital or specialized expertise. The weighty utilization of transmission

capacity that includes the web of today is the thing that makes the innovation work, as

already networks were substantially less powerful because of moderate transfer and

11

download speeds that were accessible at that point. Another main consideration that

changed the scene was the possibility that large numbers of modest PC equipment

could be outfit to make a limitlessly organized data place similarly comparable to a

more modest measure of more costly, better worker equipment.

Figure 1.2 Cloud to denote Internet

It is fascinating to know the justification the name 'Cloud Computing'. The root of the

term cloud computing is dark, yet it seems to get from the act of utilizing drawings of

adapted clouds to indicate networks in outlines of computing and correspondences

systems. The name 'Cloud Computing' was propelled by the 'Cloud' image (Figure

1.2) that is frequently used to address the Internet in stream outlines and chart since

Cloud computing implies conveying facilitated service over the Internet.

1.2.5 Characteristics of Cloud

For a conveyed database system to be viewed as a cloud database, it should display

five attributes that all cloud computing plans share: it should be an appropriated

system, should be effectively expandable, should have a unique task of assets, should

have high adaptation to non-critical failure, and, in conclusion, it should have a pay-

more only as costs arise estimating system. Every one of these is inspected thusly to

all the more obviously decide how the cloud contrasts from a conventional conveyed

system. Initial, a cloud should be a disseminated system, however it will be shown

12

that it is a quite certain kind of conveyed system. The way that the cloud is a

circulated system suggests that it utilizes more than one PC associated over a network

to tackle a computational assignment. As demonstrated beneath, this first cloud

trademark frames the reason for the vast majority of the other four attributes. The

following two qualities go inseparably: the cloud should be effectively expandable

and should powerfully be allocated assets. As the requirement for computational force

expands, more CPU's and memory should be apportioned to the client's cloud

network powerfully. The converse should likewise be valid. As assets are not, at this

point required, they can be delivered so they are assignable to other cloud clients.

Essentially, this permits clients to have a PC that can't run out of assets or

computational force as long as the client can manage the cost of the additional assets.

To make this unique assignment of assets, cloud PCs are regularly made as virtual PC

pictures dwelling on a gathering of actual workers. As assets are mentioned, the

facilitating workers will allot them to the mentioning virtual machines. If a worker

runs out of assets to disperse, the virtual cloud occasion can be moved to an alternate

actual worker that has more assets, which likewise opens up the entirety of the virtual

PC's old assets for different clouds to utilize.

Another cloud highlight that normally ascends from the way that the cloud is a

dispersed system is that it has a high adaptation to internal failure. This implies that

an endeavor's data are upheld up across a few PCs inside the gathering of physical

and virtual PCs that make up the cloud. On the off chance that one of those PCs were

to go disconnected or get inaccessible, clients would in any case have the option to

get to their data on one of different PCs in the cloud. Ultimately, clients just

compensation for the measure of power, clock cycles, and memory they use. This

pay-more only as costs arise valuing plan permits clients to perform CPU-

concentrated calculations without paying for the development of an incredible PC.

They need just compensation for the measure of time they spend running their

projects.

1.2.6 Service Models of Cloud Computing

There are regularly three cloud service models: Software as a Service, Platform as a

Service, and Infrastructure as a Service. These plans characterize how enormous of a

cloud climate is given to the client and, thus, which parts of the system the client

13

controls. The Software as a Service (SaaS) model permits clients to have programs

and their related data in the cloud, and to just deal with the subtleties of the cloud PC

that relate to their software. SaaS turns out to be especially helpful when a gathering

of clients wish to run a program. Maybe than having every client introduce the

program on their nearby PC, the program could be facilitated in the cloud for the

entirety of the clients to associate with by means of SaaS.

Rather than SaaS, Infrastructure as a Service (IaaS) gives the client power over each

part of the facilitated cloud PC aside from the upkeep of the actual PC itself. This

permits clients to completely control how their projects are run. They can choose

everything from which working system is utilized to which processes are permitted to

run at a given time. The last service model, Platform as a Service (PaaS), falls among

SaaS and IaaS on the size of client control. PaaS clients are accountable for the

"climate" that projects are executed in, yet are not liable for the remainder of the

system. These three service models permit clients to choose precisely how much

control they need over their cloud climate, however they are not a sign of their current

circumstance's cloud type.

14

1.2.7 Disadvantages of Cloud Computing

Each coin has different sides and henceforth cloud likewise has certain impediments

 Dependability: For those organizations which are anticipating giving cloud

assets to their clients, they should project a picture that shows that they are

truly dependable to the level of the electric utility model. This could be an

issue for organizations that depend on the cloud to keep basic business works

fully operational.

 Security: Being ready to keep significant data secure has consistently been a

need in IT, yet with an innovation that takes data outside of the virtual secure

dividers most enterprises have up will raise warnings. The utilization of

flimsy clients might actually be high-jacked if individuals are imprudent with

data.

 Little or no Reference: Because of security concerns, cloud merchants

generally are reluctant to introduce contextual analyses about organizations

that are as of now utilizing their services.

1.2.8 Components of Cloud Computing

Figure 1.3 Environment of Cloud Computing

15

A cloud computing arrangement is comprised of a few components like clients, the

data community and circulated workers (Figure 1.3). Every component has a

particular job and reason in conveying a utilitarian cloud-based application

 Clients: Clients are the gadgets that the end clients collaborate with to deal

with their data on the cloud. They can be PCs, workstations, tablet PCs, cell

phones or PDAs all enormous drivers for cloud computing as a result of their

versatility. For the most part clients can be versatile, slender or thick in nature.

 Datacenter: The datacenter is the assortment of workers where the

application to which we buy in is housed. Virtualization is pertinent to cloud

computing since it is one of the manners by which we will get to services on

the cloud. There are two sorts of virtualization.

Distributed Servers: Often, workers are in geologically dissimilar areas Be that as it

may, for the cloud supporter these workers go about as though they are murmuring

ceaselessly directly close to one another. This gives the service supplier greater

adaptability in alternatives and security.

1.3 CLOUD ARCHITECTURE

Basically, the cloud architecture is built with the combined perspective of cloud

provider, user, and the broker. The conceptual picture of the cloud architecture is

given in Fig. 1.8. The cloud conceptual reference model includes of cloud carrier,

consumer auditor, provider and broker.

1.3.1 Cloud Consumer

The cloud consumer is regarded as a major stakeholder, and it represents a company

or individual that obtains Cloud Computing services from a cloud provider for the

purpose of doing their business. Cloud consumers can receive service from cloud

providers in accordance with the terms of their service level agreements (SLAs). It

outlines technical performance criteria, service contracts, and costs, quality of service,

security and remedies in the event of a performance failure. A cloud customer can use

any type of cloud service, including SaaS, PaaS, and IaaS, to accomplish their goals.

16

1.3.2 Cloud Auditor

A cloud auditor is a third party who has the ability to conduct an independent

assessment of service checks with the purpose of expressing an opinion on the results.

They may assess the privacy implications of cloud services, as well as their

performance and security measures, among other things. A contractual condition

allowing third parties to review the security measures of cloud service providers,

according to Vivek Kundra, should be included in agencies' contracts”.

Figure 1.4 the Conceptual Reference Model

17

1.3.3 Cloud Provider

The job of the cloud provider is extremely crucial, as well as the most challenging. An

elastic pool of resources such as servers, networks, storage and engineered systems is

provided by a cloud provider, who uses cloud enabling technologies such as

distributed computing, autonomic computing, internet technologies, and virtualization

to meet the demands of customers on an as-needed basis. Service orchestration, cloud

service management, service deployment, privacy and security are just a few of the

categories in which cloud providers may be classified according to their capabilities.

 Service Orchestration

The paradigm for service orchestration is composed of three layers. The first is the

service layer, which defines the interfaces that cloud users may use to access

computing resources that are provided as services. SaaS (Software as a Service), PaaS

(Platform as a Service), and IaaS (Infrastructure as a Service) are the three degrees of

service offered. Individuals and groups can use the services, and they can access and

use them at the same time. It is followed by a layer known as the resource abstraction

and control layer, which allows physical resources to be conceptually partitioned with

the use of virtualization technologies. This layer is in charge of access control,

resource allocation, and use monitoring, among other things. Third, the physical

resource layer, which includes all physical computing resources such as servers,

networks, storage components, power, cooling systems, and other aspects of the

physical components, as well as all other layers of computer resources.

 Cloud Service Management

All of the service-oriented tasks are addressed from the perspectives of provisioning

and configuration, business support, portability or interoperability, and

interoperability or portability. This section focuses on supplying resources quickly,

modifying resources quickly, monitoring and metering, reporting and service level

agreement (SLA) management, among other things. Business support activity is

comprised of a collection of business-related services that are handled in conjunction

with cloud users, companies, and supporting procedures. For cloud users, it provides

features such as customer management, contract management, inventory

management, accounting, and invoicing, as well as reporting, auditing, pricing, and

18

rating. The Mobility and Interoperability activity focuses on the portability of cloud

customers' data or applications, as well as intercommunication across various cloud

environments.

 Security and Privacy

Cloud security is a critical problem since it must be protected from the physical layer

all the way up to the application layer. It handles cloud security needs such as

authorization, availability, authentication, confidentiality, integrity, management,

audit, identification, monitoring, threat detection, and security policy management, as

well as cloud computing security controls such as encryption. In order to maintain

privacy, the cloud provider should take appropriate measures to safeguard Personally

Identifiable Information (PII). Information about a person's identification, such as

their place of birth, date of birth, name, social security number, biometric information,

and so on, is used to track or recognize that person's identity.

1.3.4 Cloud Broker

Because of the rapid advancement of Cloud Computing, the consolidation of Cloud

Computing services has become too complex for cloud customers to handle. Instead

of directly contacting a cloud provider, a cloud user may choose to contact a cloud

broker to gain access to services. A cloud broker is a company that facilitates the

negotiation of cloud services between cloud consumers and cloud providers on their

behalf. A cloud broker can provide services such as service intermediation, service

aggregation, and service arbitrage, among other things.

1.3.5 Cloud Carrier

A cloud carrier serves as an intermediary between cloud providers and cloud

consumers, facilitating the delivery and connection of Cloud Computing services.

User access is provided by a variety of means, including telecommunication

networks, local area networks, transport agents, and other access devices. Moreover,

in accordance with the service level agreement, a cloud carrier must provide dedicated

and secure connections between cloud users and cloud providers.

1.4 TASK SCHEDULING

19

Scheduling is the most important task in any working framework, and it is controlled

by the CPU. This is due to the fact that resources are not stored in a particularly

designated manner, but rather in a strictly handy manner in order to ensure maximum

skills. Because cloud services need a significant level of control and management of

resources, effective scheduling is essential for the efficient management of projects

and activities. Scheduling is critical to the operation of the management system. This

problem is known to be NP-complete in generally due to the nature of the scheduling

problem involved. Clients submit tasks to a broker or scheduler who then uses the

information to execute the scheduling algorithm, allowing the system to begin taking

task. In cloud-based infrastructure, real machines are virtualized into unified resources

known as virtual machines, which are shared by multiple users (VMs). With the

scheduler, you can control how and when resources (VMs) are used, and you can also

control which tasks are done on each of these resources. It assigns tasks to the most

appropriate virtual machine so that the computing process may be completed in order

to meet the Quality of Service (QoS) restrictions imposed by users, such as deadlines

and costs. This QoS-based optimization tries to minimize execution costs or to make

execution time as fast as feasible while staying within a defined budget range.

Scheduling refers to the process of allocating system resources to different activities.

When it comes to cloud computing, scheduling is utilized to achieve excellent

performance and the highest system throughput.

The type of scheduling that is used in a cloud-computing environment has a

significant impact on the speed, efficiency, and efficient usage of resources. The

maximum CPU usage and the maximum throughput are two of the scheduling

requirements. The business model of the cloud computing environment is well-known

in the industry. Users' demands for a wide range of jobs, a unified solution, and task

scheduling continue to be major concerns. Between the allocation of resources in a

cloud computing system and the distribution of social income riches, there are certain

parallels: the resources given by foundation facility makers are comparable to the total

amount of social wealth available. It is possible to abstractly represent social

individuals as the needs of various users expressed through distinct task types. The

amount of resources paid by the user might be viewed as a form of reward for the

social individual's efforts. They divide money in diverse ways based on the disparities

in work.

20

Cloud computing is a relatively new technology that allows users to access computer

infrastructure and other services on a demand basis. Also of note, cloud computing

has risen to become one of the most advanced technologies due to its rapid

development and excellence in providing services to businesses, institutions, and

users in an efficient, timely, and cost-effective manner in order to meet the needs of

the users and ensure their satisfaction. User tasks are transmitted over the internet to

cloud computing service providers, who are responsible for scheduling the tasks of

customers into the resources available in a manner consistent with the service level

agreement (SLA) contract between the user and service providers, as well as meeting

the quality of service (QoS) requirements agreed upon in the SLA. Task scheduling in

a cloud computing environment is a significant problem since it is concerned with

increasing the use of resources such as processing power, memory, bandwidth,

storage, and so on. To accomplish successful task scheduling, it is necessary to

employ the shortest possible makespan and reaction time by completing the activities

within a certain time frame. When it comes to information services, cloud computing

is defined as a paradigm that is capable of disseminating submitted user requests over

a resource pool that has been formed from a large number of physical computers that

include virtual machines.

It helps consumers to have access to the information service that they desire. In

response to an increment in the amount of available resources added to data centers,

an increase in the number of alternate cloud service resources is seen. Users would

only be charged for the services they really use, and cloud users will benefit from

more efficient service at a lower cost. As a result, cloud computing service providers

will see an increase in profits. The continued development of cloud computing apps

will increase the number of users who can manage resources and also have access to

the cloud computing platform. Resource management and job scheduling were

complicated by the enormous reservoir of resources and services available in the

cloud, as well as the demands of users and the constant updating of massive resources.

As a result, one of the most difficult challenges to solve in cloud computing, which is

also a hot topic in the academic community, is the scheduling and management of

available resources.

21

In cloud settings, the cloud service provider must be more dynamic in that physical

resources must be brought into and removed from clouds on a more frequent basis

than in traditional systems. When it comes to cloud computing, task scheduling was

among the most essential features that must be included in any cloud computing

framework in order for the resources to be managed efficiently and the cloud

customers to be served successfully. It has a significant impact on the allocation of

resources for incoming activities that have strict performance optimization

requirements. The major objectives of every cloud computing platform are high

performance, high profit, usage (utilization), scalability, provision efficiency, and

cost-effectiveness. These basic objectives can only be achieved by efficient task

scheduling.

Figure 1.5 Task Scheduling in Cloud Computing

Typically, task scheduling does not always follow a uniform distribution,

necessitating effective management and the ability to locate the best available VM

resources to complete the tasks. The tasks presented to the cloud framework are

diverse, with varying levels of quality of service (QoS). The virtual machine (VM) is

a resource that offers a virtualized environment for the cloud user to utilize in order to

complete the tasks assigned to it. According to the resource provisioning rules, a

22

single server machine can be multiplexed into numerous virtual machines (VMs) each

with its own operating system and configuration. Every time a user submits a task to

the cloud framework, the task scheduler module begins the process of locating the

most appropriate virtual machine (VM) using the cloud framework's built-in

scheduling algorithm. Real problems arise during the scheduling task, when tiny

activities are assigned to a virtual machine with a lot of capacity, or huge tasks are

assigned to a virtual machine with limited capabilities. Because to the extended

waiting times and the rise in makespan, the overall performance of the system may be

compromised. The usage of virtual machines (VMs), the profit margin, and the total

throughput are all reduced from the cloud provider's standpoint. As a cloud user, it

has a negative impact on user satisfaction due to longer waiting times, higher

investments, and a failure to fulfill the Quality of Service (QoS) standards.

As a result, the task scheduling algorithm must be improved in order to meet the

demands of both cloud providers and cloud consumers. The optimal scheduling

algorithm must provide a method for assigning specific tasks to the most suitable

virtual machine resources with the least amount of time spent and the least amount of

money spent. According to the business perspective, the task scheduling algorithm

must meet quality of service (QoS) standards such as makespan, resource usage, and

cost. Typically, swarm-based algorithms are effective for solving NP complete task

scheduling issues, such as those involving many tasks. These algorithms are a subset

of evolutionary algorithms (EAs), which are a type of meta-heuristic stochastic search

methods that are used to solve optimization problems in a deterministic manner.

Technically speaking, they are population-based trial-and-error algorithms with meta-

heuristic characteristics built into them. The method begins with a starting set of

potential solutions that is generated and then updates them repeatedly. Every

iteration, the less viable solution is replaced by adding a small number of random

modifications, which makes the solution more feasible. Therefore, the algorithm

continues to evolve until it finds the best feasible solution based on the objective

function.

When it comes to cloud computing, task scheduling and resource distribution are

critical components of the process. Users can choose from three different sorts of

services provided by cloud computing. Users are expected to send their demands to

23

the cloud services through a dependable interface that is connected to the internet in

order to take use of the three sorts of services available. The prime objective of the

service provider is to satisfy the user's request through the use of task scheduling

algorithms, which are described in more detail below. Because of the use of

scheduling algorithms, the cloud service provider is able to efficiently manage both

incoming requests and available IT resources. The scheduling and resource allocation

are the two most important aspects that influence the overall performance of the cloud

infrastructure. It is necessary to perform task scheduling in an effective manner in

order to achieve a trade-off between income and resource usage. Task Scheduling

organizes the user request from cloud users in a certain method, allowing the money

is being spent in the most efficient manner.

Figure 1.6 Task Scheduling Constraints

Users of cloud computing services make requests for IT resources through the

Internet. For each service, there could be a large number of concurrent requests that

arrive at the cloud point of service at the same time from a large number of users. If

task scheduling is not correctly done, certain jobs will have to wait for a longer period

of time, while the short-term activities will be automatically terminated. As a result,

task scheduling is regarded as one of the most important quality improvement

requirements in the cloud, and it is handled in this study experiment by employing

innovative techniques. When conducting task scheduling, the scheduler must take into

account the type of the task, improved Quality of Service (QoS), the size of the task,

24

the time required for execution, the availability of resources, task queues, and load-

balancing methods, among other factors. The words load balancing and task

scheduling are intertwined and are used in conjunction with one another. It is possible

to achieve optimal allocation of resources by performing task scheduling in an

appropriate manner, which the primary aim of cloud is computing. NP-hard problems,

such as task scheduling, are believed to exist. As illustrated in Figure 1.6, task

scheduling algorithms in the cloud are anticipated to maximize CPU utilization and

throughput while also minimizing factors such as turnaround time, waiting time, and

response time. Task scheduling in the cloud is intended to achieve two objectives:

high processing speed and energy conservation, respectively.

Figure 1.7 Tasks Scheduling in Cloud

As seen in Figure 1.7, the task scheduling cloud architecture is comprised of four

components: the User Portal, the Cloud Service Provider, the Task Scheduler, and the

Cloud Data Center, among others. The user portal acts as an interface via which cloud

consumers may log in and request access to funds available on the cloud

infrastructure. The jobs have been broken down into numerous subtasks, each of

25

which may be done on one of the actual nodes located inside the datacenters. In order

to assist the task scheduler in appropriately allocating a task to the right node present

in the datacenter, the Cloud Service Provider keeps track of every information

regarding resource allocation, usage, and log information. The cluster can be any type

of device, ranging from a tiny PC to a workstation in size and functionality. The cloud

provider keeps track of the progress of each execution and the availability of available

resources in order to control the scheduling of incoming tasks.

1.4.1 The Features of Task Scheduling In the Cloud Computing Environment

Task scheduling and resource deployment have been unified controlled by cloud

computing service providers through the use of virtualized technologies in the cloud

computing environment. They had been employed to conceal and accomplish users'

tasks in an open and transparent manner. As a result of the visible and dynamic

flexibility of the cloud platform, as well as the varying requirements for resources

from different applications, task scheduling becomes more complicated. Using task

scheduling techniques that are primarily concerned with equity or efficiency would

raise the cost of time, space, and throughput while simultaneously improving the

overall quality of service in the cloud computing environment. When it comes to

cloud computing environments, the following features of task scheduling are present:

 Task scheduling caters to a unified resources platform.

With the help of virtualized technology, cloud computing allows us to abstract the

underlying physical resources (all sorts of hosts, workstations or even PCs, for

example) and group them together as an uniform resource pool, protecting

heterogeneous resources from being used. It primarily distributes information through

a significant number of dispersed computers and provides access to resources through

the usage of a data center.

 Task scheduling is global centralized.

As cloud computing is a computing model that provides centralized resources to

multiple distributed applications through the use of a mirror service, this mirroring

deployment can make the execution of heterogeneous procedures and the

interoperability of these procedures easier, which was previously difficult to deal with

26

in the past. As a result of virtualization technology and mirrored services, cloud

computing task scheduling is able to produce a worldwide centralized scheduling

model, which is advantageous.

 Each node in the cloud is independent.

As a result, in cloud computing, each cloud node has its own inner scheduling policy,

and the schedulers in the cloud would not meddle with the scheduling policy of these

nodes.

 The scalability of task scheduling.

In the initial phases of cloud computing, the size of resources available from cloud

providers may be restricted. Adding more computational resources of different types

might result in a significant increase in the size of the abstraction virtual resources,

which in turn increases the demand for application resources. The scaling aspects of

task scheduling in the cloud must be met in order for the throughput of task

scheduling in the cloud to not be too poor.

 Task scheduling can be dynamically self-adaptive.

Depending on the demand, it may be essential to scale up or down apps on the cloud.

It is also possible for virtual computing resources in a cloud system to grow or

diminish simultaneously time. The resources are forever evolving, some resources

may fail, and new resources can enter or resume in the clouds at any point in time.

 The set of task scheduling.

One task of task scheduling is used as a unified resource pool scheduling, and it is

mainly responsible for such scheduling of applications and cloud APIs; the other part

is used for unified port resource scheduling in the cloud, and it is liable for the

scheduling of Map Reduce tasks, among other things. Each scheduling, on the other

hand, is composed of two two-way processes: the scheduler leases resources from the

cloud, and the scheduler callbacks the needing additional once they have been used.

The former procedure is referred to as scheduling strategy, while the latter is referred

to as callback strategy. The task scheduling set is made up of the scheduling strategy

and the callback resource strategy combined together.

27

1.5 TYPES OF SCHEDULING IN CLOUD

Various types of task schedulers have been developed to make use of the vast amount

of cloud-based resources users can access while also improving the management of

data centers. These include Job scheduling, Virtual Machine scheduling, Workflow

scheduling, Storage scheduling, and Task scheduling, to name a few. Detailed

descriptions of the many types of scheduling strategies are provided in the subsequent

sections:

 Job Scheduling: Job scheduling is comparable to how the operating task

distributes tasks among its available resources. When evaluating a task, it

considers the priority of other tasks currently in the queue, as well as the

arrival time, waiting time, execution time, and deadline of the task in task.

This aids in the accurate mapping of the task to the resources at the

appropriate moment. Job scheduling features are included into the cloud

computing environment. A job scheduler may be thought of as a user portal

that has a greater sense of control over all of the jobs.

 Virtual Machine Scheduling: At first, the cloud service provider establishes a

resource pool of virtual machines for its customers. One of the most difficult

difficulties encountered by IaaS is the creation of virtual machines. There are

several requirements that must be met before a virtual machine can be created,

including meeting the Service Level Agreement (SLA), which defines how

each host is linked with its Virtual Machine. In addition, throughout the

scheduling procedure, a virtual machine transfer is carried out.

 Workflow Scheduling: Defined by Working flow diagrams are a collection of

task representations that have a relationship to one another. Typically, a

Directed Acyclic Graph (DAG) is used to describe workflows, in which each

vertices represent a task and each link reflects the precedence and flow

between two tasks in the workflow. According to the amount of resources and

the type of resources assigned, as well as how it impacts the time required for

the workflow to be completed, an assessment of the economic burden is made.

28

 Storage Scheduling: It is referred to as storage scheduling when a big data

block with a large size and diverse data kinds (Video, Audio, and Text) is kept

in clusters at different geographical locations. When the data amount rises,

much like with big data, it creates significant complications. According to the

information acquired from the resources and storage locations, storage

scheduling divides a huge block of data into smaller pieces. Table 1.1 lists the

various task scheduling kinds that are available in the Cloud, along with their

respective features.

Table 1.1 Comparison of scheduling characteristics in different types of

scheduling techniques

Scheduling

Type

Main Objective Important

Attribute

Types of Requests

Job To allocate a pool of

task to a set of

resources

Priority

value(weight) and

Size

Request for jobs and

software applications

Virtual

Machine

Allocating a set of

Virtual Machines to a

set of hosts

Consolidation and

migration of Virtual

Machines

Virtual Machine

Request

Workflow Sorting the tasks and

allocating a set of

ready tasks to

resources

Bandwidth, data

transmission, and pre-

deadline of task

Workflow Request

Storage Data is distributed in

various geographic

locations and data

blocks are assigned to

its corresponding

Resource Clusters.

Chunks of data Big Data Analytics,

Data Mining

Application(DM),

Storage Requests

29

1.6 PROCESS OF TASK SCHEDULING

It is possible that the broker in Figure 1.8 is a server or a datacenter where the

scheduling rules is in effect. In Figure 1.8, you can see that the resources are available

in the datacenters, and that their availability is connected with them. To better

understand the task scheduling process, consider the following examples:

1. A first request is sent to the broker by the user in this stage.

2. The broker receives the request and investigates the nature of the request.

3. The task scheduling procedure is used to assign each available resource to

the user task that has requested the resource.

Figure 1.8 Task Scheduling Process

1.7 THE TARGET OF TASK SCHEDULING IN CLOUD

30

ENVIRONMENT

In cloud computing, the objective of task scheduling is to offer optimal task

scheduling for clients while also ensuring that the actual cloud system's throughput

and quality of service are maintained at the very same moment. Load balancing,

quality of service (QoS), economic principle, and perhaps the most efficient operating

time and provides benefits are all objectives to strive for.

1.7.1 Load balance

In the cloud environment, load balancing and task scheduling are in close

communication with one another, with the task scheduling mechanism being

responsible for the most efficient pairing of jobs and resources. In the cloud, load

balancing has become an indispensable step due to the effectiveness of the task

scheduling algorithm. Level two loads in task scheduling within cloud computing

environments have existed since the load balancing state: the first stage is represented

by the virtual machine load, and the second phase represents the resource layer load.

1.7.2 Quality of Service

The cloud is primarily used to offer consumers with computing and cloud storage

solutions, and the relationship between workloads from users and resource supply

from providers is demonstrated in the form of service quality. Ensure that the quality

of service (QoS) of resources is maintained when task scheduling management is

involved in work distribution.

1.7.3 Economic Principles

A large number of cloud computing resources are available all around the world.

These resources might be owned by a variety of different entities. They are in charge

of their own management rules and procedures. Cloud computing, as a business

model, delivers relevant services that are tailored to meet the needs of various

customers. As a result, the certain of are fair and reasonable. Task scheduling and

resource management are driven by the market economy; we must ensure that they

are beneficial to both consumers and service providers in order for cloud computing

to progress even further.

31

1.7.4 The best running time

Tasks may be split into different categories based on the demands of the users, and

then the optimal running duration and basis for various objectives for every task can

be determined. This is especially true for apps. It will significantly enhance the

quality of service (QoS) of task scheduling in a cloud context.

1.7.5 The throughput of the system

Throughput is a measure of system task scheduling that optimizes efficiency, and it is

an objective that must be considered when developing a business model for cloud

computing systems. Both consumers and cloud service providers could reap the

benefits of increased throughput.

1.8 GUIDELINES OF SCHEDULING

Scheduled jobs are assigned to specified resources at specific times in accordance

with a set of rules known as job scheduling. When it comes to cloud computing, the

topic of work scheduling is a significant and fascinating subject. As a result, the work

scheduler has to be active. Most of the time, job scheduling in cloud computing is

focused on improving the well-organized usage of reserve resources such as

bandwidth, memory, and a reduction in completion time. An efficient work

scheduling approach must aim to harvest as little response time as possible so that the

executing of given jobs takes place in the shortest amount of time possible and that

there will be an incidence of in time when revenues fluctuate in the short term.

Therefore, fewer job rejections will take place, and more jobs will be sent to the cloud

by the customers, all of which will have cumulative effects in expediting the

commercial initiation of cloud services. There are several types of scheduling that are

based on different criteria, such as static vs. dynamic, centralized vs. distributed,

offline vs. online, and so on, as described in the following sections:

1. Static Scheduling: Pre-Schedule occupations, all information perceived with

regards to realistic assets and tasks and a task relegated once to a save, so it is

more settled to adjust dependent on scheduler's standpoint.

2. Dynamic Scheduling: Jobs progressively exist for scheduling after some time

through the scheduler. It is more flexible than static scheduling, to be capable

32

of conclusive run time in charge. It is more significant to incorporate burden

balance as a principal factor to obtain steady, precise and successful scheduler

calculation.

3. Centralized Scheduling: As expressed in powerful scheduling, it is a

responsibility of incorporated/appropriated scheduler to settle on overall

decision. The fundamental government aides of concentrated scheduling are

solace of business; viability and more control and nursing on assets. Then

again, such scheduler needs versatility, responsibility resistance and viable

execution. Since of this burden, it isn't indorse for enormous scope matrices.

4. Distributed/Decentralized Scheduling: More of practical for genuine cloud

in any case of its frail ability compared to bring together scheduling. There is

no fundamental control substance, so neighborhood schedulers‟ solicitations

to accomplish and maintain condition of jobs‟ line.

5. Preemptive Scheduling: This sort permits all task to add during execution

and a task can went to another asset farewell its initially owed asset, accessible

for different positions. On the off chance that limitations, for example, need

are cautious, this sort is more useful.

6. Non-Preemptive Scheduling: Scheduling measure, in which capitals are not

being permitted to be redistributed until the sequentially and planned

occupation finished its execution.

7. Co-employable scheduling: Here, framework have currently a few

schedulers, both one is liable for execution certain activity in scheduling

interaction to normal framework wide reach dependent on the collaboration of

occasions, given rubrics and present plan clients.

8. Immediate/Online Mode: Here, scheduler plans any newly showing up work

when it comes to with no hanging tight for next time recess on accessible

assets right then and there.

33

9. Batch/Offline Mode: The scheduler supplies internal positions as assortment

of issues to tackle throughout successive time stretches, with the goal that it is

well to plan a task for fit assets relying upon its components.

1.9 SCHEDULING CRITERIA

As previously noted, the various CPU scheduling methods have a variety of

characteristics. The selection of a given algorithm may favor one class of processes

over the other depending on the circumstances. When choosing an algorithm for a

specific situation, we must take into account the characteristics of the algorithms

under consideration. There have been several criteria proposed for evaluating CPU

scheduling methods. Whose characteristics would be used in the comparison, and

which can make a significant difference in the algorithm used to determine which one

is the best, is being discussed. The following are some of the criteria to consider.

 Context Switch:

This is interaction of putting away and reestablishing setting (condition) of a seized

cycle, with the goal that execution can continue from same point later. It is normally

computationally escalated, lead to wastage of time and memory, which thusly

expands the overhead of scheduler, so the plan of working framework is to upgrade

just these switches, the objective is to limit it.

 Throughput:

This is a proportion of what amount occupied the CPU is. Typically, the objective is

to boost the CPU usage.

 Turnaround Time:

This alludes to the all-out time, which is spend to finish the interaction and is the way

long it takes the CPU to execute that cycle. The time span from the hour of

accommodation of a cycle to the hour of fulfillment is the turnaround time.

 Holding up Time:

The absolute time a cycle has been holding up in prepared line. The CPU scheduling

calculation doesn't influence the measure of time during which an interaction executes

34

or inputs yield; it influences just the measure of time that a cycle spends holding up in

prepared line.

 Reaction Time:

It is the time from the accommodation of a solicitation until the main reaction

delivered. Accordingly, the reaction time ought to be low for best scheduling. Thusly,

we can reason that a decent scheduling calculation for constant and time-sharing

framework should have following qualities:

1. Minimum context switches.

2. Maximum CPU utilization.

3. Maximum throughput.

4. Minimum turnaround time.

5. Minimum waiting time.

1.10 TASK SCHEDULING ALGORITHMS IN CLOUD

COMPUTING

Different types of work scheduling algorithms have been developed and tested in the

cloud environment, each with a somewhat different configuration. The primary goal

of any task scheduling algorithm is to ensure fairness among the jobs throughout their

execution and to decrease waiting time, as well as to enhance performance, quality of

service, such as throughput end-to-end latency, and overall system performance.

When providing services to a large number of users simultaneously in cloud

computing, you must consider the reaction time of each individual user, and you

cannot make consumers wait for an excessive amount of time.

Scheduling algorithms that are derived from different optimization criteria are prone

to a variety of problems. Among the requirements for batch systems are turnaround

time and throughput. In interactive systems, the requirements include reaction time

and fairness. In real-time systems, fulfilling deadlines is a crucial component of

operations. As a result, a scheduling algorithm should be chosen in such a way that it

meets all of the essential requirements while also providing efficient service and

35

effective resource allocation. In a distributed computer system, there are many

different types of scheduling algorithms. The majority of them may be implemented

in a cloud environment with appropriate verification. The primary advantage of using

a job scheduling algorithm is that it allows for high-performance calculating as well

as the most optimal scheme amount. When used in a cloud environment, traditional

task scheduling algorithms will not be able to provide scheduling. According to a

straightforward classification, work scheduling algorithms in cloud computing may be

divided into two primary categories: batch mode heuristic scheduling algorithms

(BMHA) and online mode heuristic scheduling algorithms (OMHA). Jobs are queued

and calmed into a set as soon as they come in the system at the BMHA, according to

the organization. The scheduling process will begin when a secure date has been

established. The First Come, First Served scheduling algorithm (FCFS), the Round

Robin scheduling algorithm (RR), the Min–Min algorithm, and the Max–Min

algorithm are all examples of BMHA-based algorithms that are often used. Jobs are

scheduled as soon as they arrive in the scheme using the On-line mode experiential

scheduling method. Due to the fact that the cloud environment is a dynamic system

with varying processing speeds, the on-line mode experience scheduling methods are

more suited for a cloud context. In the context of On-line mode experience scheduling

algorithms, the much-fit task scheduling algorithm (MFTF) is a good example.

1.11 LOAD BALANCE AWARENESS IN TASK SCHEDULING

Another significant restriction in cloud settings is load balancing, which has a

significant impact on the performance of the task scheduling process. Even during

task scheduling process, it is necessary to ensure that the resources are neither

overloaded nor under loaded in any way. In addition, because the majority of the

resources are expected to be distributed at the same time, the scheduling system must

guarantee that all of the resources are balanced in relation to its capacity throughout

the allocation process. Due to the fact that the issue is not only overcrowded VMs, but

also under loaded idle VMs, this helps to improve resource usage. When virtual

machines (VMs) remain in an idle state, it has an impact on the service provider's

earnings. As a result, in order to make better use of available resources, an effective

load balance aware task scheduling algorithm must be included as a component of the

task scheduling methodology. Load balancing may be accomplished in a variety of

36

methods, but in most situations, dynamic load balancing is preferable to static load

balancing due to the fact that the cloud computing architecture is entirely real-time

oriented. When it comes to dynamic load balancing, there are two options: one is that

it may be performed during the task scheduling process, and another is that it can be

performed after the task scheduling process.

As an example, in the first scenario, it is accomplished by concurrent monitoring and

analysis of the load on VMs as well as resource matching capabilities, with judgments

being made based on the load fluctuation before assigning the jobs. In the second

instance, load balancing is performed after task scheduling, and if the load is not

balanced across the VMs, a few jobs may need to be moved to other resources in

order to keep the workload balanced. Migration of virtual machines (VMs) can

sometimes result in performance loss in terms of makespan, cost, and extended

waiting time. Load balancing during the task scheduling process is extremely

fascinating and offers a number of important advantages, such as the ability to

minimize the need for needless virtual machine migrations. Aside from that, the load

on each virtual machine is examined in light of the present condition of the system,

and decision variables are altered in order to direct the task scheduling process. The

load balance-based task scheduling approaches utilized in some of the earlier research

projects were founded on EA methodologies in some cases.

1.12 OBJECTIVES OF THE STUDY

1. To study the concept of cloud computing.

2. To build a scheduling model capable of utilizing the resources efficiently

during load management by reducing the total completion time for the longest

task (makespan) based on deadline constraint.

3. To formulate a model to reduce the total cost for task scheduling problem in a

cloud computing environment, which consists of the cost of storage, cost of

processing and cost of communication based on the budget constraint?

4. To design a model capable of executing tasks based on both deadline

constraint and budget constraint. The performance of the proposed models is

evaluated by comparing with other applicable algorithms.

37

1.13 SIGNIFICANCE OF OUR RESEARCH

Cloud computing is a distributed and parallel computing paradigm that is becoming

increasingly popular. This type of cloud computing comprises a group of

heterogeneous linked datacenters that are reliant on virtualization techniques and that

are provided as a dynamically to the customer through a negotiation between cloud

service providers and cloud users. With a rising number of cloud users and limited

resources (e.g., processing capacity and bandwidth) in the cloud, ensuring high

quality of service (QoS) and optimizing resource usage are still important issues in

cloud computing, despite recent advances. A lot of the time, when scheduling

activities over cloud resources, customers set limitations such as a deadline and a

budget. This is because each service provider has a variety of resources with varying

costs. Fast resources, on the other hand, are more expensive when compared to

inexpensive resources.

In the face of these complicated conflicts between restrictions and the dynamic nature

of the cloud, a trade-off solution is required. The most important question of the

relevance of this research is how to accomplish effective job scheduling in a cloud

computing environment while maintaining a balance between time and cost

constraints. With the use of multiple constraints, this research manages the models

that execute tasks in the suggested scheduling methods in order to achieve customer

happiness while also ensuring that the service provider is satisfied. A scheduling

method for reducing the overall completion time (makespan) and reaction time in the

cloud computing environment will be given in order to achieve high - performance

during task execution in heterogeneous resources will be demonstrated.

1.14 PROBLEM STATEMENT

Because of the flexibility provided by cloud service providers, the number of people

who utilize the cloud is growing at an alarming rate. The service providers

concentrated on increasing the capacity of their resources, such as infrastructure, to

accommodate a high number of customers. However, there is no service provider with

a limitless number of resources to meet the demands of peak or fluctuating users. In

addition, service providers must ensure that there are an appropriate number of

resources available to meet the criteria of QoS, such as execution time, deadline

38

restrictions, and budget limitations, which are guaranteed to users by the service

provider. The implementation of too many tasks or demands on a single resource, on

the other hand, will result in tasks interfering with one another. As a result, the

performance will deteriorate and become unpredictable, resulting in users being

discouraged. It is the assignment and execution of tasks on appropriate resources in

the cloud environment that brings this difficult problem to a close. It is only after the

user's request is successfully executed that the cloud service providers receive

revenue. A provider, on the other hand, is charged a penalty fee when a SLA is

violated. Each service provider has a unique service level agreement (SLA), which

may differ from the SLAs of other service providers. However, a smaller amount of

resources should be employed to complete the activities in order to maintain an

acceptable level of quality of service (QoS) or to minimize the time it takes to

complete the tasks providing the best task scheduling mechanism that determines the

most effective resources while also taking into consideration the significance of QoS

metrics such as the execution cost with budget and the execution time with a deadline,

or in other words, achieving the satisfaction of both the user and the service provider,

are the solutions to these problems.

1.15 RESEARCH METHODOLOGY

1.15.1 Research Design

In this research, tasks will be given and completed on the basis of the resources that

will be made accessible within the limits of the study. The time limitations and

financial constraints that will be employed in this study are as follows: Although a

number of algorithms will be developed to deal with this sort of problem, the vast

majority of them will not include the metrics that will be required to evaluate the

performance of task scheduling. As a result, we will recommend that our models will

be used to obtain effective performance in the task scheduling mechanism.

1.15.2 Proposed Models

The Deadline-Aware Priority Scheduling (DAPS) model will be the first of the

scheduling models. As a result of this model, tasks will be planned and assigned to

appropriate resources in order to decrease the amount of time required to complete

them under the deadline constraint and to reduce the minimum completion time.

39

When we will be developing an efficient task scheduling model, one of the variables

that must be taken into consideration is the level of happiness that users have with the

system. The technique will pertain to a concentration on scheduling activities based

on a deadline restriction, and as a result, the deadline will be considered to be the time

required to complete the work.

When using the Budget-Aware Scheduling (BAS) model, tasks will be scheduled and

assigned based on available resources, with the goal of lowering the total time

required to complete the tasks while staying within the budget constraints. The cost of

the resources that will be utilized is also computed. The service provider will provide

services and resources to the user, and the user will determine which resources he

requires and then pays for the resources that will be utilized within the constraints of

his budget.

Last but not least, there will be the Deadline Budget Scheduling (DBS) paradigm.

Tasks will be scheduled and assigned to diverse available resources in this model with

two competing Quality of Service requirements: time and cost, all while ensuring that

users will be satisfied. In the suggested DBS model, the most important aspects

should to decrease the makespan under a user-defined deadline while maintaining or

decreasing monetary expenses while not exceeding the user-defined budget.

1.15.3 Task scheduling steps

Cloud computing will work by sending a request or task to a cloud computing service

provider, which may contain varied information about the user's requirements, such as

a constraint, a priority, or other information. On the other hand, at the service provider

that owns a special task scheduling system, the scheduler receives will request from

users to schedule their tasks according to the terms of the service level contract

between the users and the cloud service provider, in order to ensure the quality of

service while earning a profit from the services that will be used by the customers.

The scheduler will select the most appropriate resources from among the

heterogeneous cloud resources to carry out these tasks in accordance with certain

constraints, and the scheduler in this case will be represented by the proposed model

and will serve as an intermediary between both the users and the service providers.

40

1.15.4 Simulation Tool

An efficient tool for simulating task scheduling in homogeneous and heterogeneous

cloud computing environments will be required. This tool should be flexible enough

to support this environment while also receiving an increasing number of user

requests. CloudSim toolkit will be one of the finest open-source toolkits for the

development of data centers and Physical Machines (PMs), as well as virtual

machines. It will be available for free and open source. The CloudSim toolkit will be

a simulator that operates on an event-driven model and will be hosted in the Java

programming language. The CloudSim toolkit will enable you to design and enhance

the policies that will be applied across all of the CloudSim components. As a result, it

will be regarded as a useful study tool since it can replicate the complexity that

emerge from different settings. In order to conduct the simulation tests, the following

setups will be used on a laptop: 2.5 GHz Intel Corei5 processor, 4 GB of RAM, and a

512 GB hard drive.

1.15.5 Datasets

The datasets that will be used in the cloud computing environment vary depending on

the applications that are being utilized. It will be utilized in this research to create two

types of datasets the first, which will be obtained from the NASA site for research,

and the second, which will be taken by utilizing the CloudSim toolkit, which will

generate the dataset.

41

CHAPTER 2

LITERATURE REVIEW

Gagandeep Kaur (2021) Cloud computing has gotten famous in these days as it

gives on-request accessibility of PC resources like processor, stockpiling, and data

transfer capacity all through the world. Virtualization helps in the development of

data and calculation focuses and makes responsibility adjusting a lot more

straightforward and simpler. Virtualization in current days makes the things simpler

for cloud clients as they at this point don't have to make enormous forthright

speculations and get quick admittance to minimal expense and adaptable resources.

Virtualization intends to decrease end-client worries concerning worker upkeep,

limitations, and adaptability. Cloud computing utilizes the idea of virtualization and

utilizations IT resources as utilities in todays' reality. Cloud computing utilizes cloud

commercial center to get to and incorporate the administrations and contributions.

Cloud clients and cloud suppliers have various points while dealing with the

resources, strategies, and request designs in true situation. In this paper, three-level

engineering has been introduced to deal with the resources in financial cloud market

considering cutoff time and execution season of the errands for clients.

Shaw, Rachael (2021) throughout the last number of years there has been high speed

increase and far and wide reception of cloud-based administrations by a wide range of

businesses to work on the adaptability and dependability of their administrations

while additionally lessening costs. The prominence of the cloud has summoned

significant worry for the high energy utilization and fossil fuel byproducts clear in the

activity of data focuses today. One of the vital reasons for high energy utilization is

wasteful resource management. While much exertion as of late has been committed to

accomplishing further developed energy productive resource management

methodologies, execution vulnerability has likewise become a significant prevention

for cloud resource management frameworks. Execution vulnerabilities present critical

difficulties for arranging and provisioning Virtual Machine (VM) resource portion

and planning for the cloud while having adverse consequences by and large in

accomplishing more prominent energy efficiencies and worked on Quality of Service

(QoS). Not at all like conventional resource management methodologies that depend

42

on heuristics this work had presents novel anticipating based methodologies for

booking and dispensing the computational resources of public cloud foundation. We

will probably expand and make headways after existing examination by applying and

looking at the exhibition of cutting-edge learning algorithms utilizing genuine data.

We investigate how these high-level methodologies can be consolidated to bring

about savvy resource management frameworks with the ability to settle on further

developed choices under vulnerability. Specifically, we propose and examine a few

fascinating varieties and augmentations to issues, for example, work process booking,

dynamic VM combination and furthermore VM movement. The outcomes acquired

from this examination demonstrate the gigantic capability of embracing learning-

based techniques to upgrade resource use, further develop execution and by and large

endeavor to arrive at new outskirts in energy effectiveness.

Harvinder Singh et al (2020) Cloud resource management is pivotal for proficient

resource allotment and booking that needs for satisfying clients' assumptions.

However, it is hard to foresee a fitting coordinating in a heterogeneous and dynamic

cloud climate that prompts execution corruption and SLA infringement. Hence,

resource management is a difficult assignment that might be compromised in light of

the unseemly portion of the necessary resource. This paper presents a precise audit

and insightful correlations of existing studies, research work exists on SLA, resource

designation and resource planning for cloud computing. Further, conversation on open

exploration issues, ebb and flow status and future examination headings in the field of

cloud resource management.

Mohd Ameen Imran et al (2020) Cloud computing is a platform that is becoming

used these days. Because of the use of designs such as SASS, PASS, and IASS in

cloud computing, we have gained numerous advantages over our current platforms,

including economies of scale and availability, security as well as other significant

enhancements to our computing platforms. Many different types of research are being

conducted to improve the reliability of cloud computing platforms for users

(individual or corporate) and customers. This research paper examines log

management in cloud computing and demonstrates how logs may be utilized as a

useful information source on cloud platforms such as Amazon Web Services (AWS),

Microsoft Azure, Google Cloud Platform (GCP), and others. It is proposed that cloud

43

platforms preserve log files in non-volatile storage in a consistent format, which may

be used for virtual machine restoration and account monitoring for faults, as well as

for the forensics process. This framework is called Lass scheme. Cloud platforms

employ different types of services, and Lass provides a framework for collecting logs

from multiple sources based on the type of service used. Lass provides a mechanism

through which the user's log may be secured and the privacy of the user's log can be

maintained.

Jong Beom Lim et al (2019) as of late, computerized reasoning strategies have been

broadly utilized in the software engineering field, like the Internet of Things,

enormous data, cloud computing, and portable computing. Specifically, resource

management is of most extreme significance for keeping up with the quality of

services, service-level arrangements, and the accessibility of the framework. In this

paper, we audit and break down different approaches to meet the prerequisites of

cloud resource management dependent on man-made consciousness. We partition

cloud resource management procedures dependent on man-made brainpower into

three classes: haze computing frameworks, edge-cloud frameworks, and insightful

cloud computing frameworks. The point of the paper is to propose a shrewd resource

management plot that oversees versatile resources by checking gadgets' situations

with anticipating their future security dependent on one of the man-made brainpower

methods. We investigate how our proposed resource management plan can be

stretched out to different cloud-based frameworks.

J. Antony John Prabu (2019) Cloud is a computing innovation; it offers a few types

of assistance in the application for a dependable service. The principle highlight of

cloud is a capacity to deal with enormous measure of data without thinking about

hardware structure and support. Albeit, the upkeep of consistency in data transaction

is considered as a significant issue of cloud database. It's one kind of ACID

properties. So data transaction in cloud requires better way to deal with maintain the

consistency state. In existing, a large portion of the analysts have fostered a few

methodologies for this issue yet it is in the earliest stages level. To take care of this

issue, this paper focuses on fostering another methodology that is D1TFBC to

guarantee more significant level consistency. Further, the performance of the

44

proposed approach is investigated and results are confirmed with existing

methodologies.

Dr. Diwakar Ramanuj Tripathi (2019) Cloud computing ensures different central

focuses for the organization of data-raised applications. One essential assurance is

decreased expense with a remuneration as-you-go business show. Another assurance

is (all things considered) endless throughput by including workers if the responsibility

increases. This paper records elective constructions to affect cloud computing for

database applications and reports on the outcomes of a thorough evaluation of existing

business cloud benefits that have gotten these plans. The point of convergence of this

work is on trade dealing with (i.e., peruse and invigorate jobs), rather than assessment

or OLAP jobs, which have as of late got a ton of thought. The results are surprising in

a couple of ways. Most importantly, it gives the idea that each and every huge dealer

have accepted a substitute designing for their cloud organizations. Accordingly, the

expense and execution of the organizations contrast basically depending upon the

responsibility.

Gawali (2018) Modern technology necessitates the use of cloud computing. The

scheduling of tasks and the distribution of resources are critical components of cloud

computing. This paper proposes a heuristic approach for performing task scheduling

and resource allocation that incorporates the modified analytic hierarchy process

(MAHP), bandwidth aware divisible scheduling (BATS) + BAR optimization, longest

expected processing time preemption (LEPT), and divide-and-conquer methods. Each

job is processed prior to being allocated to cloud resources in this technique, which is

accomplished through the use of an MAHP process. The resources are assigned

utilizing a combined BATS + BAR optimization technique, which takes into account

the bandwidth and load of the cloud resources as restrictions while allocating the

resources. The suggested system also preempts resource-intensive activities using

LEPT preemption, which is an extension of the previous system. When turnaround

time and response time are used as performance metrics, the divide-and-conquer

approach improves the proposed system, as demonstrated experimentally through

comparison with the existing BATS and improved differential evolution algorithm

(IDEA) frameworks when the divide-and-conquer approach is used.

45

Mitrevski et al (2017) Cloud computing is a new appealing term in the IT world. The

expression "Cloud Computing" emerges from the thought for incorporating the

capacity and calculation in appropriated data. Its drawn out objectives are to give an

adaptable, on – request bundle to the cloud client, giving him considerably more

opportunity, adaptability and dependability simultaneously, accomplishing the

entirety of the above by utilizing a straightforward "utility computing model". It vows

to welcome on-request estimating, less IT overhead and a capacity to scale IT here

and there rapidly. The focal point of this work tumbles down on transaction

processing applications which work in multi – processing and cloud conditions. All

significant sellers have embraced an alternate engineering for their cloud

administrations. Therefore, in this paper we will survey some of them and their basic

methodologies on improving Cloud Transactions.

Qusay Kanaan Kadhim et al (2017) Cloud computing is the most encouraging

current execution of utility computing in the business world, since it gives some

critical highlights over exemplary utility computing, for example, flexibility to permit

clients progressively increase and scale-down the resources in execution time. In any

case, cloud computing is as yet in its untimely stage and encounters absence of

normalization. The security issues are the primary difficulties to cloud computing

appropriation. Hence, basic ventures like government associations (services) are

hesitant to believe cloud computing because of the dread of losing their touchy data,

as it lives on the cloud with no information on data area and absence of

straightforwardness of Cloud Service Providers (CSPs) systems used to get their data

and applications which have made a hindrance against receiving this spry computing

worldview. This examination means to audit and group the issues that encompass the

execution of cloud computing which a hot region that should be tended to by future

exploration.

Sultan Aldossary (2016) Cloud computing switched the world up us. Presently

individuals are moving their data to the cloud since data is getting greater and should

be available from numerous gadgets. In this manner, putting away the data on the

cloud turns into a standard. Nonetheless, there are numerous issues that counter data

put away in the cloud beginning from virtual machine which is intend to share assets

in cloud and finishing on cloud stockpiling itself issues. In this paper, we present

46

those issues that are keeping individuals from embracing the cloud and give a review

on arrangements that have been done to limit dangers of these issues. For instance, the

data put away in the cloud should be private, safeguarding uprightness and accessible.

Additionally, sharing the data put away in the cloud among numerous clients is as yet

an issue since the cloud specialist organization is dishonest to oversee verification and

approval. In this paper, we list issues identified with data put away in cloud

stockpiling and answers for those issues which vary from different papers which

center around cloud as broad.

Artan Mazreka et al (2016) Cloud Computing is one of the innovations with quick

improvement lately where there is expanding interest in industry and the scholarly

world. This innovation empowers numerous services and assets for end clients. With

the ascent of cloud services number of organizations that offer different services in

cloud framework is expanded, accordingly making a rivalry on costs in the worldwide

market. Cloud Computing suppliers offer more services to their customers going from

infrastructure as a service (IaaS), platform as a service (PaaS), software as a service

(SaaS), storage as a service (STaaS), security as a service (SECaaS), test environment

as a service (TEaaS). The motivation behind suppliers is to amplify income by their

value plans, while the primary objective of clients is to have nature of services (QoS)

at a sensible cost. The reason for this paper is to think about and examine a few

models and evaluating plans from various Cloud Computing suppliers.

Joundy (2016) Cloud computing is becoming increasingly popular as a substitute for

conventional physical hardware computing, particularly in the areas of parallel and

distributed computing. Virtualized resources that may be provided on demand, based

on the demands of the users, make up cloud computing infrastructures (also known as

clouds). Cloud computing has to deal with a large number of user groups, as well as a

large number of tasks and a large amount of data, thus the amount of processing

required is enormous. The effective scheduling of work has emerged as a critical

challenge in the realm of cloud computing that must be addressed. From over years,

task scheduling has been a key study topic in a variety of architectures and contexts,

beginning with single processors and progressing through multiprocessors and cloud

computing. When it comes to computing resources, cloud computing is a paradigm

for providing ubiquitous network access to a shared pool of customizable computing

47

resources where available resources must be verified and planned using an efficient

task scheduler before being allocated to clients. The majority of currently available

task schedulers failed to meet the necessary criteria and requirements. As part of this

thesis, we present a unique hybrid task scheduling algorithm termed (SRDQ) that

incorporates the best features of both the shortest-job-first and round robin schedulers,

as well as a dynamic variable task quantum that considers splitting the ready queue

into two sub-queues, Q1 and Q2. The assignment of jobs to resources from either Q1

or Q2 is done in a mutually beneficial manner, with two assignments from Q1 and one

task from Q2. The proposed algorithm was implemented in two different

environments, C# and CloudSim, where the results of the experiments and tests

revealed that the proposed algorithm significantly improved the average waiting and

response times while also partially reducing the starvation when compared to the

state-of-the-art algorithms, as demonstrated by the results of the experiments and

tests.

J. Antony John Prabu (2015) Cloud Computing is quite possibly the main zones in

the current IT businesses. It gives diverse kind of administrations (SaaS, PaaS, and

IaaS) contingent upon the clients' necessities. Rather than buying, introducing and

keeping up programming in IT businesses can utilize Cloud computing. In this paper,

necessities of ACID properties for cloud databases, benefits and impediments of cloud

databases are talked about. It additionally pictures the significant issues and

difficulties of Database Architectures and Data Transaction Management in Cloud

Environment. There are various techniques used to deal with the data, yet every single

one of them has its own impediments in cloud climate. At long last this paper gives a

comprehensive examination on Transaction Processing System, Cloud Database as a

Service (DBaaS), Cloud RDBMS and Cloud data stockpiles to plan a novel design for

cloud databases with the help of conventional ACID properties.

D. S. B. R. Kumar (2015) Cloud Computing is quite possibly the main territories in

the current IT enterprises. It gives distinctive kind of administrations (SaaS, PaaS, and

IaaS) contingent upon the clients' necessities. Rather than purchasing, introducing and

keeping up programming in IT businesses can utilize Cloud computing. In this paper,

requirements of ACID properties for cloud databases, benefits and impediments of

cloud databases are talked about. It likewise pictures the significant issues and

48

difficulties of Database Architectures and Data Transaction Management in Cloud

Environment. There are various strategies used to deal with the data, however every

last one of them has its own limits in cloud climate. At last, this paper gives a

comprehensive investigation on Transaction Processing System, Cloud Database as a

Service (DBaaS), Cloud RDBMS and Cloud data stockpiles to plan a novel design for

cloud databases with the help of customary ACID properties.

R. Velumadhava Rao (2015) Cloud Computing pattern is quickly expanding that has

an innovation association with Grid Computing, Utility Computing, Distributed

Computing. Cloud service suppliers, for example, Amazon IBM, Google's

Application, and Microsoft Azure and so on, give the clients in creating applications

in cloud climate and to get to them from anyplace. Cloud data are put away and gotten

to in a far-off server with the assistance of services given by cloud service suppliers.

Giving security is a significant worry as the data is sent to the far off server over a

channel (web). Prior to executing Cloud computing in an association, security

provokes should be tended to first. In this paper, we feature data related security

challenges in cloud-based climate and answers for survive.

Usman Namadi Inuwa (2015) Cloud computing is a computing innovation expecting

to share storage, calculation, and services straightforwardly among a gigantic client.

Current cloud computing systems present genuine constraint to ensuring the secrecy

of client data. Since the data share and put away is introduced in decoded structures to

distant machines claimed and worked by outsider service suppliers regardless of it

affectability (model contact address, sends), the dangers of uncovering client

classified data by service suppliers might be very high and the danger of assaulting

cloud storage by outsider is likewise expanding. The motivation behind this

examination is to survey investigates done on this innovation, recognize the security

hazard and investigate a few strategies for shielding users‟ data from aggressors in the

cloud.

Azim et al (2014) Cloud computing has arisen as an effective worldview for web

application deployment. Economies-of-scale, flexibility, and pay-per use valuing are

the greatest guarantees of cloud. Database management systems serving these web

applications structure a basic part of the cloud environment. To serve thousands and

an assortment of applications and their immense measures of data, these database

49

management systems should not just scale-out to groups of product servers, yet in

addition act naturally overseeing, issue open minded, and profoundly accessible. In

this paper we review, investigate the presently applied transaction management

methods and we propose a worldview as indicated by which, transaction management

could be portrayed and dealt with.

Nesrine Ali Abd-El Azim (2014) Cloud computing has arisen as an effective

worldview for web application sending. Economies-of-scale, versatility, and pay-per

use estimating are the biggest guarantees of cloud. Database management systems

serving these web applications structure a basic part of the cloud climate. To serve

thousands and an assortment of utilizations and their enormous measures of data,

these database management systems should not just scale-out to groups of item

servers, yet additionally act naturally overseeing, flaw lenient, and profoundly

accessible. In this paper we study, investigate at present applied transaction

management procedures and we propose a worldview as per which, transaction

management could be portrayed and dealt with.

Petter Svard (2014) A vital part of cloud computing is the guarantee of boundless,

versatile resources, and that cloud services should increase and down on request. This

proposition examines techniques for dynamic resource designation and management

of services in cloud datacenters, presenting new methodologies just as upgrades to set

up advancements. Virtualization is a vital innovation for cloud computing as it

permits a few working framework examples to run on a similar Physical Machine,

PM, and cloud services ordinarily comprises of various Virtual Machines, VMs, that

are facilitated on PMs. In this proposal, a novel virtualization approach is introduced.

Rather than running every PM segregated, resources from various PMs in the

datacenter are disaggregated and presented to the VMs as pools of CPU, I/O and

memory resources. VMs are provisioned by utilizing the perfect measure of resources

from each pool, accordingly empowering both bigger VMs than any single PM can

have just as VMs with customized determinations for their application. Another

significant part of virtualization is live relocation of VMs, which is the idea moving

VMs between PMs without break in service. Live movement considers better PM use

and is likewise helpful for regulatory purposes. In the postulation, two upgrades to the

standard live movement algorithm are introduced, delta pressure and page move

50

reordering. The upgrades can diminish relocation personal time, i.e., the time that the

VM is inaccessible, just as the all-out movement time. Post copy relocation, where the

VM is continued on the objective before the memory content is moved is likewise

contemplated. Both client space and in-bit post copy algorithms are assessed in a top

to bottom investigation of live movement standards and execution. Effective planning

of VMs onto PMs is a critical issue for cloud suppliers as PM usage straightforwardly

impacts income. At the point when services are acknowledged into a datacenter, a

choice is made on which PM should have the service VMs. This proposition presents

an overall methodology for service booking that considers a similar planning software

to be utilized across various cloud structures. Various booking algorithms to improve

destinations like income or use are additionally considered. At long last, a

methodology for constant datacenter solidification is introduced. As VM workloads

vary and worker accessibility shifts any underlying planning will undoubtedly become

imperfect after some time. The consistent datacenter solidification approach changes

this VM-to-PM planning during activity dependent on mixes of management

activities, such as suspending/continuing PMs, live moving VMs, and

suspending/continuing VMs. Proof-of idea software and a bunch of algorithms that

permits cloud suppliers to constantly enhance their worker resources are introduced in

the theory.

Linlin Wu (2014) The Cloud computing Software-as-a-Service (SaaS) model has

changed the business model for software suppliers. The SaaS model changes the

conventional permit-based model to a membership model, which permits clients to get

to applications over the Internet without software and equipment forthright expenses

and gives decreased upkeep costs. Nonetheless, the key for deals is still consumer

loyalty which is at the core of the selling cycle. To ensure Quality of Service (QoS)

for consumer loyalty subsequently, the Service Level Agreement (SLA) is carried out

among clients and SaaS suppliers, where the principle goals are profit augmentation

and expanded portion of the overall industry. To accomplish these goals, there are a

few difficulties because of the unique idea of the Cloud climate. First and foremost,

the SaaS supplier uses shared framework and different kinds of solicitation loads

which can prompt unconventionality in execution and accessibility of resources.

Furthermore, there is plausible that current clients may make changes in prerequisites,

which can prompt resource redistribution. In that capacity, resource designation may

51

cause SLA infringement which could diminish the SaaS providers‟ profit edge and

notoriety, which means a potential loss of existing clients and likely new clients.

Thirdly, SaaS suppliers need to draw in clients with extraordinary requirements and

consider market contest from different suppliers to build profit and portion of the

overall industry. To conquer the above challenges, most proposed arrangements are

centered on the resource management determined to limit cost without adequately

thought of customer‟ needs. Hence, to address these difficulties, this proposition

proposes algorithms and methods for ideal provisioning of Cloud resources fully

intent on amplifying profit and client base by taking care of the dynamism related

with SLAs and heterogeneous resources.

Shri V D Garde (2013) The boundless fame of Cloud computing as a favored stage

for the organization of web applications has brought about a gigantic number of

utilizations moving to the cloud, and the immense achievement of cloud service

suppliers. Because of the expanding number of web applications being facilitated in

the cloud, and the developing size of data which these applications store, process, and

serve – adaptable data management systems structure a basic piece of cloud

foundations. There are issues identified with the database security while database is

on cloud. The major testing issues are multi-tenure, versatility and the protection. This

paper centers around the issues looked in the data security of Relational Cloud. The

issues looked by different kinds of occupants and the sort of access into the database

causes to modify on the security of data, by dissecting appropriate locking systems on

the records got to from the database. Data security in cloud computing tends to the

kind of access mode by the clients (for scientific or transaction reason) and the

recurrence of data access from the actual area (in shared or no shared plate mode). As

needs be, the different data locking techniques are considered and suitable locking

system will be carried out for constant applications as in internet business.

Pranita P. Khairnar (2013) Cloud computing has created a great deal of interest and

rivalry in the business and it is perceived as one of the main 10 advancements of

2010. It is a web-based service conveyance model which gives web-based services,

computing and storage for clients in all market including monetary, medical care and

government. Cloud security is turning into a key differentiator and serious edge

between cloud suppliers. From the supplier’s perspective a Cloud is an enormous

52

dispersed system which presents numerous challenges. Cloud computing is plainly

one of the present most alluring innovation territories to its expense productivity and

flexibility. There is a developing pattern of utilizing cloud services for truly

developing storage and data processing needs.

Kashif Munir (2013) Cloud computing has altered the whole procedure that

distributed computing was previously characterized by, for example, Grid computing

and server client computing, among other things. Many existing IT systems have

undergone recent advancements, and cloud computing is a term that refers to the

separation of application and information from the underlying infrastructure. A

critical component of the quality of service provided by cloud service providers is the

security of their cloud computing infrastructure. The moment one begins to execute

programs outside of the authorized firewall and moves closer to the public domain,

there are security considerations to be considered. Any component of the cloud that is

compromised in terms of security can be disastrous for both the business (the client)

and the cloud service provider. In this research, we offer a cloud security model and

security framework that identify security issues in cloud computing and provide

recommendations for addressing them.

Sindhu S (2011) Cloud computing refers to the usage of computers, platform, and

software as a service, and it is becoming increasingly popular. It is a type of utility

computing in which the client does not need to own the essential facilities and just

pays for the services that they actually utilize. Virtual machines serve as delivery

vehicles for computing resources. Since a result, task scheduling algorithms play a

crucial role in this situation, as their goal is to schedule activities efficiently in order

to decrease turnaround time and maximize resource usage. This work offers two

scheduling methods for scheduling tasks that take into account the computational

complexity of the jobs as well as the computing capacity of the processing units in the

system. Experimentation is carried out using the CloudSim toolbox. The experimental

findings demonstrate that the suggested algorithms work well even when subjected to

high loads.

Muhammad Usman Sana and Zhanli Li (2021) somewhat recently, cloud

computing turns into the most requesting stage to determine issues and oversee

demands across the Internet. Cloud computing brings tremendous freedoms to run

53

savvy logical work processes without the prerequisite of having any set-up for clients.

It makes accessible practically limitless assets that can be accomplished, coordinated,

and utilized as required. Asset scheduling assumes a basic part in the efficient portion

of assets to each task in the cloud climate. Anyway alongside these increases many

difficulties are needed to be considered to propose an effective scheduling calculation.

A productive Scheduling calculation should upgrade the execution of objectives like

scheduling cost, load adjusting, makespan time, security mindfulness, energy

utilization, dependability, administration level understanding upkeep, and so forth To

accomplish the previously mentioned objectives many best in class scheduling

strategies have been proposed dependent on half breed, heuristic, and meta-heuristic

methodologies. This work surveyed existing calculations according to the viewpoint

of the scheduling objective and techniques. We direct a near examination of existing

methodologies alongside the results they give. We feature the disadvantages for

understanding into additional exploration and open difficulties. The discoveries help

scientists by giving a guide to propose proficient scheduling calculations.

Fahd Alhaidari (2021) as of late, there has been critical development in the

prominence of cloud computing frameworks. One of the primary issues in building

cloud computing frameworks is task scheduling. It assumes a basic part in

accomplishing significant level execution and remarkable throughput by having the

best advantage from the assets. Subsequently, improving task scheduling calculations

will upgrade the QoS, in this way prompting greater supportability of cloud

computing frameworks. This paper presents a clever method called the dynamic

cooperative heuristic calculation (DRRHA) by using the cooperative calculation and

tuning its time quantum in a powerful way dependent on the mean of the time

quantum. In addition, we applied the leftover burst season of the task as a factor to

choose the progression of executing the task during the flow round. The trial results

got utilizing the CloudSim Plus device showed that the DRRHA essentially beat the

opposition as far as the normal holding up time, turnaround time, and reaction time

contrasted and a few considered calculations, including IRRVQ, dynamic time cut

cooperative effort, further developed RR, and SRDQ calculations.

J. Kok Konjaang (2021) Workflow scheduling includes planning enormous tasks

onto cloud assets to further develop scheduling efficiency. This has drawn in light of a

54

legitimate concern for some scientists, who dedicated their time and assets to work on

the exhibition of scheduling in cloud computing. Be that as it may, logical work

processes are large information applications, thus the executions are costly and

tedious. To resolve this issue, we have expanded our past work "Cost Optimized

Heuristic Algorithm (COHA)" and introduced a clever work process scheduling

calculation named Multi-Objective Workflow Optimization Strategy (MOWOS) to

mutually diminish execution cost and execution makespan. MOWOS utilizes tasks

parting system to divide huge tasks into sub-tasks to lessen their scheduling length.

Besides, two new calculations called MaxVM determination and MinVM choice are

introduced in MOWOS for task allotments. The plan reason for MOWOS is to

empower all tasks to effectively fulfill their time constraints at a diminished time and

financial plan. We have painstakingly tried the presentation of MOWOS with a

rundown of work process inputs. The recreation results have shown that MOWOS can

successfully perform VM distribution and organization, and well handle approaching

streaming tasks with an irregular showing up rate. The presentation of the proposed

calculation increments essentially in enormous and extra-huge work process tasks

than in little and medium work process tasks when contrasted with the condition of-

craftsmanship. It can incredibly lessen cost by 8%, limit makespan by 10% and

further develop asset usage by 53%, while additionally permitting all tasks to fulfill

their time constraints.

Farooq Hoseiny et al (2021) volunteer computing is an Internet-based disseminated

computing framework in which volunteers share their extra accessible assets to

oversee enormous scope tasks. Be that as it may, computing gadgets in a Volunteer

Computing System (VCS) are exceptionally unique and heterogeneous as far as their

preparing power, financial expense, and information moving dormancy. To guarantee

both the excellent of Service (QoS) and minimal expense for various solicitations, the

entirety of the accessible computing assets should be utilized productively. Task

scheduling is a NP-difficult issue that is viewed as one of the fundamental basic

difficulties in a heterogeneous VCS. Because of this, in this paper, we plan two task

scheduling calculations for VCSs, named Min-CCV and Min-V. The fundamental

objective of the proposed calculations is mutually limiting the calculation,

correspondence and defer infringement cost for the Internet of Things (IoT) demands.

Our broad reenactment results show that proposed calculations can allot tasks to chip

55

in mist/cloud assets more proficiently than the best in class. In particular, our

calculations further develop the cutoff time fulfillment task rates by around 99.5%

and decline the complete expense between 15 to 53% in examination with the

hereditary based calculation.

Honglin Zhang (2021) in cloud computing, task scheduling and asset designation are

the two center issues of the IaaS layer. Proficient task scheduling calculation can work

on the coordinating with efficiency among tasks and assets. In this paper, an upgraded

heterogeneous soonest finish time dependent on rule (EHEFT-R) task scheduling

calculation is proposed to advance task execution efficiency, nature of administration

(QoS) and energy utilization. In EHEFT-R, requesting rules dependent on need

imperatives are utilized to upgrade the nature of the underlying arrangement, and the

improved heterogeneous most punctual completion time (HEFT) calculation is

utilized to guarantee the worldwide presentation of the arrangement space.

Reenactment tests confirm the viability and predominance of EHEFT-R.

Zeinab Shahbazi (2021) the cutting-edge industry, creation, and manufacturing

center is creating dependent on smart manufacturing systems and digitalization. Smart

manufacturing's reasonable and significant plan follows data, data, and operational

innovation through the block chain, edge computing, and AI to create and work with

the smart manufacturing system. This current process' proposed smart manufacturing

system thinks about the incorporation of block chain, edge computing, and AI draws

near. Edge computing makes the computational responsibility adjusted and

comparably gives an ideal reaction to the gadgets. Block chain innovation uses the

data transmission and the manufacturing system's transactions, and the AI approach

gives progressed data investigation to an enormous manufacturing dataset.

Concerning manufacturing systems' computational surroundings, the model takes care

of the issues utilizing a multitude knowledge-based methodology. The test results

present the edge computing component and comparatively improve the processing

season of an enormous number of undertakings in the manufacturing system.

Dinh C. Nguyen (2020) the block chain innovation is surprising the world. Block

chain with its decentralized, straightforward and secure nature has arisen as a

problematic innovation for the up-and-coming age of various modern applications.

One of them is Cloud of Things empowered by the mix of cloud computing and

56

Internet of Things. In this specific situation, block chain gives creative answers for

address difficulties in Cloud of Things as far as decentralization, data protection and

organization security, while Cloud of Things offer versatility and adaptability

functionalities to improve the effectiveness of block chain tasks. Hence, a novel

worldview of block chain and Cloud of Things mix, called BCoT, has been broadly

viewed as a promising empowering agent for a wide scope of utilization situations. In

this paper, we present a best-in-class survey on the BCoT coordination to furnish

general perusers with an outline of the BCoT in different viewpoints, including

foundation information, inspiration, and incorporated design. Especially, we

additionally give an in-depth review of BCoT applications in various use-case areas

like smart medical care, smart city, smart transportation and smart industry. At that

point, we survey the new BCoT improvements with the arising block chain and cloud

stages, administrations, and examination projects. At last, some significant

exploration difficulties and future headings are featured to prod further examination in

this promising region.

Rasha Makhlouf (2020) Looking only from the neoclassical viewpoint, cloud

computing is cost viable. In any case, as per institutional and transaction cost financial

aspects, cloud clients should appraise different expenses past the cost. Such expenses

may not be known to cloud clients, prompting neglected assumptions and execution

challenges. The point of this paper is to contemplate transaction expenses of cloud

computing from the client viewpoint to make the cloud venture less cloudy, for

example more educated and very much arranged. This paper applies transaction cost

hypothesis to cloud computing through a 360-degree industry investigation. Master

interviews with seller, client and consultancy sides were directed to comprehend costs

related with cloud computing. Discoveries were approved through a contextual

investigation. Discoveries of this examination show that cloud has high 'resource

explicitness' because of progress management costs, Meta administrations expenses

and business process reengineering costs. Cloud additionally has a significant degree

of 'vulnerability' requesting overseeing contracts, putting resources into cloud-explicit

checking arrangements and deliberately investigating of the lawful consistence. At

last, cloud has high 'transaction recurrence', which makes up for the required ventures

set off by 'vulnerability' and 'resource explicitness'.

57

Tahani Aladwani (2020) Cloud computing is quite possibly the main technology

utilized lately, it permits clients (people and associations) to get to computing assets

(programming, equipment, and stage) as administrations distantly through the

Internet. Cloud computing is recognized from customary computing ideal models by

its versatility, movable expenses, openness, dependability, and on-request pay-more

only as costs arise administrations. As cloud computing is serving a large number of

clients all the while, it should can meet all clients’ demands with superior and

assurance of nature of administration (QoS). In this way, we need to carry out a fitting

task scheduling calculation to reasonably and proficiently meet these solicitations.

Task scheduling issue is the one of the most basic issues in cloud computing climate

since cloud execution relies primarily upon it. There are different sorts of scheduling

calculations; some of them are static scheduling calculations that are considered

reasonable for little or medium scale cloud computing; and dynamic scheduling

calculations that are considered appropriate for enormous scope cloud computing

conditions. In this examination, we endeavor to show the most famous three static

task scheduling calculations execution there are: first started things out help (FCFS),

short occupation first scheduling (SJF), MAX-MIN. The CloudSim test system affects

calculation intricacy, asset accessibility, absolute execution time (TET), complete

holding up time (TWT), and all out-finish time (TFT).

Zhihao Peng (2017) Energy utilization has been one of the principles worries to help

the fast development of cloud server farms, as it not just expands the expense of

power to specialist co-ops yet additionally assumes a significant part in expanding

ozone harming substance outflows and hence natural contamination, and contrarily

affects framework unwavering quality and accessibility. Subsequently, energy

utilization and efficiency measurements have turned into a fundamental issue for

equal scheduling applications dependent on tasks performed at cloud server farms. In

this paper, we present a period and energy-mindful two-stage scheduling calculation

called best heuristic scheduling (BHS) for coordinated non-cyclic diagram scheduling

on cloud server farm processors. In the main stage, the calculation allots assets to

tasks by arranging, in view of four heuristic techniques and a grasshopper calculation.

It then, at that point chooses the most proper technique to play out each task, in view

of the significance factor controlled by the end-client or specialist organization to

accomplish an answer planned at the perfect opportunity. In the subsequent stage,

58

BHS limits the makespan and energy utilization as indicated by the significance factor

dictated by the end-client or specialist organization and taking into account the

beginning time, arrangement time, end time, and energy profile of virtual machines.

At long last, a test dataset is created to assess the proposed BHS calculation

contrasted with the multi-heuristic asset designation calculation (MHRA). The

outcomes show that the proposed calculation works with 19.71% more energy

stockpiling than the MHRA calculation. Besides, the makespan is decreased by

56.12% in heterogeneous conditions.

Aida Amini Motlagh (2019) Today, cloud computing has created as one of the

significant eminent advances in correspondence and Internet. It offers on request, pay

per use admittance to foundation, stages, and applications. Because of the expansion

in its fame, the gigantic number of solicitations should be dealt with in a proficient

way. Task scheduling as one of the difficulties in the cloud computing upholds the

solicitations for appointing a specific asset to perform viably. In the asset the

executives, task scheduling is performed where there is the reliance between tasks.

Many methodologies and contextual analyses have been produced for the scheduling

of these tasks. Up to now, a precise writing survey has not been introduced to find and

assess the task scheduling approaches in the cloud computing climate. To survive, this

paper presents a SLR-put together examination with respect to the task scheduling

approaches that arrange into (a) solitary cloud conditions that assess cost-mindful,

energy-mindful, multi-objective, and QoS-mindful methodologies in task scheduling;

(b) multicloud climate that assesses cost-mindful, multi-objective, and QoS-mindful

task scheduling; and (c) portable cloud climate that is energy-mindful and QoS-

mindful task scheduling. The logical conversations are given to show the benefits and

limits of the current methodologies.

Preethi Sheba Hepsiba (2019) the need of productive arrangement assets in cloud

computing is basic in gathering the presentation necessities. The plan of any asset

designation calculation is subject to the sort of responsibility. BoT (Bag-of-Tasks)

which is comprised of bunches of autonomous tasks are prevalent in huge scope

disseminated frameworks like the cloud and productively scheduling BoTs in

heterogeneous assets is a known NPComplete issue. In this work, the smart specialist

utilizes support figuring out how to gain proficiency with the best scheduling heuristic

59

to use in a state. The essential goal of BISA (BoT Intelligent Scheduling Agent) is to

limit makespan. BISA is sent as a specialist in a cloud test bed and manufactured

responsibility and various arrangements of a private cloud are utilized to test the

adequacy of BISA. The standardized makespan is thought about against 15 group

mode and prompt mode scheduling heuristics. At its best, BISA produces a 72%

below standardized makespan than the customary heuristics and as a rule tantamount

to the best conventional scheduling heuristic.

Danlami Gabi et al (2019) Inefficient scheduling of tasks on cloud datacenter assets

can bring about underutilization prompting helpless income age. To show effective

tasks scheduling on cloud datacenter, the makespan time should be limited. In this

paper, we presented a customary Cat Swarm Optimization (CSO) task scheduling

procedure as an optimal arrangement. Albeit the CSO is promising as far as assembly

speed, certain upgrades are needed to make it productive for cloud task scheduling

since it endures capture at the nearby hunt. To beat this, we fused a Linear

Descending Inertia Weight (LDIW) condition at the neighborhood search of the CSO

method. This prompted better assembly speed and conceivably guaranteed effective

tasks planning on virtual assets that limits the makespan time. The proposed CSO-

LDIW strategy is carried out on CloudSim test system apparatus with five (5)

heterogeneous Virtual Machines (VMs) viable to show its exhibition. The aftereffects

of the recreation demonstrate that a correlation with that of the Particle Swarm

Optimization-Linear Descending Inertia Weight (PSO-LDIW) and the CSO shows

that our proposed CSO-LDIW can plan task viably on cloud asset with a promising

makespan time.

N.P. Saravanan (2019) Cloud computing brings computing assets like programming

and equipment, it serve administration to the clients through an organization.

Significant idea of cloud computing is to share the radiant stockpiling area. In cloud

computing, the client occupations are ready and executed with suitable assets to

effectively convey the administrations. There are huge measure of task distribution

methods that are utilized to achieve task arranging. To further develop the task

scheduling strategy, so we proposed technique for proficient task scheduling

calculation. Optimization strategies are tackling NP-difficult issues is exceptionally

well known. In this proposed procedure, client tasks are put away in the request for

60

line techniques. The need is planned and dispensed appropriate assets for the task.

New tasks are researched and kept in the on-request need of line. The yield of the on-

request line is given to the MWOA. It has been demonstrated that this calculation is

fit to wipe out optimization issues and beat the current calculations. The technique is

proposed to the necessary more number of emphases is decreased. The proposed

calculation is contrasted and different scheduling calculations, for example, hereditary

calculation, subterranean insect state, standard dim wolf optimization and particle

swarm optimization. The results of tests show the better efficiency of the MWOA in

articulations of makespan and energy utilization.

Simanta Shekhar Sarmah (2019) Block chain innovation is later and prominent

monetary innovation that totally change the deals. It's a decentralized organization

that help and utilize assortment of cryptography models. This strong and adaptable

got transactions is being incorporated with another prominent computing worldview,

cloud computing. In this paper, we make an endeavor to audit about the utilization of

block chain in cloud computing system. Initially, the idea of block chain is

momentarily talked about with their benefits and inconveniences. Second, the idea of

cloud computing is momentarily shown with block chain innovation. At long last,

earlier papers are looked into and introduced in even structure. It directs that the

examination holes, actually, relates in field of block chain dependent on cloud

computing systems. This paper helps the forthcoming scientists in this field for

planning novel got models.

Abhishek A. Singh et al (2019) Wide-region Edge Database (WedgeDB) range all

around the world and store data nearer to the clients. We term this the Global Edge

Data management issue. In such a climate, angles like data stockpiling, recovery,

transaction processing, and assurance from vindictive entertainers should be

addressed by any data management system that plans to see itself as a reasonable

arrangement. Despite the fact that block chain innovation (both permissioned and

permission less) has given an approach to address these worries, transaction

processing in these conditions is as yet testing. WedgeDB is an endeavor to address

these security issues in edge-cloud data systems. The principle objectives of

WedgeDB are to help distributed transaction processing combined with secure

transaction execution. Data put away in WedgeDB is divided into groups with each

61

bunch taking care of a novel arrangement of keys. Wedge DB is an assortment of such

groups. Each bunch Cx stores a novel arrangement of keys. This parceling plan

permits us to construct a distributed transaction model which runs transactions on a

subset of groups in the organization. Transactions in WedgeDB are serializable. In

WedgeDB, customers perform read activities as a feature of a transaction by means of

read demands which can be shipped off any of the WedgeDB hubs. The read activities

are added to the transaction's set of experiences. Compose tasks are reserved by the

customer until submit is called which sends the transaction object containing the read

history and compose activities to a WedgeDB hub to be submitted. Transactions are

processed in groups called Epochs. Each bunch keeps a pioneer which gets

transactions and gatherings them into ages. A bunch in WedgeDB contains 3f + 1

hubs (where f is the quantity of decent defective hubs) and PBFT is utilized to achieve

agreement among the hubs when executing transactions. Keys adjusted during an age

are added to a Merkle tree which is utilized to confirm changes to keys dealt with by

the group. During transaction execution, evidence of transaction execution is

produced as marked data blocks by the hubs in the group. At any rate f + 1 marked

messages should be accumulated before an age can be submitted. These data blocks

alongside the base of the Merkle tree are put away in a SMR log where every passage

in the SMR log compares to an age. Transactions that contain keys from various

bunches are executed through two-stage submit. During the get ready stage a distant

group executes PBFT inside its neighborhood bunch and checks for reliance

infringement prior to pushing forward with the submit stage. Submitted age might not

have submitted transactions and consequently an extra boundary is utilized to

demonstrate the last dedicated age. This boundary joined with the reliance vector help

in discovering serializability infringement and cut short transactions. With WedgeDB,

transactions that influence a couple of groups don't need worldwide agreement to

submit. Transactions that read keys from various groups don't need agreement at the

server hubs and permit data to be perused from a predictable preview of the

WedgeDB organization. We in this way, present WedgeDB as a reasonable answer

for the issue of worldwide edge data management.

J. Antony John Prabu (2019) Cloud is a computing innovation; it offers a few types

of assistance in the application for a dependable service. The principle highlight of

cloud is a capacity to deal with enormous measure of data without thinking about

62

hardware structure and support. Albeit, the upkeep of consistency in data transaction

is considered as a significant issue of cloud database. It's one kind of ACID

properties. So data transaction in cloud requires better way to deal with maintain the

consistency state. In existing, a large portion of the analysts have fostered a few

methodologies for this issue yet it is in the earliest stages level. To take care of this

issue, this paper focuses on fostering another methodology that is D1TFBC to

guarantee more significant level consistency. Further, the performance of the

proposed approach is investigated and results are confirmed with existing

methodologies.

Gui Huang Et Al (2019) Alibaba runs the biggest online business stage on the planet

serving in excess of 600 million clients, with a GMV (net product esteem) surpassing

USD 768 billion in FY2018. Online web-based business transactions have three

outstanding qualities: (1) extraordinary increment of transactions each second with the

opening shot of significant deals and advancement occasions, (2) countless hot

records that can undoubtedly overpower system supports, and (3) speedy move of the

"temperature" (hot vs. warm vs. cold) of various records because of the accessibility

of advancements on various classifications throughout various brief timeframe

periods. For instance, Alibaba's OLTP database bunches encountered 122 times

increment of transactions on the beginning of the Singles' Day Global Shopping

Festival in 2018, processing up to 491,000 deals transactions each subsequent which

mean in excess of 70 million database transactions each second. To address these

difficulties, we present X-Engine, a compose improved capacity motor of POLARDB

worked at Alibaba, which uses a layered stockpiling engineering with the LSM-tree

(log-organized union tree) to use equipment speed increase, for example, FPGA-sped

up compactions, and a set-up of advancements incorporating non-concurrent writes in

transactions, multi-arranged pipelines and gradual reserve substitution during

compactions. Assessment results show that X-Engine has beat other capacity motors

under such transactional responsibilities.

Dr. Diwakar Ramanuj Tripathi (2019) Cloud computing ensures different central

focuses for the organization of data-raised applications. One essential assurance is

decreased expense with a remuneration as-you-go business show. Another assurance

is (all things considered) endless throughput by including workers if the responsibility

63

increases. This paper records elective constructions to affect cloud computing for

database applications and reports on the outcomes of a thorough evaluation of existing

business cloud benefits that have gotten these plans. The point of convergence of this

work is on trade dealing with (i.e., peruse and invigorate jobs), rather than assessment

or OLAP jobs, which have as of late got a ton of thought. The results are surprising in

a couple of ways. Most importantly, it gives the idea that each and every huge dealer

have accepted a substitute designing for their cloud organizations. Accordingly, the

expense and execution of the organizations contrast basically depending upon the

responsibility.

Dileep Mardham (2018) in dispersed transactional systems sent over some hugely

decentralized cloud workers, access strategies are ordinarily recreated.

Interdependencies promotion irregularities among arrangements should be tended to

as they can influence execution, throughput and precision. A few severe degrees of

strategy consistency imperatives and implementation ways to deal with ensure the

dependability of transactions on cloud workers are proposed. We characterize a look-

into table to store strategy renditions and the idea of "Tree-Based Consistency" way to

deal with keep a tree design of the workers. By coordinating look-into table and the

consistency tree-based methodology, we propose an upgraded form of Two-stage

approval submit (2PVC) convention incorporated with the Paxos submit convention

with decreased or practically a similar execution overhead without influencing

exactness and accuracy. Another storing plan has been proposed which contemplates

Military/Defense uses of Delay-lenient Networks (DTNs) where data that should be

reserved follows an entire diverse need level. In these applications, data notoriety can

be characterized based on demand recurrence, yet additionally based on the

significance like who made and positioned point of interests in the data, when and

where it was made; higher position data having a place with some particular area

might be more significant however recurrence of those may not be higher than more

mainstream lower need data. In this way, our reserving plan is planned by thinking

about various necessities for DTN networks for safeguard applications. The

presentation assessment shows that our reserving plan lessens the general access

inertness, store miss and utilization of store memory when contrasted with utilizing

storing plans.

64

Aasha Begum (2018) the cloud foundation gives Database Management System as a

help with adaptability and versatility. Cloud DBMS is a more affordable stage for

dealing with our data assets. Cloud data are reproduced for high data accessibility.

Simultaneous transactions are done in the cloud database. Database clients expect that

data ought to be steady when two client’s admittance to a similar data simultaneously

and can see a similar worth. Because of replication of data in cloud climate, data

irregularity may happen between various duplicated hubs. Henceforth Effective

locking instruments are expected to deal with such recreated cloud database. This

paper proposes a novel calculation for transaction processing to settle irregularity and

to control simultaneousness utilizing lock directors and line chief.

Alejandro Zlatko Tomsic (2018) the capacity systems fundamental the present huge

scope cloud administrations handle a high volume of solicitations from clients all

throughout the planet. These administrations should give quick reaction and a

"consistently on" experience. Neglecting to do so brings about diminished client

commitment, which straightforwardly impacts incomes. To satisfy these necessities,

stockpiling systems duplicate data at various areas around the world. Clients limit

latency by associating with their nearest site and, on account of site disappointments,

clients can interface with other solid ones. In addition, every area dissipates data

across countless servers. Thusly, each site can deal with volumes of solicitations

bigger than what a solitary machine can deal with. Transactional ensures work on the

improvement of uses that depend on capacity systems. Specifically, transactional

separation conceals peculiar conduct sourced in simultaneousness. Nonetheless, in a

distributed climate, their application can convert into clients seeing high latencies and

administration vacations. This has prompted creation stores — for example, the ones

basic administrations like Facebook and Amazon—to shun segregation. This proposal

concentrates how to implement segregation in a cloud climate without influencing

accessibility and responsiveness. Our first commitment is Cure, a transactional

protocol that guarantees significant degree of semantics viable with accessibility:

Transactional Causal Consistency (TCC), an intuitive transactional interface, and

backing for Convergent data types. TCC guarantees there are no requesting

peculiarities, nuclear multi-key updates and steady preview peruses. Fix's intuitive

interface permits perusing and refreshing articles in a solitary transaction. CRDTs

uncover an engineer amicable API and resolve simultaneous updates securely,

65

ensuring combination and that no updates are lost. When contrasted with systems that

shun consistency and detachment, these certifications limit the oddities brought about

by parallelism and appropriation, in this way working with the advancement of uses.

Fix includes a component to make refreshes noticeable regarding causal request that

brings about insignificant overhead over systems that don't ensure causal consistency.

It depends on a novel metadata encoding to improve execution and progress as for

condition of-workmanship arrangements. Tentatively, Cure is pretty much as

adaptable as a pitifully predictable protocol, despite the fact that it gives more

grounded semantics. Transactional protocols like Cure improve on application

advancement without trading off accessibility. In any case, their transactional systems

show latency overheads that have obstructed their selection at scale. Our subsequent

commitment is to investigate how to execute distributed seclusion with no additional

deferrals concerning a non-transactional system. In this mission, we find, measure and

show a three-path compromise between read disengagement, delay (latency), and data

newness. For our examination, we distinguish a read-disconnection property called

Order-Preserving Visibility. Request Preserving peruses are more fragile than Atomic

peruses, ensured by TCC and more grounded models (e.g., Snapshot Isolation and

Serializability). They don't deny a simultaneousness peculiarity called Read Skew,

which permits noticing the updates of different transactions mostly. On the positive

side, as Atomic Visibility, Order-Preserving Visibility forbids perusing uncertain data

and noticing (for example causal) requesting irregularities. The three-path

compromise between read confinement, delay (latency), and data newness can be

summed up as follows: (I) To ensure perusing data that is the most new immediately

is conceivable just under a pitifully detached mode, like that given by the standard

Read Committed. (ii) Conversely, peruses that uphold more grounded disconnection

at negligible postponement force perusing data from an earlier time (not new). (iii)

Minimal-defer Atomic peruses power transactions to peruse refreshes that were

submitted and recognized before. (iv) In actuality, insignificant defer Order-

Preserving peruses can peruse the updates of simultaneous transactions. (v) Order-

Preserving and Atomic peruses at maximal newness require totally unrelated peruse

and compose tasks, which may block peruses or composes uncertainly. These

outcomes hold freely of different highlights, for example, update semantics (e.g.,

monotonically requested or not) or data model (e.g., organized or unstructured).

Spurred by these outcomes, we propose two separation properties: TCC− and PSI−.

66

They come about because of corrupting the (Atomic) read assurances of TCC and PSI

to Order Preserving Visibility. Utilizing the consequences of the compromise, we use

Cure, which is perused calculation in some cases blocks, to make three protocols

which are latency ideal. AV keeps up Cure's TCC ensures by debasing newness. The

excess two protocols improve newness by debilitating the confinement ensures.

Operation gives TCC−, and CV gives Read Committed Isolation, where peruses

authorize Committed Visibility. The trial assessment of these protocols upholds the

hypothetical outcomes. Every one of the three protocols display comparative latency.

The exemption is Cure, which here and there displays higher latency because of

blocking. With respect to, CV consistently peruses the most exceptional data.

Operation corrupts newness unimportantly under completely tried responsibilities,

while under Cure and AV, the newness debasement is extreme.

AR. Arun Arani (2018) Cloud computing deals with an assortment of virtualized

assets, which makes scheduling a basic part. In the cloud, a customer might use a few

thousand virtualized resources for each task. Thusly, manual scheduling is certifiably

not a doable arrangement. The fundamental thought behind task scheduling is to

record tasks to limit time misfortune and amplify execution. A few examination

endeavors have analyzed task scheduling before. This paper presents a far reaching

study of task scheduling systems and the related measurements appropriate for cloud

computing conditions. It examines the different issues identified with scheduling

procedures and the impediments to survive. Unmistakable scheduling methods are

concentrated to find which attributes are to be remembered for a given framework and

which ones to ignore. The writing overview is coordinated dependent on three

alternate points of view: techniques, applications, and boundary based measures used.

Furthermore, future exploration issues identified with cloud computing-based

scheduling are recognized.

Fatema Akbar Lokhandwala (2018) In Cloud Data Centers (CDCs), energy cost is

the significant cost and numerous scientists intend to lessen it at various levels.

Decreasing the energy cost and further developing its efficiency should be possible at

the DC level and at the worker level where task scheduling happens. Task scheduling

centers around further developing the energy efficiency as well as to distribute the

assets productively in an opportune way by streamlining energy utilization. With the

67

ascent of new innovations in this period, one of the advancements is Block chain.

Block chain innovation has been utilized with the cloud as far as security and

capacity. This paper proposes a heuristic way to deal with task scheduling in the cloud

utilizing block chain. The work is completed to further develop the boundaries, for

example, stand by time, execution time, and Service Level Agreement (SLA) that will

ultimately assist with decreasing the energy utilization and its expense. The point of

this examination is to distinguish the advantages of block chain in the cloud to plan

the tasks and investigate its attainability.

Ankit Patel et al (2017) Cloud computing has been an arising innovation throughout

the previous few years in which computing administrations and assets are set

accessible to clients on expectations through the Internet on a rental premise.

Expanded utilization of Cloud has come about into huge enhancement in various

Cloud server farms and thus enormous measure of energy utilization. Subsequently a

few scientists have attracted their considerations resolving the issue of energy

utilization of Cloud server farms. In this work, we expect to resolve the issue of

decreasing the force needed to execute earnest or high-need tasks. In light of different

factors like degree of criticalness, task cutoff time, task runtime, VM reusability and

suspension of a non-earnest task, we characterize the need of task and likewise

allocate the task to appropriate virtual machines (VMs) on a viable host. We propose

an adjusted force mindful scheduling for dire tasks that consolidates Dynamic Voltage

Frequency Scaling (DVFS) and VM Reusability. The proposed technique plans to

decrease power-utilization while keeping up with accessibility for need tasks without

compromising responsibilities to the client. In future, we intend to reproduce the

proposition on CloudSim and contrast it and existing methods for checking its

plausibility and measure the upgrades.

Mokhtar A. Alworafi et al (2017) Cloud computing is another age of computing

climate which conveys the applications as an assistance to clients over the web. The

clients can choose any help from a rundown given by specialist co-ops relying upon

their requests or needs. The idea of this new computing climate prompts tasks

scheduling and load adjusting issues which become a flourishing examination region.

In this paper, we have proposed Scheduling Cost Approach (SCA) that ascertains the

expense of CPU, RAM, transfer speed, stockpiling accessible. In this methodology,

68

the tasks will be disseminated among the VMs dependent on the need given by client.

The need relies upon the client spending fulfillment. The proposed SCA will attempt

to further develop the load balance by choosing reasonable VM for each task. The

consequences of SCA are contrasted and the aftereffects of FCFS and SJF

calculations which demonstrates that, the proposed SCA approach fundamentally

diminishes the expense of CPU, RAM, transfer speed, stockpiling contrasted with

FCFS and SJF calculations.

Qiang Guo (2017) in request to advance the task scheduling system in cloud climate,

we propose a cloud computing task scheduling calculation dependent on subterranean

insect province calculation. The primary objective of this calculation is to limit the

makespan and the all-out cost of the tasks, while making the framework load more

balanced. In this paper, we set up the target capacity of the makespan and expenses of

the tasks, characterize the load balance work. In the interim, we likewise work on the

introduction of the pheromone, the heuristic capacity and the pheromone update

strategy in the subterranean insect province calculation. Then, at that point, a few

examinations were done on the Cloudsim stage, and the outcomes were contrasted

and calculations of ACO and Min-Min. The outcomes shows that the calculation is

more effective than the other two calculations in makespan, expenses and framework

load adjusting.

Mitrevski et al (2017) Cloud computing is a new appealing term in the IT world. The

expression "Cloud Computing" emerges from the thought for incorporating the

capacity and calculation in appropriated data. Its drawn-out objectives are to give an

adaptable, on – request bundle to the cloud client, giving him considerably more

opportunity, adaptability and dependability simultaneously, accomplishing the

entirety of the above by utilizing a straightforward "utility computing model". It vows

to welcome on-request estimating, less IT overhead and a capacity to scale IT here

and there rapidly. The focal point of this work tumbles down on transaction

processing applications which work in multi – processing and cloud conditions. All

significant sellers have embraced an alternate engineering for their cloud

administrations. Therefore, in this paper we will survey some of them and their basic

methodologies on improving Cloud Transactions

69

Qusay Kanaan Kadhim et al (2017) Cloud computing is the most encouraging

current execution of utility computing in the business world, since it gives some

critical highlights over exemplary utility computing, for example, flexibility to permit

clients progressively increase and scale-down the resources in execution time. In any

case, cloud computing is as yet in its untimely stage and encounters absence of

normalization. The security issues are the primary difficulties to cloud computing

appropriation. Hence, basic ventures like government associations (services) are

hesitant to believe cloud computing because of the dread of losing their touchy data,

as it lives on the cloud with no information on data area and absence of

straightforwardness of Cloud Service Providers (CSPs) systems used to get their data

and applications which have made a hindrance against receiving this spry computing

worldview. This examination means to audit and group the issues that encompass the

execution of cloud computing which a hot region that should be tended to by future

exploration.

Jin Ho Park et al (2017) Block chain has drawn consideration as the cutting edge

monetary innovation because of its security that suits the informatization time.

Specifically, it gives security through the confirmation of companions that share

virtual money, encryption, and the age of hash esteem. As indicated by the worldwide

monetary industry, the market for security-based block chain innovation is relied upon

to develop to about USD 20 billion by 2020. Moreover, block chain can be applied

past the Internet of Things (IoT) climate; its applications are relied upon to grow.

Cloud computing has been significantly embraced in all IT conditions for its

proficiency and accessibility. In this paper, we talk about the idea of block chain

innovation and its hot exploration patterns. Also, we will concentrate how to adjust

block chain security to cloud computing and its safe arrangements exhaustively.

Sultan Aldossary (2016) Cloud computing switched the world up us. Presently

individuals are moving their data to the cloud since data is getting greater and should

be available from numerous gadgets. In this manner, putting away the data on the

cloud turns into a standard. Nonetheless, there are numerous issues that counter data

put away in the cloud beginning from virtual machine which is intend to share assets

in cloud and finishing on cloud stockpiling itself issues. In this paper, we present

those issues that are keeping individuals from embracing the cloud and give a review

70

on arrangements that have been done to limit dangers of these issues. For instance, the

data put away in the cloud should be private, safeguarding uprightness and accessible.

Additionally, sharing the data put away in the cloud among numerous clients is as yet

an issue since the cloud specialist organization is dishonest to oversee verification and

approval. In this paper, we list issues identified with data put away in cloud

stockpiling and answers for those issues which vary from different papers which

center around cloud as broad.

Ali Gholami (2016) Cloud computing offers the possibility of on-request, flexible

computing, given as a utility help, and it is reforming numerous spaces of computing.

Contrasted and before techniques for processing data, cloud computing conditions

give critical advantages, like the accessibility of mechanized instruments to amass,

associate, design and reconfigure virtualized assets on request. These make it a lot

simpler to meet hierarchical objectives as associations can without much of a stretch

send cloud administrations. Nonetheless, the move in worldview that goes with the

reception of cloud computing is progressively bringing about security and protection

contemplations identifying with features of cloud computing, for example, multi-

occupancy, trust, loss of control and responsibility. Thusly, cloud stages that handle

delicate data are needed to send specialized measures and hierarchical shields to stay

away from data security breakdowns that may bring about tremendous and expensive

harms. Touchy data with regards to cloud computing incorporates data from a wide

scope of various territories and spaces. Data concerning wellbeing is an ordinary

illustration of the kind of delicate data took care of in cloud computing conditions,

and clearly most people will need data identified with their wellbeing to be secure.

Henceforth, with the development of cloud computing lately, security and data

insurance prerequisites have been advancing to ensure people against observation and

data exposure. A few instances of such defensive enactment are the EU Data

Protection Directive (DPD) and the US Health Insurance Portability and

Accountability Act (HIPAA), the two of which request security conservation for

dealing with by and by recognizable data. There have been extraordinary endeavors to

utilize a wide scope of instruments to improve the protection of data and to make

cloud stages safer. Methods that have been utilized include: encryption, confided in

stage module, secure multi-party computing, homomorphic encryption,

anonymization, holder and sandboxing innovations. Notwithstanding, it is as yet an

71

open issue about how to effectively construct usable protection safeguarding cloud

systems to deal with touchy data safely because of two examination challenges. In the

first place, existing protection and data assurance enactment request solid security,

straightforwardness and discernibility of data use. Second, absence of experience with

an expansive scope of arising or existing security answers for assemble productive

cloud systems. This thesis centers on the plan and advancement of a few systems and

strategies for dealing with touchy data suitably in cloud computing conditions. The

vital thought behind the proposed arrangements is implementing the security

necessities ordered by existing enactment that means to ensure the protection of

people in cloud-computing stages. We start with an outline of the primary ideas from

cloud computing, trailed by recognizing the issues that should be tackled for secure

data management in cloud conditions. It at that point proceeds with a portrayal of

foundation material as well as inspecting existing security and protection

arrangements that are being utilized in the space of cloud computing. Our first

fundamental commitment is another technique for displaying dangers to security in

cloud conditions which can be utilized to recognize security necessities as per data

insurance enactment. This strategy is then used to propose a system that meets the

security prerequisites for dealing with data in the space of genomics. That is,

wellbeing data concerning the genome (DNA) of people. Our subsequent commitment

is a system for safeguarding protection when distributing test accessibility data. This

system is significant on the grounds that it is equipped for get connecting over

numerous datasets. The proposition proceeds by proposing a system called ScaBIA

for security saving mind picture examination in the cloud. The last part of the thesis

depicts another methodology for evaluating and limiting the danger of working

system bit misuse, notwithstanding the improvement of a system call mediation

reference screen for Lind - a double sandbox.

Akon Samir Dey (2016) lately, cloud or utility computing has reformed the way

programming, equipment and organization framework is provisioned and conveyed

into creation. A critical part of these huge, various and heterogeneous systems is the

constancy layer given by an assortment of data store and database administrations,

comprehensively ordered into what is alluded to as NoSQL (Not just SQL) databases

or data stores. These come in numerous flavors from basic key-esteem stores and

section stores to database administrations with help for SQL-like interfaces. These

72

systems are basically intended to work at web scale in light of high adaptability and

adaptation to internal failure. Subsequently, they regularly penance consistency

ensures and frequently support just single-thing predictable activities or no

transactions by any stretch of the imagination. While these consistency constraints are

fine for a wide class of uses, there are a couple or in some cases just pieces of bigger

applications that need ACID transactional ensures to work effectively. To address

this, we characterize a data store customer API, we call REST+T (REST with

Transactions), an expansion of HTTP that upholds transactions on one store. At that

point, we utilize this to characterize a customer facilitated transaction responsibility

convention and library, called Cherry Garcia, to empower simple applications

improvement across assorted, heterogeneous data stores that each help single-thing

transactions. We expand the notable YCSB benchmark, to introduce YCSB+T, to

empower us to bunch numerous data store tasks into ACID transactions and assess

properties like throughput. YCSB+T likewise gives the capacity to identify and

measure data store inconsistencies that outcome from the execution of the

responsibility. At long last, we portray our model executions of REST+T in a system

called Tora, and our customer facilitated transaction library, additionally called

Cherry Garcia, that upholds transactions across Windows Azure Storage (WAS),

Google Cloud Storage (GCS) and Tora. We assess these utilizing both YCSB+T and

miniature benchmarks.

Artan Mazreka et al (2016) Cloud Computing is one of the innovations with quick

improvement lately where there is expanding interest in industry and the scholarly

world. This innovation empowers numerous services and assets for end clients. With

the ascent of cloud services number of organizations that offer different services in

cloud framework is expanded, accordingly making a rivalry on costs in the worldwide

market. Cloud Computing suppliers offer more services to their customers going from

infrastructure as a service (IaaS), platform as a service (PaaS), software as a service

(SaaS), storage as a service (STaaS), security as a service (SECaaS), test environment

as a service (TEaaS). The motivation behind suppliers is to amplify income by their

value plans, while the primary objective of clients is to have nature of services (QoS)

at a sensible cost. The reason for this paper is to think about and examine a few

models and evaluating plans from various Cloud Computing suppliers.

73

Chaowei Yang et al (2016) Big Data has arisen in the previous few years as another

worldview giving bountiful data and freedoms to improve as well as empower

exploration and choice help applications with phenomenal incentive for advanced

earth applications including business, sciences and designing. Simultaneously, Big

Data presents difficulties for advanced earth to store, transport, and process, mine and

serve the data. Cloud computing offers central help to address the difficulties with

shared computing assets including computing, stockpiling, organizing and scientific

software; the utilization of these assets has cultivated noteworthy Big Data

progressions. This paper studies the two wildernesses – Big Data and cloud

computing – and surveys the benefits and outcomes of using cloud computing to

handling Big Data in the advanced earth and important science spaces. From the parts

of an overall presentation, sources, challenges, innovation status and exploration

openings, the accompanying perceptions are offered: (i) cloud computing and Big

Data empower science revelations and application improvements; (ii) cloud

computing gives significant answers for Big Data; (iii) Big Data, spatiotemporal

reasoning and different application areas drive the progression of cloud computing

and pertinent advancements with new prerequisites; (iv) inborn spatiotemporal

standards of Big Data and geospatial sciences give the source to discovering

specialized and hypothetical answers for advance cloud computing and processing

Big Data; (v) open accessibility of Big Data and processing ability present social

difficulties of geospatial importance and (vi) a mesh of developments is changing Big

Data into geospatial examination, designing and business esteems. This audit presents

future advancements and an examination plan for cloud computing supporting the

change of the volume, speed, assortment and veracity into upsides of Big Data for

nearby to worldwide computerized geology and applications.

Yousri Mhedheb (2016) a data community is regularly likewise a Cloud place, which

conveys its computational and capacity limit as administrations. To empower on-

request asset arrangement with versatility and high unwavering quality, the host

machines in data habitats are generally virtualized, which brings a difficult

examination subject, i.e., how to plan the virtual machines (VM) on the hosts for

energy efficiency. The objective of this Work is to enhance, through scheduling, the

energy efficiency of data focus. To help this work a clever VM scheduling instrument

plan and execution will be proposed. This component addresses on both load-

74

offsetting and temperature-mindfulness with a last objective of decreasing the energy

utilization of a data place. Our scheduling plan chooses an actual machine to have a

virtual machine dependent on the client prerequisites, the load on the hosts and the

temperature of the hosts, while keeping up with the nature of the help. The proposed

scheduling component on CloudSim will be at last approved, a notable test system

that models data focuses provisioning Infrastructure as a Service. For a relative report,

we additionally carried out other scheduling calculations i.e., non-power control,

DVFS and force mindful ThrMu. The exploratory outcomes show that the proposed

scheduling plan, consolidating the force mindful with the warm mindful scheduling

methodologies, essentially lessens the energy utilization of a given Data Center as a

result of its warm mindful methodology and the help of VM relocation systems.

Jichao Hu (2015) we proposed a task scheduling in cloud computing dependent on

knowledge firefly calculation focused on the weaknesses of cloud computing task

scheduling. First and foremost, based on cloud model, utilized knowledge firefly

calculation with solid capacity of worldwide looking to track down the better

arrangement of cloud computing task scheduling then, at that point transformed the

better arrangement into the underlying pheromone of further developed firefly

calculation, and discovered the cloud computing task scheduling and the calculation's

worldwide ideal arrangement through further developed firefly data correspondences

and inputs. At last, made correlation trial of the three benchmark work based on

MATLAB, the outcomes showed, contrasted and customary insight firefly

calculations, the further developed calculation can ideally dispense the assets in cloud

computing model, the impact of expectation model time is all the more near genuine

time, can proficiently restrict the chance of falling into neighborhood combination,

the ideal arrangement's season of target work esteem is abbreviate which address the

client's issues more.

J. Antony John Prabu (2015) Cloud Computing is quite possibly the main zones in

the current IT businesses. It gives diverse kind of administrations (SaaS, PaaS, and

IaaS) contingent upon the clients' necessities. Rather than buying, introducing and

keeping up programming in IT businesses can utilize Cloud computing. In this paper,

necessities of ACID properties for cloud databases, benefits and impediments of cloud

databases are talked about. It additionally picture the significant issues and difficulties

75

of Database Architectures and Data Transaction Management in Cloud Environment.

There are various techniques used to deal with the data, yet every single one of them

has its own impediments in cloud climate. At long last this paper gives a

comprehensive examination on Transaction Processing System, Cloud DataBase as a

Service (DBaaS), Cloud RDBMS and Cloud data stockpiles to plan a novel design for

cloud databases with the help of conventional ACID properties.

D. S. B. R. Kumar (2015) Cloud Computing is quite possibly the main territories in

the current IT enterprises. It gives distinctive kind of administrations (SaaS, PaaS, and

IaaS) contingent upon the clients' necessities. Rather than purchasing, introducing and

keeping up programming in IT businesses can utilize Cloud computing. In this paper,

requirements of ACID properties for cloud databases, benefits and impediments of

cloud databases are talked about. It likewise picture the significant issues and

difficulties of Database Architectures and Data Transaction Management in Cloud

Environment. There are various strategies used to deal with the data, however every

last one of them has its own limits in cloud climate. At last this paper gives a

comprehensive investigation on Transaction Processing System, Cloud Database as a

Service (DBaaS), Cloud RDBMS and Cloud data stockpiles to plan a novel design for

cloud databases with the help of customary ACID properties.

III Albert Horvath (2015) The Internet has created to such a point that numerous

insightful articles are considering it the fifth utility, behind water, force, sewage, and

phone. The value of the fifth utility is verifiable and will surely just develop. Before

long, regular web clients will actually want to accomplish something beyond use it for

amusement and shopping. Arising advances can insightfully associate individuals to

the data they need to improve their lives. For example, pulse screens can be associated

distantly to the web and patients can live at home realizing that if there are any issues,

assist will with being called regardless of whether they are separated from everyone

else and don't have the ability to settle on the actual decision. The biggest impediment

keeping the normal individual away from utilizing the web in more significant

manners is trust. The patient with the heart screen should comprehend that his own

data, telephone number, distinguishing proof numbers, address, and other individual

data is protected from the individuals who may exploit a wiped-out individual. It is

hard for the normal web client to believe that their actually recognizable data (PII) is

76

protected on the web. Practically week after week the American news media reports

new, decimating breaks of individual data in big business. Infrequently do they

distribute how well a few organizations secure their clients? As per a 2010 study led

by the Fujitsu organization, 88% of clients, around the world, are stressed over who

approaches their data and practically that amount is stressed over where their data is

genuinely put away (Sato, 2010). We offer a study and investigation to show that

there is a buyer issue with trust and that there are ways for cloud service suppliers to

acquire that trust. A definitive objective of the investigation is to teach clients and

CSPs of the difficult that exists and propose approaches to defeat it.

R. Velumadhava Rao (2015) Cloud Computing pattern is quickly expanding that has

an innovation association with Grid Computing, Utility Computing, Distributed

Computing. Cloud service suppliers, for example, Amazon IBM, Google's

Application, and Microsoft Azure and so on, give the clients in creating applications

in cloud climate and to get to them from anyplace. Cloud data are put away and gotten

to in a far off server with the assistance of services given by cloud service suppliers.

Giving security is a significant worry as the data is sent to the far off server over a

channel (web). Prior to executing Cloud computing in an association, security

provokes should be tended to first. In this paper, we feature data related security

challenges in cloud based climate and answers for survive.

Usman Namadi Inuwa (2015) Cloud computing is a computing innovation expecting

to share storage, calculation, and services straightforwardly among a gigantic client.

Current cloud computing systems present genuine constraint to ensuring the secrecy

of client data. Since the data share and put away is introduced in decoded structures to

distant machines claimed and worked by outsider service suppliers regardless of it

affectability (model contact address, sends), the dangers of uncovering client

classified data by service suppliers might be very high and the danger of assaulting

cloud storage by outsider is likewise expanding. The motivation behind this

examination is to survey investigates done on this innovation, recognize the security

hazard and investigate a few strategies for shielding users‟ data from aggressors in the

cloud.

Ettazi et al (2015) Advances in remote correspondences and versatility have

expanded the utilization of savvy portable applications. Because of the noteworthy

77

increment of cell phones and the unavoidable remote organizations, an enormous

number of portable clients are requiring personalization services redid to their specific

situation. The versatile cloud-computing worldview from a setting mindful viewpoint

means to discover viable approaches to make cloud services mindful of the setting of

their clients and applications. Another significant test for setting mindful cloud

services is to abuse the advantages of cloud computing to oversee transaction

processing for the duration of the existence pattern of a service. In this paper, we

zeroed in on the need of approximately coupled setting supporting parts that work

with a transaction-mindful service infrastructure to adjust services to the setting of the

client and his cell phone. We propose a cloud-based middleware for transactional

service transformation (CM4TSA) by adding the "Variation as a Service" layer into

fundamental cloud architecture, to play out the right execution of transactional service

as indicated by the client setting.

Azim et al (2014) Cloud computing has arisen as an effective worldview for web

application deployment. Economies-of-scale, flexibility, and pay-per use valuing are

the greatest guarantees of cloud. Database management systems serving these web

applications structure a basic part of the cloud environment. To serve thousands and

an assortment of applications and their immense measures of data, these database

management systems should not just scale-out to groups of product servers, yet in

addition act naturally overseeing, issue open minded, and profoundly accessible. In

this paper we review, investigate the presently applied transaction management

methods and we propose a worldview as indicated by which, transaction management

could be portrayed and dealt with.

Vinit A Padhye (2014) the rise of cloud computing and huge scope Internet services

has led to new classes of data management systems, ordinarily alluded to as NoSQL

systems. The NoSQL systems give high scalability and accessibility, anyway they

give just restricted type of transaction support and frail consistency models. There are

numerous applications that require more helpful transaction and data consistency

models than those as of now given by the NoSQL systems. In this proposal, we

address the issue of giving adaptable transaction support and proper consistency

models for bunch based just as geo-repeated NoSQL systems. The models we create

in this postulation are established upon the depiction segregation (SI) model which

78

has been perceived as alluring for scalability. In supporting transactions on group-

based NoSQL systems, we present a thought of decoupled transaction management in

which transaction management capacities are decoupled from capacity system and

incorporated with the application layer. We present two system structures dependent

on this idea. In the principal system design all transaction management capacities are

executed in a completely decentralized way by the application processes. The

subsequent engineering depends on a cross breed approach in which the contention

location capacities are performed by a diehard commitment. Since the SI model can

prompt non-serializable transaction executions, we explore two methodologies for

guaranteeing serializability. We play out a similar assessment of the two models and

approaches for ensuring serializability and exhibit their scalability. For transaction

management in geo-reproduced systems, we propose a SI based transaction model,

alluded to as causal preview seclusion (CSI), which gives causal consistency utilizing

non-concurrent replication. The causal consistency model gives more valuable

consistency ensures than the possible consistency model. We expand upon the CSI

model to give a productive transaction model to halfway recreated databases,

addressing the special difficulties raised because of incomplete replication in

supporting depiction seclusion and causal consistency. Through trial assessments, we

show the scalability and execution of our systems.

Padhye, Vinit A. (2014) the development of cloud computing and huge scope

Internet services has brought about new classes of data management systems,

ordinarily alluded to as NoSQL systems. The NoSQL systems give high versatility

and accessibility, anyway they give just restricted type of transaction support and

feeble consistency models. There are numerous applications that require more helpful

transaction and data consistency models than those right now given by the NoSQL

systems. In this postulation, we address the issue of giving adaptable transaction

support and proper consistency models for bunch based just as geo-reproduced

NoSQL systems. The models we create in this proposition are established upon the

depiction detachment (SI) model which has been perceived as alluring for versatility.

In supporting transactions on bunch-based NoSQL systems, we present an idea of

decoupled transaction management in which transaction management capacities are

decoupled from storage system and coordinated with the application layer. We present

two system models based on this idea. In the main system engineering all transaction

79

management capacities are executed in a completely decentralized way by the

application processes. The subsequent engineering is based on a half and half

methodology in which the contention location capacities are performed by a diehard

loyalty. Since the SI model can prompt non-serializable transaction executions, we

explore two methodologies for guaranteeing serializability. We play out a relative

assessment of the two structures and approaches for ensuring serializability and show

their adaptability. For transaction management in geo-recreated systems, we propose a

SI based transaction model, alluded to as causal depiction disconnection (CSI), which

gives causal consistency utilizing non-concurrent replication. The causal consistency

model gives more valuable consistency ensures than the possible consistency model.

We expand upon the CSI model to give an effective transaction model to

incompletely repeated databases, tending to the interesting difficulties raised because

of halfway replication in supporting preview detachment and causal consistency.

Through trial assessments, we exhibit the versatility and execution of our systems.

Shri V D Garde (2013) The boundless fame of Cloud computing as a favored stage

for the organization of web applications has brought about a gigantic number of

utilizations moving to the cloud, and the immense achievement of cloud service

suppliers. Because of the expanding number of web applications being facilitated in

the cloud, and the developing size of data which these applications store, process, and

serve – adaptable data management systems structure a basic piece of cloud

foundations. There are issues identified with the database security while database is

on cloud. The major testing issues are multi-tenure, versatility and the protection. This

paper centers around the issues looked in the data security of Relational Cloud. The

issues looked by different kinds of occupants and the sort of access into the database

causes to modify on the security of data, by dissecting appropriate locking systems on

the records got to from the database. Data security in cloud computing tends to the

kind of access mode by the clients (for scientific or transaction reason) and the

recurrence of data access from the actual area (in shared or no shared plate mode). As

needs be, the different data locking techniques are considered and suitable locking

system will be carried out for constant applications as in internet business.

Jagirdar et al (2013) Cloud Computing is an adaptable innovation that can uphold a

wide range of uses. The minimal effort of cloud computing and its dynamic scaling

80

renders it an advancement driver for little organizations, especially in the creating

scene. Cloud sent undertaking asset arranging (ERP), store network management

applications (SCM), client relationship management (CRM) applications, clinical

applications and versatile applications can possibly arrive at a great many clients. In

this paper, we investigate the various ideas associated with cloud computing. Utilizing

our encounters on different clouds, we inspect clouds from specialized, and service

viewpoints. We feature a portion of the chances in cloud computing, underlining the

significance of clouds and showing why that innovation should succeed. At long last,

we talk about a portion of the issues that this region should manage.

Waleed Al Shehri (2013) Cloud computing has been the most adoptable innovation

in the new occasions, and the database has additionally moved to cloud computing

now, so we will investigate the subtleties of database as a service and its working.

This paper incorporates all the essential data about the database as a service. The

working of database as a service and the challenges it is confronting are examined

with a suitable. The construction of database in cloud computing and its working in a

joint effort with hubs is seen under database as a service. This paper likewise will

feature the significant things to note down prior to embracing a database as a service

gives that is best among the other. The benefits and impediments of database as a

service will let you to conclude either to utilize database as a service or not. Database

as a service has effectively been received by numerous online business organizations

and those organizations are getting profits by this service.

Pranita P. Khairnar (2013) Cloud computing has created a great deal of interest and

rivalry in the business and it is perceived as one of the main 10 advancements of

2010. It is a web-based service conveyance model which gives web-based services,

computing and storage for clients in all market including monetary, medical care and

government. Cloud security is turning into a key differentiator and serious edge

between cloud suppliers. From the supplier’s perspective a Cloud is an enormous

dispersed system which presents numerous challenges. Cloud computing is plainly

one of the present most alluring innovation territories to its expense productivity and

flexibility. There is a developing pattern of utilizing cloud services for truly

developing storage and data processing needs.

81

Katarina Grolinger et al (2013) development in Web innovation and the expansion

of cell phones and sensors associated with the Internet have brought about enormous

processing and capacity necessities. Cloud computing has arisen as a worldview that

vows to meet these necessities. This work centers around the capacity part of cloud

computing, explicitly on data management in cloud conditions. Customary social

databases were planned in an alternate equipment and software period and are

confronting difficulties in gathering the presentation and scale necessities of Big Data.

NoSQL and NewSQL data stores introduce themselves as options that can deal with

tremendous volume of data. Due to the enormous number and variety of existing

NoSQL and NewSQL arrangements, it is hard to fathom the space and surprisingly

more testing to pick a fitting answer for a particular undertaking. Accordingly, this

paper audits NoSQL and NewSQL arrangements with the goal of: (1) giving a

viewpoint in the field, (2) giving direction to specialists and scientists to pick the

proper data store, and (3) distinguishing difficulties and openings in the field. In

particular, the most unmistakable arrangements are looked at zeroing in on data

models, querying, scaling, and security related capacities. Highlights driving the

capacity to scale read asks for and compose demands, or scaling data stockpiling are

examined, specifically apportioning, replication, consistency, and simultaneousness

control. Moreover, use cases and situations in which NoSQL and NewSQL data stores

have been utilized are talked about and the appropriateness of different answers for

various arrangements of uses is inspected. Therefore, this investigation has recognized

difficulties in the field, including the enormous variety and inconsistency of

phrasings, restricted documentation, inadequate examination and benchmarking

measures, and nonexistence of normalized query languages.

Lizheng Guo (2012) Cloud computing is an arising innovation and it permits clients

to pay as you need and has the superior. Cloud computing is a heterogeneous

framework too and it holds enormous measure of utilization data. During the time

spent scheduling some escalated data or computing a concentrated application, it is

recognized that upgrading the moving and handling time is urgent to an application

program. In this paper to limit the expense of the handling we figure a model for task

scheduling and propose a particle swarm optimization (PSO) calculation which

depends on little position esteem rule. By uprightness of contrasting PSO calculation

and the PSO calculation installed in hybrid and transformation and in the nearby

82

exploration, the examination results show the PSO calculation combines quicker as

well as runs quicker than the other two calculations in an enormous scope. The trial

results demonstrate that the PSO calculation is more appropriate to cloud computing.

Xiaoli Wang et al (2012) High energy utilization of data focuses has turned into an

incredible obstruction to the advancement of cloud computing. This paper essentially

centers on how to further develop the energy efficiency of workers in a data place by

proper task scheduling systems. In light of MapReduce, Google's gigantic data

handling system, another energy-productive task scheduling model is proposed in this

paper. To tackle this model, we set forward a viable hereditary calculation with useful

encoding and interpreting techniques and uncommonly planned hereditary

administrators. In the meantime, with the end goal of speeding up this present

calculation's joined speed just as improving its looking through capacity, a

neighborhood search administrator is presented. At last, the examinations show that

the proposed calculation is viable and effective.

83

CHAPTER 3

ENHANCED TASK SCHEDULING IN CLOUD

COMPUTING BASED ON DEADLINE-AWARE MODEL

In this chapter, an essential component of task scheduling in the cloud computing

environment will be discussed, namely, scheduling jobs based on a deadline time

restriction in order to decrease makespan, reaction time, and various other metrics,

among other things. We will also operate in a heterogeneous environment, employing

separate tasks and distributing them across existing funds, while taking into

consideration the load balance among the virtual machines, to achieve our goals. Also

included are the metrics employed in the study, such as the makespan, reaction time,

and resource usage underneath a deadline restriction, as well as how these are altered

whenever the suggested approach is applied.

3.1 PREAMBLE

It is a distinct benefit of cloud computing because the service provider lends resources

to the customer while also allowing them to satisfy level of service criteria by

purchasing the rights to utilize those resources.

Today's world is plagued by challenges such as task scheduling and load balancing,

which are exacerbated by the fact that many algorithms in the cloud computing

environment strive to provide high performance and efficient work scheduling. Thus,

developing an algorithm that makes effective use of available resources is difficult.

Scheduling may be defined as the allocation of a number of resources for the

execution of activities in a straightforward manner. When faced with work restrictions

such as a strict deadline and a limited budget, the user wants to determine the overall

cost of completing his tasks within the constraints of his budget and schedule. As

soon as the user specifies a budget and a deadline, the tasks must be completed within

those parameters. However, when the activities have a smaller budget or require

immediate processing/attention, certain jobs may be done and others may not,

depending on the limits imposed on them. The purpose of a task scheduling

optimization algorithm on deadlines is to ensure that each performed job is completed

by the deadline. As a result, the task scheduling algorithm can decide which jobs must

84

be completed in a short period of time. As a result, one of the most significant

objectives of the deadline concept is the work scheduling inside that time constraints.

Aside from task assignment, the primary purpose of task scheduling in cloud

computing is to minimize the makespan (total completion time), which is defined as

the time it takes for a work to be completed. To achieve efficient scheduling

mechanisms based on deadlines in cloud computing environments, a number of

algorithms have been developed that not only concentrate on achieving the deadline

constraint once implementing the tasks, but also on going to meet the user satisfaction

requirements and load balancing between available resources while maximizing

resource utilization. When a scheduling algorithm is capable of absorbing a certain

amount of misunderstanding or ambiguity throughout the course of a task's execution,

it may be considered to be extremely efficient. In order to increase application

reliability, achieving the final deadline is a critical problem, which must be addressed.

3.2 DEADLINE RESTRICTION

It is the time limit that dictates when a job or collection of activities will be finished

that is represented by the deadline constraint. Each job has a deadline constraint that

is determined by the users, and this deadline should be equal to or higher than the

entire completion time (makespan) of the work under consideration. It is also well

recognized that the cloud computing system provides a variety of services, and that it

is required to assess their quality, which is accomplished through the use of Quality of

Service (QoS), where the QoS is included in the SLA agreement. Aside from that, the

QoS incorporates a number of limitations such as deadlines and budgets, all of which

are agreed upon between the cloud user as well as the cloud service provider, as seen

in Figure 3.1.

85

Figure 3.1: Quality of service constraints

3.3 TASK SCHEDULING DEPENDENT ON DEADLINE-AWARE

MODEL

In cloud computing, job scheduling is a significant topic, and academics are working

to develop the most efficient methods for task scheduling using the existing funds in

the cloud computing environment. The cloud service provider and the cloud user are

the two most essential participants in the cloud computing ecosystem. The cloud

service provider is a company that provides cloud computing services. The criteria of

each of them must be met when the tasks ought to be completed using cloud resources

that are readily available to them. If a cloud service provider wants to maximize the

usage of available resources, for example, that is what they want to do. When

completing operations in the cloud, the cloud user is concerned with attaining the best

possible productivity and effectiveness while keeping the overall completion time to a

minimum (makespan). Work features such as task length, projected execution time,

86

and deadline time are all distinct for each user's task. Beginning with the proposal of

the Deadline-Aware Priority Scheduling (DAPS) model, this research will proceed to

examine the many aspects of the model. The DAPS model's method is to schedule

tasks and allocate them to available resources while reducing the makespan based on

deadline constraints and shortest remaining time requirements, among other things.

When developing an efficient work scheduling model, one of the variables that must

be taken into consideration is the level of pleasure experienced by the users. In this

research topic, we are concerned with scheduling tasks based on a deadline restriction.

As a result, we make the assumption that the deadline is the time required to complete

the work, and we will describe how we came to this conclusion later. According to

this concept, the cloud environment incorporates a data centre comprised of

heterogeneous physical computers or servers that are made up entirely of virtual

machines (cloud computing).

On Figure 3.2, you can see the primary symbols for the qualities that were employed

in the situation for this study.

87

Figure 3.2: The primary symbols of attributes for our study

The deadline constraint is emphasized in the DAPS model since it is a key criterion in

determining the success of the job scheduling mechanism. When a task's runtime does

not fulfill the deadline restriction, the task is considered violated. We concentrated our

efforts on developing our proposed DAPS model for this challenge. Our suggested

approach, which is illustrated in Figure 3.3, states that tasks with a deadline are

delivered to the service provider by the end-users themselves. On the other hand, we

presume that the deadline corresponds to the time required to complete the

assignment. In the following step, the service provider will look for resources

available to schedule jobs in accordance with our model. The DAPS model finds the

virtual machine (VM) that fulfils the deadline, then quantifies the projected

completion time for distributing the tasks to the right VM that has less competition

time while still meeting the deadline, as described above. Last but not least, the DAPS

refreshes the waiting time for the virtual machine. If the job is not completed by the

deadline, it signifies that no VM can complete the task before the deadline expires.

Figure 3.3: Suggested Deadline-Aware Priority scheduling model

88

In the DAPS model, tasks are prioritized in increasing order depending on their

length, with the longest tasks being placed first. The principle of first come, first

served, however, is applied when two jobs are almost the same duration, as opposed

to when they are not. The deadline constraint indicates the Execution time (EX) of the

job, which is computed using Condition 3.1 and specifies the time required to

complete the work.

(3.1)

Where Len is the duration of the work and RC denotes the CPU of the virtual machine

3.3.1. Case Study

Consider the following scenario:

3 virtual machines= {VM1, VM2, VM3}

Tasks= {T1, T2, T3, T4, T5}

VMs’ speed= {700, 500, 300}

Length of task= {1000, 40000, 300000, 400, 125000}

We anticipate that the following jobs will be allocated across the virtual machines:

Then there's the task's deadline:

89

The Expected Execution Time (EET) is the time it is expected that tasks will take to

complete in all virtual machines (EET=EETT1, EETT2,...EETTn). The job in each

virtual machine is then found to be comparable to the deadline constraint to determine

the status of the virtual machine, i.e., to determine whether of the virtual machines

meets the deadline, and is classified as effective or failed, as determined utilizing

Equation 3.2

(3.2)

In the preceding sentence, the predicted execution time of job in every virtual

machine was calculated.

90

As shown in Figure 3.4, when the deadline of each job is compared with its predicted

processing time, the task deadline is met, and the stages are explained in more detail

in Condition 3.2:

Task1.deadline obtained in {VM1}.

Task2.deadline obtained in {VM1, VM2}. →{Choose VM that returns minimum CT}

Task3.deadline obtained in {VM1, VM2, VM3}. →{Choose VM that returns

minimum CT}

Task4.deadline achieved in {VM1}.

Task5.deadline achieved in {VM1, VM2}. →{Select VM that returns minimum CT}

91

Figure 3.4: The VMs obtain the task deadline

Following a recent status check of the virtual machines, tasks are routed to those that

have the shortest completion time. This is accomplished by computing the anticipated

completion time of each job and then finding which virtual machine has the shortest

completion time. If the VMs fail to complete the work before the deadline, the VMs

are regarded failed as well as the task is considered breached. As a result, the task that

was violated will be assigned to the VM that has the shortest finish time between all

failed VMs.

The Completion Time (CT):

'Completion Time (CT)' is a number that represents the total of expected execution

times for all prior tasks plus the estimated execution times for the currently running

job. The time required to complete the task may be determined using Condition 3.3.

 (3.3)

As previously said, the cloud computing ecosystem is comprised of a diverse range of

resources. Because varied resource characteristics result in varying task completion

times in different VMs, the completion time matrix for each job [1, m] is generated

using Condition 3.3 for each task [1, m]. The Completion Time Matrix (CTM)

displays the expected time required to complete a job on each virtual machine. The

92

item (j,i) in the CTM specifies the projected completion time of job j on the virtual

machine i. There are two parameters for each requested task: t for task heterogeneity

and VM for virtual machine heterogeneity. For each requested task, there are two

criteria: t for task heterogeneity & VM for virtual machine heterogeneity.

In this case, if we have tasks T= T1, T2, T3,.... Tn and VM = VM1, VM2,....,VMm,

then we may deduce the CTM from the given tasks as follows:

The method of operation consists in converting the bare minimum of CTji into

particular VMi for each job. Following the assignment of the job, the Processing Time

(PTi) of the virtual machine will be changed, as well as the work that has been

scheduled will be deleted from the task list set. The processing time is computed in

the same way as in the previous condition.

 (3.4)

Following that, PTi is modified in accordance with Condition 3.5.

PTi = PTi +Len (3.5)

At the end of the process, the number of tasks that have been violated is determined,

where the number of violations is equivalent to the sum of tasks that have been late.

The number of violations is specified by Condition 3.6, where the violated task equals

1 if the task deadline (TvD) is exceeded, and otherwise TvD equals 0.

 (3.6)

93

Figure 3.5 depicts the steps we took in the DAPS model to schedule models depend

on a deadline restriction, as shown in the example.

Figure 3.5: Flowchart of DAPS model

3.3.2 Steps of Deadline-Aware Priority Scheduling Model

The DAPS model that has been suggested is as regards:

94

95

3.4. PERFORMANCE METRICS

We employed a variety of indicators to assess the efficacy of the DAPS model,

including:

3.4.1 Makespan

The term "makespan" relates to the utmost amount of time required to complete a

task. To put it another way, it is the amount of effort spent providing resources to end

users. In order to achieve great performance, we must keep the time required for

wealth distribution to a bare minimum. As seen in Condition 3.7, this is written as

Makespan = max {CTi} (3.7)

When i ∈ VMs are concerned this is followed by the calculation of the averaged of

makespan, which would be described in Condition 3.8.

 (3.8)

Where m is number of VMs

3.4.2 Response Time (RT)

Response time is defined as the amount of time required to finish a procedure that

includes the time required to accomplish the job in a cloud computing system. As

seen in Condition 3.9, responsive period is measured as follows:

RTj=CTj - SBj (3.9)

Where SBj is the time of submission

96

In the following step, we compute the mean of reaction times as well as the mean of

the overall average time of all virtual machines. They are given in the Conditions 3.10

and 3.11, respectively.

 (3.10)

 (3.11)

Where N denotes the amount of jobs running in the virtual machine and M.Overall

Avg. RT is the average of the overall combined reaction time.

3.4.3 Resource Utilization (RU)

The amount of useful work completed by virtual machines is referred to as resource

utilization. Good work is defined as a task that was completed on a virtual machine in

accordance with the deadline constraints. The resource use of virtual machines (VMs)

is specified by Condition 3.12.

 (3.12)

3.4.4 Guarantee Ratio (GR)

The guarantee factor is the proportion between the varieties of tasks that fulfil the

time limitation as compared to the total number of tasks completed. According to

Condition 3.13, the guarantee index is known as

 (3.13)

Where n is total number of task

97

3.4.5 Violation Ratio (VR)

The violation ratio is defined as the ratio of the amount of task violations to the total

number of tasks multiplied by 100, based on number of tasks. The violation ratio is

defined as Calculation 3.14.

 (3.14)

3.4.6 Improvement of makespan ratio

Makespan is a critical parameter for evaluating the success of our model, and it is kept

in mind. As a result, Condition 3.15 may be used to compute the change in the

makespan ratio.

 (3.15)

Where e is the quantity of experiments

3.5 OUTCOMES OF EXPERIMENTS AS WELL AS ANALYSIS

3.5.1 Implementation Environment

Using the CloudSim toolkit, we were prepared to achieve our experiments for this

section of the study project. Following that, we tested the effectiveness of our

suggested DAPS model. CloudSim is a toolbox for modelling and replicating data

centres, hosts, virtual machines (VMs), and resource allocation algorithms, among

other things. It can assess the viability of a project and fine-tune its performances

without spending any expenses.

3.5.2 Experiments Configuration

Table 3.1 describes the configuration needs for the experiments in further detail.

98

Table 3.1: Configuration requirement for the experiments

Configurations Datacenter Server Virtual machine

Numbers

1

2 6, 8, 10, 12, and 14

Core Quad-Core and

Dual-

Core

1 processing

element

Memory (RAM) 16 GB 0.5 GB

Storage 1 TB 10 GB image size

Bandwidth 100 GB/s 1 GB/s

VM scheduling

algorithm

Time-Shared Time-Shared

Architecture X86 Architecture

Xen

Operating system Linux

Virtual machine

monitor

Xen

Speed 10,000 MIPS 300, 400 and 500

MIPS

3.5.3 Dataset

They were developed using the NASA Ames Intel Personal Super Computer

(iPSC/860), which has 128 processor components communicating in a hypercube and

served as a baseline for the task creation process. The iPSC/860 record consists of

three months' worth of acknowledged registers for the 128-node iPSC/860 that was

99

installed at NASA Ames Research Center's Numerical Aerodynamic Simulation

(NAS) Systems Division. Records of tasks and special records are two types of

records that make up the trace of the execution of this program. Records of tasks

include the following information: a pseudo user ID, a pseudo command name

relating to the running file name, the size of the network that were utilized, the start

time, the runtime (in seconds), and the date. In addition to the code that distinguishes

the event (planned or unscheduled downtime, dedicated time, hardware or software

problems, or other), the interval, the date, and the start time are included in the special

records. The dataset fields that were employed in the DAPS model are depicted in

Figure 3.6.

Figure 3.6: Dataset fields of DAPS model

Tasks were produced and separated into groups of 250, 500, 1000, 1500, and 2000

tasks, with each block consisting of 500 tasks.

For the purpose of evaluating the proposed DAPS model, we employed the following

metrics: the average of makespan, the average of total average response time, resource

utilization, guarantee ratio, and the amount of breaches for the DAPS model, as

explained in Table 3.2.

100

Table 3.2: Experiments done for tasks with various VMs of the DAPS model

Exper

iment

s

No. of

VMs

No. of

tasks

Averag

e

makesp

an

Mean of

total

average

RT

Resourc

e

utilizati

on

Guarante

e ratio

No. of

violatio

ns

Violation

ratio

1 6 250 2628

18

344

90

5621 0.992 2 0.8%

2 8 500 3804

78

457

41

8403 0.99 5 1%

3 10 1000 5684

31

732

29

14355 0.989 1

1

1.1%

4 12 1500 6965

11

880

45

18389 0.992 1

2

0.8%

5 14 2000 7167

19

853

37

19747 0.992 1

6

0.8%

Based on the DAPS scheduling method, the deadlines for ten selected tasks are shown

in Table 3.3, which are planned on 3 virtual machines (VMs). We observed that the

suggested DAPS model distributed the sorted tasks among the VMs in accordance

with two conditions: the VMs had to fulfil the deadline and the tasks had to be

completed in a minimum amount of time. First, the DAPS model examines all of the

virtual machines (VMs) that are accessible to decide which VM fulfils the deadline

limitations. Following that, a job will be allocated to the VM that gives the shortest

predicted completion time from among these VMs.

101

Table 3.3: Choosing real deadline utilizing DAPS related on deadline constraint

and minimum completion time

Sl.

No

.

Tas

k ID

Deadlin

e

constrai

nt

VM1 VM2 VM3 Actual

deadline

(DAPS)

Selecte

d VM

EE

T

CT

(All

Task

s)

EE

T

CT

(All

Tasks)

EET CT

(All

Task

s)

EET

(deadli

ne met)

CT

(All

Task

s)

1. 669 1.0 0.3 90.3 0.18 90.1

8

0.225 90.0 0.225 90 VM3

2. 170 1.0 0.9 270.3 0.54 270.5

4

0.675 270.67 0.9 270.3 VM1

3. 60 2.0 2.1 - 1.26 773.8

2

1.575 652.5 1.575 652.5 VM3

4. 92 2.0 2.1 - 1.26 773.8

2

1.575 676.57 1.575 676.5

7

VM3

5. 218 5.0 5.1 - 3.06 1.52 3.825 1.01 3.825 1.01 VM3

6. 188 7.0 7.2 - 4.32 9.74 5.4 6.46 5.4 6.46 VM3

7. 291 1.0 1.8 549.6 1.08 683.8

2

1.35 562.5 - *549.

6

VM1

8. 650 30.0 30.

9

- 18.5

4

1.02 23.17

5

1.35 18.54 1.02 VM2

102

9. 89 31.0 31.

2

- 18.7

2

4.08

5

23.4 2.71 23.4 2.71 VM3

10. 209 47.0 47.

7

- 28.6

2

6.69 35.77

5

8.88 28.62 6.69 VM2

* Task violated (not meeting the deadline)

According to Table 3.3, even though task 1 and task 2 had deadlines that were

reached in VMs 1, 2, and 3, the tasks 1 and 2 were assigned to VMs 3, 1, and 2, which

resulted in a shorter completion time than the tasks 1 and 2. Task 7 was also violated

in all of the VMs, however when we looked at the projected completion time of task

7, we found that it was completed in VM1 with a shorter anticipated completion time.

As a result, our suggested DAPS model initially concentrated on the task's deadline

and subsequently got a reduction in the total time required to complete all tasks. A

number of other jobs that met their deadlines in VM2 and VM3 were also routed to

another VM that yielded a lesser duration to completion.

3.6 PERFORMANCE ASSESSMENT

In comparison to existing scheduling algorithms, the suggested DAPS model provides

a better task scheduling approach based on a deadline constraint. The DAPS model

employed a variety of performance measures to reduce the average makespan and the

number of tasks that were violated at the same time. Throughout this chapter, the

following five experiments were investigated in order to assess the overall quality and

reliability of the suggested DAPS model:

i. 250 tasks with six VMs.

ii. 500 tasks with eight VMs.

iii. 1000 tasks with ten VMs.

iv. 1500 tasks with twelve VMs.

v. 2000 tasks with fourteen VMs

103

Using measures such as average of makespan, average of total average response time,

average of total average response time, resource utilisation, guarantee ratio, amount of

violations and violation ratio, we evaluate our results DAPS model to the GA, Min-

Min, SJF, and Round Robin algorithms.

One of the most important criteria and the goal of the proposed DAPS model is to

reduce the makespan, which refers to the total time it takes for all tasks within a

virtual machine to be completed. As shown in Table 3.4, the suggested DAPS model

surpassed other algorithms by determining the overall makespan while increasing the

number of tasks when compared to GA, Min-Min, SJF, and Round Robin algorithms.

The results of all experiments revealed that the proposed model performs better other

algorithms by lowering makespan while increasing the variety of tasks

Table 3.4: Average of makespan of DAPS, GA, Min-Min, SJF and Round Robin

algorithms

Experiments Average makespan

No. of

tasks

No. of

VMs

DAPS GA Min-

Min

SJF Round

Robin

250 6 262818 305004 280130 307421 323316

500 8 380478 430264 422428 440850 474695

1000 10 568431 626303 598599 645316 630876

1500 12 696511 763337 733366 785707 751648

2000 14 716719 795613 760132 814443 826665

Figure 3.7: The X-axis represents the number of tasks, and the Y-axis represents the

rise of the average makespan over time. When compared to existing algorithms, the

suggested DAPS model has achieved a shorter average makespan in all of the trials

conducted.

104

Figure 3.7: Contrasting of average makespan

Another measure that is being used as a performance statistic is the mean of total

average response time, which is calculated as the sum of all responses. When

compared to current algorithms, the findings of the measuring performance shown in

Table 3.5 shows that the suggested DAPS model reduce the average of total average

reaction time.

Table 3.5: Mean of total average response time of DAPS, GA, Min-Min, SJF and

Round Robin algorithms

Experiments Mean of total average response time

No. of

tasks

No. of

VMs

DAPS GA Min-

Min

SJF Round

Robin

250 6 34490 42618 37668 38590 42636

500 8 45741 56257 65225 51413 60862

1000 10 73229 85400 78772 83188 84606

1500 12 88045 100291 93720 97821 98724

2000 14 85337 98795 90922 96222 100107

105

Figure 3.8: Contrast of mean of total average response time

Figure 3.8 depicts the outcome of the mean of the entire average response time

calculation. Compared to GA, Min-Min, SJF, and Round Robin algorithms, the

suggested DAPS model optimizes system response time based on deadline by

minimizing the mean of total average response time as the number of jobs and virtual

machines (VMs) increases. The task scheduling mechanism should be designed to

maximize the usage of available resources in order to enhance the effectiveness of

cloud computing. When compared to other approaches, the results of the proposed

DAPS model shown in Table 3.6 demonstrate that our model is capable of optimizing

the usage of resources under the constraints of a deadline restriction.

106

Table 3.6: Resource utilization of DAPS, GA, Min-Min, SJF and Round Robin

algorithms

Experiments Resource

utilization

No. of

tasks

No. of

VMs

DAPS GA Min-

Min

SJF Round

Robin

250 6 5621 4307 4381 3541 3246

500 8 8403 5739 6540 5249 4411

1000 10 14355 9686 10336 9064 9276

1500 12 18389 13477 14364 13171 12699

2000 14 19747 13928 15836 13565 12825

Figure 3.9 depicts resource consumption when different tasks (250-2000) are

employed in conjunction with a deadline restriction, demonstrating that our suggested

model outperforms existing techniques.

Figure 3.9: Comparison of resource utilization

107

Task scheduling is the process of allocating tasks in order to satisfy deadline limits

and, as a result, obtaining the optimal ratio of deadline guarantee to workload. In all

evaluations of guarantee ratio, the DAPS model performed far better than in the other

algorithms, as indicated in Table 3.7, which can be seen inset of Figure 3.10.

Table 3.7: Guarantee ratio of DAPS, GA, Min-Min, SJF and Round Robin

algorithms

Experiments Guarantee ratio

No. of

tasks

No. of

VMs

DAPS GA Min-

Min

SJF Round

Robin

250 6 0.992 0.695 0.82 0.684 0.684

500 8 0.99 0.665 0.868 0.662 0.668

1000 10 0.989 0.641 0.724 0.632 0.634

1500 12 0.992 0.693 0.789 0.694 0.691

2000 14 0.992 0.673 0.768 0.667 0.666

Figure 3.10: Comparison of guarantee ratio

108

Users' pleasure is the primary goal of the DAPS suggested model, which prioritizes

satisfying deadline constraints and assigning tasks to achieve it. As an example, Table

3.8 involves the comparison of task violations in our suggested DAPS model to the

amount of task violations in existing algorithms. It was discovered that our suggested

DAPS model caused less infractions than previous algorithms, which was a pleasant

surprise.

Table 3.8: Number of violations of DAPS, GA, Min-Min, SJF and Round Robin

algorithms

Experiments No. of violations

No. of

tasks

No. of

VMs

DAPS GA Min-Min SJF Round

Robin

250 6 2 76 45 79 79

500 8 5 167 66 169 166

1000 10 11 358 276 368 366

1500 12 12 459 317 459 463

2000 14 16 654 464 667 669

The amount of task violations for the proposed DAPS model is illustrated in Figure

3.11, which is significantly smaller than the amount of task violations for those other

algorithms.

109

Figure 3.11: Quantity of violations

This table shows the difference in real deadline between our suggested DAPS model

and the GA, Min-Min, SJF, and Round Robin algorithms, in which we picked ten

random jobs out of 250 tasks using 6 virtual machines and executed them on six

virtual machines.

Table 3.9: Actual deadline for random ten tasks in DAPS, GA, Min-Min, SJF

and Round Robin algorithms

Task

No.

T.ID Deadline

Constrain

t

Actual

Deadline

(DAPS)

Actual

Deadline

GA

Actual

Deadline

Min-Min

Actual

Deadlin

e SJF

Actual

Deadline

Round

Robin

1. 60 2.0 1.575 1.7115 1.26 1.575 1.26

2. 291 1.0 1.8 1.26 1.08 1.8 1.8

110

3. 221 1.0 0.9 1.3275 0.9 1.125 0.9

4. 417 1.0 0.72 80661 0.72 1.2 0.9

5. 170 1.0 0.675 0.7695 0.54 0.675 0.54

6. 191 1.0 0.72 0.984 0.72 0.9 1.2

7. 320 3.0 2.475 2.739 2.475 1.98 3.3

8. 304 1.0 1.8 1.251 1.08 1.08 1.08

9. 266 3.0 2.34 3.003 2.34 2.925 2.925

10. 93 54.0 40.725 3703093 40.725 54.3 54.3

Number of tasks

violated

2 4 2 5 4

Note: The cells in blue color indicate tasks violated

On the basis of the data in Table 3.9, we can conclude that, when 10 selected tasks are

picked to be performed on six virtual machines, the violation number in SJF is the

highest, trailed by Round Robin and GA, while Min-Min and DAPS have just two

task violations. However, when 250 tasks are taken into consideration, our suggested

DAPS model has the lowest violation rate when contrasted with other methods, as

previously noted in Table 3.8. The violation ratio is another indicator that is

associated with task noncompliance. As shown in Table 3.10, the violation ratios for

the DAPS model and other available methods are comparable.

111

Table 3.10: Violation ratio of DAPS, GA, Min-Min, SJF and Round Robin

algorithms

Experiments Violation ratio

No. of

tasks

No. of

VMs

DAPS GA Min-

Min

SJF Round

Robin

250 6 0.8% 30.4% 18.% 31.6% 31.6%

500 8 1% 33.4% 13.2% 33.8% 33.2%

1000 10 1.1% 35.8% 27.6% 36.8% 36.6%

1500 12 0.8% 30.4% 21.1% 30.6% 30.8%

2000 14 0.8% 32.7% 23.2% 33.35 % 33.45%

When contrasted to the GA, Min-Min, SJF, and Round Robin algorithms, the DAPS

model, which is founded on a deadline constraint, has a lower violation ratio of jobs

because of the deadline restriction. As a result, as indicated in Figure 3.12, our

suggested DAPS model has a significantly higher operating efficiency than existing

models.

112

Figure 3.12: Violation ratio

This table shows that the change in makespan ratio for our suggested DAPS model

with the GA, Min-Min, SJF, and Round Robin strategies is 10% better than the

increase in makespan ratio for the DAPS model using the Min-Min, SJF, and Round

Robin algorithms.

Table 3.11: Improvement in makespan ratio for DAPS compared to GA, Min-

Min, SJF and Round Robin algorithms

Improvement in makespan ratio

Experiments
DAPS GA Min-Min SJF Round

Robin

262818 305004 280130 307421 323316

380478 430264 422428 440850 474695

568431 626303 598599 645316 630876

113

696511 763337 733366 785707 751648

716719 795613 760132 814443 826665

Sum of

Expts.

2624957 2920521 2794655 2993737 3007200

Improvement DABS

vs other algorithm
10% 6% 12% 12.7%

Sum of all makespan

ratio

40.7

Average 10.25 %

In order to conduct a statistical study of our suggested DAPS model, we employed the

T-test. The T-test is an effective factor which determines the mean of the DAPS

model, demonstrating the use of normality in the process. DAPS model results in a T-

test when compared to other algorithms such as GA, Min-Min, SJF, and Round Robin

are presented in Table 3.12, which is a table of findings.

Table 3.12: T-test of DAPS model compared to GA, Min-Min, SJF, and Round

Robin algorithms

Metrics DAPS model vs other algorithms

GA Min-

Min

SJF Round

Robin

Average

makespan

0.3 0.3 0.2 0.2

Mean of total

average response
0.2 0.3 0.3 0.2

114

time

Resource

utilization

0.1 0.2 0.1 0.09

Guarantee ratio 5.0 1.9 7.6 4.2

Number of

violations

0.005 0.01 0.005 0.006

Violation ratio 6.1 1.9 7.5 4.6

We suggested a model based on a deadline constraint that is capable of allocating

work while also responding to the satisfaction of both users and service providers in

the following manner:

i. Tasks are prioritized in ascending order depending on length of the

tasks and the importance of the tasks.

ii. A good state of the VM is defined as one in which it has met the

deadline restriction.

iii. Choosing an appropriate virtual machine (VM) that would complete

the work in the shortest amount of time

In summary, we can say that this chapter provides an answer to the first question: how

to develop a scheduling model that will efficiently utilize resources during load

process and improve total completion time while still meeting the deadline constraint

of the project. We introduced the Deadline-Aware Priority Scheduling model to

reduce the amount of time required to complete tasks depending on deadline

restrictions. The improvement of both makespan and resource usage underneath a

deadline restriction may be ensured by using our model in comparison to GA,

MinMin, SJF, and Round Robin algorithms when a deadline constraint is imposed.

The performance evaluation of our proposed DAPS model also indicates that our

model achieves the best performance by minimizing metrics such as average

115

makespan, mean of total average response time, number of violations, and violation

ratio while maximizing resource utilization and guarantee ratio, amongst other factors.

The improvement in makespan ratio for our suggested DAPS model over the GA,

Min-Min, SJF, and Round Robin algorithms was 10%, 6%, 12.7 percent, and 12.7

percent, respectively, compared to the GA, Min-Min, SJF, and Round Robin

algorithms. Also computed was the T-test, which was used to compare our suggested

DAPS model against other algorithms, such as GA, Min-Min, SJF, and Round Robin,

in order to conduct statistical analysis.

3.7 EFFICIENT MANAGEMENT OF CLOUD RESOURCES

THROUGH BUDGET-AWARE TASK SCHEDULING

TECHNIQUE

The cost of performing activities in a cloud computing environment is one of the most

important areas of interest for the user in the cloud computing environment. As a

result, there must be a budget limit in order to identify the valid budget to be given to

the user once they have negotiated and agreed with the service providers. Based on

the foregoing, we will examine what the budget constraint is and the suggested model

for scheduling jobs based on this limitation in this chapter, as well as evaluating and

discussing the outcomes achieved after using the proposed model. Cloud computing

has evolved into a large-scale paradigm of cloud applications that can be tailored to

meet the needs of individual users. Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service are the three most prevalent cloud services.

Unlike on-premises computing, cloud computing allows customers to rent

infrastructure and select from a variety of resources and services to meet their specific

needs.

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service are the three most prevalent cloud services. Unlike on-premises computing,

cloud computing allows customers to rent infrastructure and select from a variety of

resources and services to meet their specific needs. Before utilizing and paying for

services or resources, the user should determine which services or resources he

requires. Because the resources of the cloud are being charged for their usage, the cost

of execution must be taken into consideration. Thus, there is a negative relationship

116

between performance and cost: in order to achieve greater performance, the cost must

be increased. In order to get the highest performance while also saving costs, it is

difficult to strike a balance between the two objectives.

Cloud computing makes use of virtualization technology, which provides a range of

virtual machines (VMs). Each of them has a unique set of computing skills, and they

are the ones who are responsible for drastically increasing resource usage while

simultaneously lowering the cost of maintenance. The number of cloud service

providers has expanded dramatically in recent years, and each provider provides a

unique set of services and charges differently for different resources (CPU,

bandwidth, memory). In light of the services and prices now accessible, customers

may find it challenging to identify the most cost-effective option when attempting to

match their instance requirements with the cloud services currently available. Users

can pick the most appropriate instance for performing their jobs with high

performance of task scheduling from a large number of cloud service providers, such

as Amazon (Elastic Cloud Computing (EC2)), which give pricing lists and resource

and instance offerings. In addition, Google Cloud Platform (GCP) is a well-known

cloud service provider that provides a cost list for its resources and services, such as

Google Compute Engine and Google Cloud Storage (GCE).

When working in a cloud computing environment, the duties of the users are executed

on either real or virtual computers, depending on the job needs. Because of the

virtualization idea, each virtual machine may perform a variety of functions while

sharing its same settings as the corresponding real computer. However, assigning the

work to appropriate resources depending on quality of service (QoS) is depicted as a

difficult problem. The mapped tasks will also be executed on the virtual machine that

fulfills the QoS restrictions, with the price of task implementation being kept to a bare

minimum under the limits of the budget. As a result, the cost is an important barrier in

the work scheduling process in cloud computing. Most significantly, the service level

agreement (SLA) between the customer and cloud provider, which includes QoS

measurements, must be taken into account by the provider (e.g. response time,

bandwidth, storage, resources utilization, and cost). These metrics must be

quantifiable and must be evaluated while delivering service in order to detect and

resolve violations of the SLA that have been decided upon.

117

3.8 BUDGET CONSTRAINT

The budget is a limit on the amount of money that may be spent on the tasks that must

be completed. For want of a better expression, the budget is the financial limitation or

uses accrual accounting for the services that are given by a cloud service provider to a

customer. When processing and performing the activities, the service provider must

consider how to reduce the amount of time spent on each activity while still staying

within the budget constraints. The total cost of the project should not be larger than

the budget limitation that was specified by the end customer. The overall cost of

resources, like the expense of a CPU, memory, and other components of the system,

should be determined. Figure 3.13 illustrates how a service level agreement (SLA) is

a contract that comprises quality of service measures such as the budget restriction,

that's used as a barrier to cope with the cost of funds that are made available by the

service provider to the consumers.

Figure 3.13: Budget constraint

3.9 TASK SCHEDULING DEPENDENT ON BUDGET-AWARE

MODEL

118

The Budget-Aware Scheduling (BAS) paradigm that has been presented is dependent

on a budget limitation. In this scenario, a data center is made up of a collection of

diverse hosts that are then separated into virtual machines. The CPU, memory,

bandwidth, and storage capacity of the host and virtual machines (VMs) may be

different.

o Definition 1 (assigned tasks): (Leni, Fiti, and TB). These properties are the

length, file size, and task budget limit for each job that is submitted by users,

and they are described in detail below.

o Definition 2 (Resources): Resources are defined as follows: In order to define

a VM resource, it must have the following key attributes: RVM = (RC, RM,

RB, RS), where these symbols denote the CPU, memory, bandwidth, and

storage of the virtual machine. The cost of each resource is represented by the

equation CR= (CRC, CRM, CRB, CRS), where CRC represents the cost of the

CPU, CRM represents the expense of memory, CRB represents the cost of

bandwidth, and CRS represents the cost of storage.

We are attempting to complete the jobs in the shortest amount of time possible based

on the budget constraints for each activity in order to achieve the lowest possible cost

execution while maximizing resource usage. As seen in Figure 3.14, the BAS model

displays the resource needs of the tasks and describes the link between resource costs

and user budget constraints.

119

Figure 3.14: Suggested Budget-Aware Scheduling model

Figure 3.15 depicts the scheduling process in the BAS model, which accepts

submission requests from users and then conducts the work, which is divided into four

steps:

 Step 1: Calculate the average task budget constraint (Avg. TB) and contrast it

to the total task budget constraint (TB).

 The second step is to compute the expected gain cost (EGC).

 Third, look for the virtual machine that fulfills the Task Budget constraint

(TB). This indicates that if the EGC in this VM is equal to or less than TB, it

signifies that the VM complies with the user limitation.

 Fourth, map the job to the appropriate virtual machine and compute the cost of

resources consumed.

The users have a large number of tasks that need to be scheduled at cloud resources,

and each task has an EGC that varies from job to task. The EGC finds the most

appropriate virtual machine (VM) that can be utilized to carry out the given job.

Alternatively, both the duration of the work (Len) and the size of the file (Fit) are

120

critical criteria that must not be overlooked. The duration of the work and the size of

the file would decide whether the activity required time priority or cost priority. When

it comes to task performance metrics, the resource cost may be impacted by some of

the metrics that are important for our suggested BAS model (makespan, reaction time,

gain cost, resource usage, and profit), which are detailed below. A scheduler is a

component that is in charge of allocating jobs to available resources in the system. As

previously stated, the optimal scheduling approach suggested in this chapter maps

tasks to resources based on this information. The tasks are then scheduled based on

this information. In the beginning, the information about the tasks and resources is

gathered. Second, it determines if the Resource (Rj) meets the task (Ti) need and

makes a decision based on that determination. Among the requirements are that the

VMs fulfil the TB and have sufficient resources. Determine if the work is time- or

cost-sensitive, and then map the task to the VM that best fulfills the task's needs

according to the priority determined in the previous step. At the end of the process,

the scheduler assigns the resource to the job.

3.9.1 Application Model

Cloud computing is characterized by a wide range of activities and resources. Because

cloud resources come in a variety of configurations, the cost of each resource differs

from the price of the other. In addition, the costs of various jobs vary. As a result, we

take into consideration the complexity of the cloud environment and propose the BAS

model, which more accurately reflects the costs of certain jobs. According to the

concept of resources, it separates the cost of resources into four categories: CPU,

bandwidth, storage, and memory (or a combination of these). The budget limitation is

located at the very top of the pyramid in our suggested BAS paradigm. Budget-Aware

Scheduling establishes the precedence of the job in all virtual machines that fulfil the

TB requirements. The BAS model examines the properties of each job (e.g., length,

file size) in order to assign each work to the most appropriate resource. For the sake

of scheduling work inside the BAS model, we have implemented the processes

outlined in Figure 3.15 depending on the budget restriction.

121

Figure 3.15: Flowchart of BAS model

In order to begin, the average of all users' budget (Avg. TB) is determined in

accordance with the following condition 3.16:

(3.16)

Where n is the complete quantity of tasks

The list of virtual machines (VMs) is examined to determine which VM provides the

highest level of customer satisfaction by getting the EGC as described in

Condition 3.17:

122

(3.17)

Where Fot is the file output size of task

The EGC is then generated within every VM and matched to the TB using Equation

3.18:

(3.18)

Finally, the task's importance is assessed by comparing the user's total time with the

average total time. According to Equation 3.19, if the TB value is more than the

Avg.TB constraint value, the job is said to have time priority, and if the TB value is

less than the Avg.TB restriction valuation, the work was shown to have cost priority.

(3.19)

When a job has a high priority in terms of time, the time is computed; otherwise, the

project cost is estimated. Following this is a determination of task needs based on the

task characteristics, where our suggested BAS model would contrast the length of the

job and the file size, as specified in Condition 3.20.

(3.20)

As a result, if the task's length is more than the file size, the completion time is

computed; otherwise, the data transfer is calculated as follows:

123

In the third definition (the expected completion time (ECT) matrix)

This matrix represents the anticipated completion time for every job across all virtual

machines. The following is the matrix of the predicted completion time displayed by

ECT:

The work will be assigned to the virtual machine with the shortest completion time in

this matrix. Equation 3.21 is used to estimate the projected completion time for this

project.

(3.21)

Where p is the number of previous tasks in a specific VMj,

EX is the time required to complete the work, as determined by Equation 3.22.

(3.22)

o Definition 4 (Expected time of Data Transfer (EDT) matrix)

The following is the matrix that describes the estimated data transfer latency of a

process running on a virtual machine:

124

The work will be allocated to the virtual machine that requires the least amount of

data transmission time. It is necessary to determine Data Transfer Time (DT) in

accordance with the Equation 3.23.

(3.23)

Using Equation 3.24, it is therefore possible to compute the estimated data

transmission time.

(3.24)

When the job has a low priority, our suggested BAS model gives it the next highest

priority. For tasks with low priority, checking the cost of execution should be done in

accordance with the assignment brief, in which case the task duration is matched to

the file size as specified in Equation 3.25:

(3.25)

Described by Equation 3.25, we can derive two more definitions, which are as:

o Definition 5 (Expected CPU Gain (ECG) matrix)

The estimated cost for every job in each VM is represented by the ECG matrix, which

looks like this:

125

When a task has a low priority and its length exceeds the file size, a quicker machine

is chosen to complete it, and the machine's ECG is determined as shown in Equation

3.26.

(3.26)

When the length is small or equal, however, the data transfer cost is kept high.

o Definition 6 (Matrix of Expected Data Transfer Gain (EDG)):

The Estimated Data Transfer Gain (EDG) matrix displays the expected cost of data

transfer for each task in each VM. It can be expressed numerically as follows:

As shown in Equation 3.27, the task would be routed to a quicker VM.

(3.27)

126

3.9.2 Case Study

Tables 3.13 and 3.14 define the tasks attributes and VMs configurations, respectively,

to demonstrate how our suggested BAS model works.

Table 3.13: Tasks attributes

Task

_ID

Length Input file size

(Fit)

Output file size

(Fot)

TB

1 1000 2200 300 10

2 2000 2750 100 4

3 5000 1500 200 3

4 4000 2000 500 7

Table 3.14: VMs configurations

VM_Id VM_MIPS VM-

BW

VM-RM VM-

ST

Cost-

MIPS

Cost-

BW

Cost-

RM

Cost-

ST

1 500 60 113 250 0.01 0.001 0.2 0.02

2 2000 80 210 250 0.04 0.001 0.3 0.02

3 1000 40 170 350 0.02 0.001 0.1 0.04

Equation 3.16 is used to get the budget average (Av.TB). To decide task priority, if

the task's budget exceeds Avg.TB, the task is given a time priority; otherwise, it is

given a cost priority. In this case, Avg.TB = (10 + 4 + 3 + 7= 24/4 = 6), then EGC is

determined for each task using Equation 3.17, and each VM state is labeled using

Equation 3.18. The VM state is equal to 1 if the EGC is less than or equal to the TB,

127

otherwise it is equal to 0. As a result, we assume EGC for each task in each VM, as

shown in Table 3.15.

Table 3.15: Expected gain cost of each task into each VM

Task _ID Expected gain cost VM_ State

VM1 VM2 VM3 VM1 VM2 VM3

1 4.681 3.821 1.837 1 1 1

2 5.355 4.373 2.106 0 0 1

3 3.264 2.677 1.336 0 1 1

4 4.741 3.881 1.897 1 1 1

The procedure for obtaining the values in Table 3.15 is as follows:

 EGC of task 1 in VM1:

Gain CPU Cost of task 1= length of task / MIPS of VM1 * cost of CPU= 1000 / 500 *

0.01= 0.02

Gain Bandwidth Cost of task 1= Task Fit + Task Fot / Bandwidth * cost of

bandwidth= 2200 + 300 / 60 * 0.001= 0.041

Gain Memory Cost of task 1= Task Fit + Task Fot / Memory * cost of Memory= 2200

+ 300 / 113 * 0.2= 4.42

Gain Storage Cost of task 1= Task Fit + Task Fot / Storage * cost of Storage= 2200 +

300 / 250 * 0.02= 0.2

EGC of task 1 in VM1 = 0.02 + 0.041 + 4.42 + 0.2= 4.681

VM1 is tagged =1 because the EGC of task 1 in VM1 is 4.681 10 and the TB of task 1

→ 4.681 10.

128

 EGC of task 1 in VM2:

Gain CPU Cost of task 1= length of task / MIPS of VM2 * cost of CPU= 1000 / 2000

* 0. 04= 0.02

Gain Bandwidth Cost of task 1= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 2200 + 300 / 80 * 0.001= 0.031

Gain Memory Cost of task 1= Task Fit + task Fot / Memory * cost of Memory= 2200

+ 300 / 210 * 0.3= 3.57

Gain Storage Cost of task 1= Task Fit + task Fot / Storage * cost of Storage= 2200 +

300 / 250 * 0.02= 0.2

EGC of task 1 in VM2 = 0.02 + 0.031 + 3.57 + 0.2= 3.821

VM2 is tagged =2 because the EGC of task 1 in VM2 is 4.681 10 and the TB of task 2

→ 4.681 10.

 EGC of task 1 in VM3:

Gain CPU Cost of task 1= length of task / MIPS of VM3 * cost of CPU= 1000 / 1000

* 0. 02= 0.02

Gain Bandwidth Cost of task 1= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 2200 + 300 / 40 * 0.001= 0.062

Gain Memory Cost of task 1= Task Fit + task Fot / Memory * cost of Memory= 2200

+ 300 / 170 * 0.1= 1.47

Gain Storage Cost of task 1= Task Fit + task Fot / Storage * cost of Storage= 2200 +

300 / 350 * 0.04= 0.285

EGC of task 1 in VM3 = 0.02 + 0.062 + 1.47 + 0.285= 1.837

VM3 is tagged =1 because the EGC of task 1 in VM3 is 4.681 10 and the TB of task 1

→ 1.1837.

129

 EGC of task 2 in VM1:

Gain CPU Cost of task 2= length of task / MIPS of VM1 * cost of CPU= 2000 / 500 *

0.01= 0.04

Gain Bandwidth Cost of task 2= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 2750 + 100 / 60 * 0.001= 0.047

Gain Memory Cost of task 2= Task Fit + task Fot / Memory * cost of Memory= 2750

+ 100 / 113 * 0.2= 5.04

Gain Storage Cost of task 2= Task Fit + task Fot / Storage * cost of Storage= 2750 +

100 / 250 * 0.02= 0.228

EGC of task 2 in VM1 = 0.04 + 0.047 + 5.04 + 0.228= 5.355

VM1 is designated =0 because the EGC of task 2 in VM1 > TB of task 2→ 5.355 > 4.

 EGC of task 2 in VM2:

Gain CPU Cost of task 2= length of task / MIPS of VM2 * cost of CPU= 2000 / 2000

* 0.04=0.04

Gain Bandwidth Cost of task 2= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 2750 + 100 / 80 * 0.001= 0.035

Gain Memory Cost of task 2= Task Fit + task Fot / Memory * cost of Memory= 2750

+ 100 / 210 * 0.3= 4.07

Gain Storage Cost of task 2= Task Fit + task Fot / Storage * cost of Storage= 2750 +

100 / 250 * 0.02= 0.228

EGC of task 2 in VM2 = 0.04 + 0.035 + 4.07 + 0.228= 4.373

VM2 is designated =0 because the EGC of task 2 in VM2 > TB of task 2→ 4.373 > 4.

 EGC of task 2 in VM3:

Gain CPU Cost of task 2= length of task / MIPS of VM3 * cost of CPU= 2000/ 1000*

0.02=0.04

130

Gain Bandwidth Cost of task 2= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 2750+100 / 40* 0.001=0.071

Gain Memory Cost of task 2= Task Fit + task Fot / Memory * cost of Memory=

2750+100 / 170* 0.1=1.67

Gain Storage Cost of task 2= Task Fit + task Fot / Storage * cost of Storage=

2750+100 / 350* 0.04=0.325

EGC of task 2 in VM3 = 0.04 + 0.071 + 1.67 + 0.325= 2.106

VM3 is tagged =1 because the EGC of task 2 in VM3 is TB of task 2→ 2.106 4.

 EGC of task 3 in VM1:

Gain CPU Cost of task 3= length of task / MIPS of VM1 * cost of CPU= 5000/ 500 *

0.01=0.1

Gain Bandwidth Cost of task 3= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 1500+200/ 60 * 0.001=0.028

Gain Memory Cost of task 3= Task Fit + task Fot / Memory * cost of Memory=

1500+200 / 113 * 0.2=3.00

Gain Storage Cost of task 3= Task Fit + task Fot / Storage * cost of Storage=

1500+200 / 250 * 0.02=0.136

EGC of task 3 in VM1 = 0.1 + 0.028 + 3.00 + 0.136= 3.264

VM1 is designated =0 because the EGC of task 3 in VM1 > TB of task 3 →3.264 > 3.

 EGC of task 3 in VM2:

Gain CPU Cost of task 3= length of task / MIPS of VM2 * cost of CPU= 5000/ 2000*

0.04=0.1

Gain Bandwidth Cost of task 3= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 1500+200 / 80 * 0.001=0.021

131

Gain Memory Cost of task 3= Task Fit + task Fot / Memory * cost of Memory=

1500+200 / 210* 0.3=2.42

Gain Storage Cost of task 3= Task Fit + task Fot / Storage * cost of Storage=

1500+200 / 250 * 0.02=0.136

EGC of task 3 in VM2 = 0.1 + 0.021 + 2.42 + 0.136= 2.677

The EGC of task 3 in VM2 < TB of task 3 → 2.677 < 3 means VM2 is labeled =1.

 EGC of task 3 in VM3:

Gain CPU Cost of task 3= length of task / MIPS of VM3 * cost of CPU= 5000 / 1000

* 0. 02=0.1

Gain Bandwidth Cost of task 3= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 1500+200 / 40* 0.001=0.042

Gain Memory Cost of task 3= Task Fit + task Fot / Memory * cost of Memory=

1500+200 / 170* 0.1=1

Gain Storage Cost of task 3= Task Fit + task Fot / Storage * cost of Storage=

1500+200 / 350* 0.04=0.194

EGC of task 3 in VM3 = 0.1+0.042+1+0.194=1.336

The EGC of task 3 in VM3 < TB of task 3 → 1.336 < 3 means VM3 is labeled =1.

 EGC of task 4 in VM1:

Gain CPU Cost of task 4= length of task / MIPS of VM1 * cost of CPU= 4000/ 500 *

0.01=0.08

Gain Bandwidth Cost of task 4= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 2000+500/ 60 * 0.001=0.041

Gain Memory Cost of task 4= Task Fit + task Fot / Memory * cost of Memory=

2000+500 / 113 * 0.2=4.42

132

Gain Storage Cost of task 4= Task Fit + task Fot / Storage * cost of Storage=

2000+500 / 250 * 0.02=0.2

EGC of task 4 in VM1 = 0.08 + 0.041 + 4.42 + 0.2= 4.741

The EGC of task 4 in VM1 < TB of task 4 → 4.741 < 7 means VM1 is labeled =1.

 EGC of task 4 in VM2:

Gain CPU Cost of task 4= length of task / MIPS of VM2 * cost of CPU= 4000/ 2000*

0.04=0.08

Gain Bandwidth Cost of task 4= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 2000+500 / 80 * 0.001=0.031

Gain Memory Cost of task 4= Task Fit + task Fot / Memory * cost of Memory=

2000+500 / 210* 0.3=3.57

Gain Storage Cost of task 4= Task Fit + task Fot / Storage * cost of Storage=

2000+500 / 250 * 0.02=0.2

EGC of task 4 in VM2 = 0.08+0.031+3.57+0.2=3.881

The EGC of task 4 in VM2 < TB of task 4 → 3.881 < 7 means VM2 is labeled =1.

 EGC of task 4 in VM3:

Gain CPU Cost of task 4= length of task / MIPS of VM3 * cost of CPU= 4000 / 1000

* 0.02=0.08

Gain Bandwidth Cost of task 4= Task Fit + task Fot / Bandwidth * cost of

Bandwidth= 2000+500 / 40* 0.001=0.062

Gain Memory Cost of task 4= Task Fit + task Fot / Memory * cost of Memory=

2000+500 / 170* 0.1=1.47

Gain Storage Cost of task 4= Task Fit + task Fot / Storage * cost of Storage=

2000+500 / 350* 0.04=0.285

EGC of task 4 in VM3 = 0.08 + 0.062 + 1.47 + 0.285= 1.897

133

VM3 is classified =1 because the EGC of task 4→ VM3 is 1.897 7 and the TB of task

4 is 1.897 7.

Then, as indicated in Table 3.16, our model BAS will examine and compare the

length and file size information from Table 3.13 for each task to determine how the

tasks should be allocated among all available VMs:

Table 3.16: Task priority and comparison of length and file size for each task

Task_ ID Priority Len > Fit Len < Fit Procedure

1 Time √ EDT

2 Cost √ EDG

3 Cost √ ECG

4 Time √ ECT

The procedure for obtaining the table values in Table 3.16 is as follows:

Because task 1's TB > Avg.TB →10 >, task 1's priority is time. 6. The EDT was

determined using the Len of Task 1→ input file 1000 <2200.

 The priority of Task 2 is cost, because the TB of Task 2 is an average of 4 TB.

6. The EDG was determined using the Len of Task 2 input file of Task

2→ 2000 < 2750.

Because the TB of task 3 Avg.TB 3 6. Len of task 3 > input file of task 3 →5000 >

1500, the ECG was calculated.

 Because task 4's TB > Avg.TB 7 >, task 4's priority is time. 6. Len of task 4 >

input file of task 4 >→ 4000 > 2000, resulting in ECT calculation.

The task priority, the process, and the expected gain cost should all be applied after

computing the expected gain cost and identifying the VM state. We calculated all the

134

procedures for all the tasks on the VMs based on the findings from Table 3.16, and

each task will be scheduled to the appropriate VM as indicated in Table 3.17:

Table 3.17: Performance of each VM

Task_ID Procedure VM1 VM2 VM3

1 EDT 41.67 31.25 62.5

2 EDG Not meet TB Not meet TB 0.071

3 ECG Not meet TB 0.1 0.1

4 ECT 8 5 6

The following are the computations for the Table 3.17 results:

Task 1:

 Task 1 (EDT) in VM1=DT of pervious task + DT of current task= 0 +

2500/60= 41.66

 Task 1 (EDT) in VM2=DT of pervious task + DT of current task= 0 +

2500/80= 31.25

 Task 1 (EDT) in VM3=DT of pervious task + DT of current task= 0+

2500/40= 62.5

Task 2:

We did not calculate the predicted gain cost in VM1 and VM2 based on the findings

from Table 3.15 because task 2 in the first and second virtual machines did not fulfil

the task budget.

 Task 2 (EDG) in VM3= Fit + Fot / Bandwidth * cost of Bandwidth =

2850/40*0.001= 0.071

135

Task 3:

We do not calculate the predicted gain cost in VM1 based on the data from Table 3.15

since task 3 in the first virtual machine did not fulfill the task budget.

 Task 3 (ECG) in VM2= length of task / CPU * cost of CPU=5000/2000*0.04

=0.1

 Task 3 (ECG) in VM3= length of task / CPU *cost of CPU=5000/1000* 0.02

=0.1

Task 4:

 Task 4 (ECT) in VM1= Ex of pervious task + EX of current task= 4000 / 500

= 8 + 0= 8

 Task 4 (ECT) in VM2= Ex of pervious task (Task 1, Task 3) + EX of current

task= ((1000/2000) + (5000/2000)) + (4000 / 2000)= 0.5 + 2.5 + 2 = 5

 Task 4 (ECT) in VM3= Ex of pervious task (Task 2) + EX of current task=

(2000 / 1000) + (4000 / 1000) = 2 + 4 = 6

o Task 1 will be assigned to VM2, which returns less EDT, as shown in Table

3.15.

o Task 2 will be mapped to VM3, which, among other things, meets the budget

constraint.

o Task 3 will be assigned to VM2, which produces less ECG than the first.

o Task 4 will be assigned to VM2, which produces less ECT.

3.9.3 Steps of Budget-Aware Scheduling Model

The following are the steps in the BAS model:

Input

List of tasks, list of VMs

136

Output

Assigning the tasks on available VMs based on the budget constraint

1. The tasks are submitted with their TB

2. Calculate Avg.TB

3. For each task in the task list

Choose the suitable VMs that meet TB

For each VM in list of VMs

Calculate EGC

If the EGC <= TB then VM state = 1

Else: VM state =0

End for

Check the task priority and its requirements

If TB >Avg.TB, the task has time priority:

If Len > Fit, find lower Completion Time (ECT) for the task

else, lower Data Transfer (EDT) time is found

else, if TB ≤ Avg.TB , the task has cost priority:

If Len > Fit, lower ECG is found for the task

else, lower EDG is found for the task

End for

4. Computation performance estimates the metrics:

i. Makespan average based on Equation 3.31.

137

ii. Based on Equation 3.35, the mean of the whole response time.

iii. Profit for the provider, calculated using Equation 3.36.

iv. Total gain cost based on Equation 3.38.

v. Resource utilization based on Equation 3.37.

vi. Improvement of the cost ratio using Equation 3.39.

3.10 METRICS OF PERFORMANCE

The performance indicators used to evaluate the proposed BAS model are presented

in this section. The following measures are used in task scheduling to assess the

algorithms' efficiency:

 Makespan: The time it takes the available VM to perform all of the jobs is

called Makespan. It is defined using Equation 3.28.

(3.28)

In Equation 3.29, where n is the total number of tasks and 1 ≤ j ≤ m, A[i, j], a Boolean

variable, can be defined as follows:

(3.29)

Then, as shown in Equation 3.30, we calculate the average makespan of all VMs.

(3.30)

The number of virtual machines is denoted by the letter m.

As a result, Equation 3.31 presents the overall makespan as follows:

138

Max_span = max (Makespanj) (3.31)

 Response Time:

In cloud computing, the reaction time is the time it takes to locate a process, which

includes the time it takes to complete the task. Equation 3.32 is used to compute the

response time.

RT = FTi - SBi (3.32)

The finish time is FT, while the submission time is SB.

The average reaction time and the mean of all VMs' total response time are then

determined using Equations 3.33 and 3.34, respectively.

(3.33)

where N is the number of tasks in specific VM.

(3.34)

 Service Provider Profit:

The cloud provider is concerned with optimizing profit and resource use, whereas the

user is looking for good performance at a low cost. The provider will carry out the

tasks in such a way that the user is satisfied and profits are increased. Equation 3.36

will be used to compute the profit.

(3.35)

For instance, if we suppose:

T1: (TB=120), (GC=135),

139

T2: (TB=190), and (GC=100),

T3: (TB=20), and (GC=15) then

Profit = (120 – 135) + (190-100) + (20-15) = 80.

Provider profit = 80.

 Average Resource Utilization:

The average resource usage rate should be as high as possible. As a result, a better

scheduling algorithm is one that distributes jobs to resources that are used efficiently.

Equation 3.36 calculates the average resource consumption.

(3.36)

 Total Gain Cost:

The total gain is the entire cost paid to the service provider by the user for all jobs

completed. Equation 3.37 is used to compute the total gain cost.

(3.37)

 Improvement of Cost Ratio:

The cost is a critical statistic that we consider while evaluating our model's

performance. Equation 3.38 is used to calculate the cost ratio improvement.

(3.38)

Where e is the number of experimentations

140

3.11 RESULTS OF EXPERIMENTS AND ANALYSIS

3.11.1 Implementation Environment

We used the Cloud Sim toolbox to simulate our suggested BAS model in this chapter

as well. This is due to the fact that the CloudSim toolkit is the most ideal toolkit for

efficiently simulating the cloud environment, as well as its modeling behavior. It

simulates data centers, hosts, cloudlets, virtual machines, and resource provisioning

policies in the cloud. It also allows for the modeling of multiple data centers for the

study of resource allocation policies, dependability, and scale.

3.11.2 Experiments Configuration

Table 3.18 explains how the trials will be set up:

Table 3.18: Configuration requirement for the experiments

Configuratio

ns

Datacenter Server Virtual machine

Numbers 1 2 10

Core Quad-Core and Dual-

Core

1 processing

element

Memory

(RAM)
16 GB 0.5 GB

Storage 1 TB 10 GB image size

Bandwidth 100 GB/s 1 GB/s

VM

scheduling

algorithm

Time-Shared Time-Shared

Architecture X86 Architecture Xen

141

Operating

system

Linux

Virtual

machine

monitor

Xen

Speed 10,000 MIPS 500, 1000, 2000 and

3000 MIPS

3.11.3 Dataset

The dataset is referred to as a cloudlet in this chapter, and the cloudlet represents a

task in the CloudSim simulator. In other words, the user's application is the CloudSim

toolkit's cloudlet class. As a result, the size of an application is determined by the

computing needs, which are expressed in terms of instruction length and data transfer.

The cloudlet has the following characteristics:

 Length.

 Million Instructions (MI).

 Input files size.

 Output files size.

250, 500, 750, 1000, 1500, and 2000 jobs were generated and dispersed. We

evaluated the measured metrics (average makespan, mean of total average response

time, resources consumption, number of task violations in VMs, provider profit, total

gain cost, and VM usage time (hour)) to examine and evaluate our BAS model, as

shown in Table 3.19:

142

Table 3.19: Experiments conducted for BAS model for tasks with 10 VMs

Expt

s.

No.

of

V

Ms

No.

of

tas

ks

Average

makesp

an

Mean

of

total

avera

ge RT

Resourc

e

utilizati

on

No. of

violatio

ns

Provid

er

profit

Total

gain

cost

VMs

usage

time(ho

ur)

1 10 250 781 344 870 34 160528

7

65782

7

2.1

2 10 500 1512 649 1716 70 329140

2

12476

51

4.2

3 10 750 2251 959 2557 110 492035

9

18259

19

6.2

4 10 1000 2982 1265 3475 144 659131

0

24154

96

8.2

5 10 1500 4429 1872 5129 222 995286

6

35943

99

12.3

6 10 2000 5905 2491 6853 296 133161

25

47701

99

16.4

3.12 PERFORMANCE EVALUATION

We ran six experiments using ten virtual computers to host increasing quantities of

jobs to assess the performance and efficiency of the proposed BAS model. The

following experiments were carried out:

i. 250 tasks with ten VMs.

ii. 500 tasks with ten VMs.

143

iii. 750 tasks with ten VMs.

iv. 1000 tasks with ten VMs.

v. 1500 tasks with ten VMs.

vi. 2000 tasks with ten VMs.

By comparing our suggested BAS model to state-of-the-art scheduling algorithms

such as Max-Min, Round Robin, and SJF algorithms, we can demonstrate its

efficiency level. Each of these algorithms has a unique technique for allocating jobs to

available resources. Table 3.20 presents the results of testing with various numbers of

tasks hosted on ten virtual machines (VMs), comparing the average makespan of our

proposed BAS model to that of alternative scheduling algorithms. The average

makespan for each task conducted on VM in the BAS model has smaller value than

the average makespan for tasks run in other scheduling algorithms, as shown in the

data.

Table 3.20: Average of makespan of BAS, Max-Min, Round Robin and SJF

algorithms

Experiments Average makespan

No. of tasks No. of VMs BAS Max-Min Round Robin SJF

250 10 781 1020 1604 1551

500 10 1512 2013 3097 3071

750 10 2251 3024 4633 4633

1000 10 2982 4031 6159 6170

1500 10 4429 6044 9263 9247

2000 10 5905 8061 12348 12337

144

When comparing the outcomes of raising the makespan for increasing the number of

tasks while utilizing the same number of VMs, our proposed BAS model performed

better, however in all other scenarios, the makespan grows with increasing the number

of tasks. Consider experiments 1 and 2, in which 250 and 500 jobs are done on 10

virtual machines, respectively. When compared to algorithms such as Max-Min

(achieves 993), Round Robin (1493), and SJF (1520), our proposed BAS model has

the smallest makespan increment (1512-781= 731). As a result, our proposed BAS

model performs best when the number of jobs is increased. Figure 3.16 shows the

graph of these results. In comparison to Max-Min, which has the next greatest

makespan values, and Round Robin and SJF, which have larger makespan values, our

BAS model has the smallest makespan values for the jobs hosted on the VMs.

Figure 3.16: Comparison of average makespan

Table 3.21 presents the results of testing performed on various numbers of tasks

hosted on ten virtual machines (VMs), comparing the mean of total average response

time to execute tasks on VMs for our proposed BAS model to alternative scheduling

methods. The results show that the mean of total average reaction time resulting from

145

the BAS model for each task run on VM is lower than the mean of total average

response time arising from other scheduling methods for the same workloads.

Table 3.21: Mean of total average response time of BAS, Max-Min, Round Robin

and SJF algorithms

Experiments Mean of total average response time

No. of tasks No. of VMs BAS Max-Min Round Robin SJF

250 10 344 513 693 654

500 10 649 859 1312 1289

750 10 959 1276 1948 1945

1000 10 1265 1701 2584 2592

1500 10 1872 2535 3894 3880

2000 10 2491 3389 5188 5178

Figure 3.17: Comparison of mean of total average response time

146

These results, as shown in Figure 3.17, show that our BAS model has the lowest

response time in the graph, indicating that the tasks were completed faster than Max-

Min. Round Robin and SJF have a faster task execution reaction time. Table 3.22

shows that the scheduling algorithms Max-Min, Round Robin, and SJF were unable to

efficiently utilize resources for the execution of the users' activities, whereas the BAS

model, which had the highest resource utilization values, demonstrated the novelty of

our suggested model.

Table 3.22: Resource utilization of BAS, Max-Min, Round Robin and SJF

algorithms

Experiments Resource utilization

No. of

tasks

No. of

VMs

BAS Max-

Min

Round

Robin

SJF

250 10 870 547 702 694

500 10 1716 1130 1383 1361

750 10 2557 1537 2080 1982

1000 10 3475 2152 2752 2582

1500 10 5129 3149 4136 4049

2000 10 6853 4070 5498 5387

Figure 3.18 depicts the resource utilization metric's comparing results. When we run

different tasks (250, 500, 750, 1000, 1500, and 2000) on ten VMs, the Max-Min

algorithm has the smallest utilization graph, indicating that this algorithm creates a lot

of load and complexity when scheduling tasks on cloud resources; next comes SJF,

which has a smaller utilization factor than Round Robin; and finally our BAS model,

which has the highest utilization graph line, indicating that our model creates no

overload or complexity when scheduling tasks on cloud resources.

147

Figure 3.18: Comparison of resource utilization

Table 3.23 presents the results of testing with various numbers of tasks hosted on ten

virtual machines (VMs), in which we compare the number of violated tasks for our

proposed BAS model to alternative scheduling algorithms. The number of violated

tasks for each task conducted on VM in the BAS model has less value than the

number of violated tasks executed in other scheduling algorithms, as shown by the

findings. As a result of the lesser number of violated tasks in the BAS model, we may

predict that tasks will be completed quickly and efficiently.

Table 3.23: Number of task violations of BAS, Max-Min, Round Robin and SJF

algorithms

Experiments No. of violations

No. of tasks No. of VMs BAS Max-Min Round Robin SJF

250 10 34 40 41 51

500 10 70 75 84 101

148

750 10 110 127 127 158

1000 10 144 160 170 227

1500 10 222 247 256 313

2000 10 296 341 343 418

The results graphed in Figure 3.19 show that the SJF algorithm has many violated

tasks; the next algorithm is Round Robin, which is followed by Max- Min; and the

BAS model has the lowest values of violation in VM, implying that our BAS model is

capable of accessing tasks efficiently on a large number of VMs with fewer

violations. When compared to state-of-the-art scheduling algorithms, this

demonstrates the originality of our suggested BAS model.

Figure 3.19: Number of violations

The difference between the task budgets and the gain cost after execution is measured

as provider profit, indicating how our proposal can produce a gain in modifying task

scheduling expenses over cloud resources and the user's budget. When comparing the

149

provider profit for our proposed BAS model to existing scheduling methods, Table

3.24 summarizes the trials done on varied numbers of jobs hosted on 10 VMs. The

provider profit for each task conducted on VM in the BAS model is higher than the

provider profit for tasks executed in other scheduling algorithms, as shown in the

findings.

Table 3.24: Provider profit of BAS, Max-Min, Round Robin and SJF algorithms

Experiments Provider profit

No. of tasks No. of

VMs

BAS Max-Min Round

Robin

SJF

250 10 1605287 1487018 1344750 1367344

500 10 3291402 3153615 2695663 2711696

750 10 4920359 4569718 4006838 4136371

1000 10 6591310 6063645 5349034 5510228

1500 10 9952866 9338029 8068379 8279185

2000 10 13316125 12150021 10764050 11003674

150

Figure 3.20: Provider profit

We can see from the graphed data in Figure 3.20 that the Round Robin algorithm has

the lowest provider profit, indicating that it does not achieve compatibility between

user budgets and provider expenses for resource utilization. This is followed by SJF

and Max-Min, both of which have a somewhat greater provider profit value. When

compared to the others, the BAS model has the greatest values, as seen by its graph,

leading us to conclude the uniqueness and accuracy of our BAS model in meeting the

user's needs while adhering to the provider's QoS.

The overall gain cost of the scheduling methods is an extremely important parameter

to track. Table 3.25 shows how the suggested model BAS achieves its goal of

lowering overall gain costs by utilizing resources to complete tasks at lower costs than

state-of-the-art scheduling algorithms.

Table 3.25: Total gain cost of BAS, Max-Min, Round Robin and SJF algorithms

Experiments Total gain cost

No. of tasks No. of

VMs

BAS Max-Min Round Robin SJF

250 10 657827 776106 918366 895773

151

500 10 1247651 1385444 1843389 1827357

750 10 1825919 2176551 2739433 2609909

1000 10 2415496 2943171 3657772 3496595

1500 10 3594399 4209240 5478870 5268092

2000 10 4770199 5936315 7322249 7082671

Even with a larger number of tasks on the same number of VMs, the BAS model

schedules tasks with the lowest cost increment when compared to other algorithms.

For example, in experiments 1 and 2, the BAS model returns the lowest cost

increment (1247651-657827= 589824), whereas the algorithms Max-Min (achieves

609338), Round Robin (925023), and SJF have higher cost increments (931584). As a

result, we can infer that our proposed BAS model was successful in satisfying users

and completing tasks at a lower cost. Round Robin has a larger cost than the SJF

method, which is followed by the Max-Min algorithm, as seen in Figure 3.21. All of

this suggests that our proposed BAS model, which has the lowest total gain cost, has

precisely and effectively achieved its objectives in lowering resource execution costs

and achieving budgetary stability between these costs and the users' budgets.

152

Figure 3.21: Total gain cost

Table 3.26 shows how we calculate our VM consumption per time as allowed by the

provider. As a result, we can see that all of the state-of-the-art scheduling algorithms

had greater VM utilization per time values. In comparison to the others, our proposed

BAS model has the lowest values of VM usage per time, indicating that our model is

efficient and capable of delivering good VM per time execution.

Table 3.26: VMs usage time (hour) of BAS, Max-Min, Round Robin and SJF

algorithms

Experiments VMs usage time (hour)

No. of tasks No. of VMs BAS Max-Min Round Robin SJF

153

250 10 2.1 2.8 4.4 4.3

500 10 4.2 5.5 8.6 8.5

750 10 6.2 8.4 12.8 12.8

1000 10 8.2 11.1 17.1 17.1

1500 10 12.3 16.7 25.7 25.6

2000 10 16.4 22.3 34.3 34.2

Figure 3.22: Virtual machines usage time (hour)

Figure 3.22 shows that state-of-the-art scheduling strategies result in increased VM

use per time (Round Robin, SJF, and Max-Min). Our proposed model BAS, on the

other hand, has the lowest graph line, indicating that our model's VM use to execute

users' activities per time is efficient and meets the primary goal of scheduling

algorithms. Finally, Table 3.27 shows that our suggested BAS model with Max-Min,

Round Robin, and SJF algorithms improved the cost ratio by 17 percent, 34 percent,

and 31 percent, respectively.

154

Table 3.27: Improvement of cost ratio for BAS compared with Max-Min, Round

Robin, and SJF algorithms

Improvement of cost ratio

Experiments

BAS MAX-Min Round

Robin

SJF

657827 776106 918366 895773

1247651 1385444 1843389 1827357

1825919 2176551 2739433 2609909

2415496 2943171 3657772 3496595

3594399 4209240 5478870 5268092

4770199 5936315 7322249 7082671

Sum of Expts. 14511491 17426827 21960079 21180397

Improvement BAS vs other

algorithm

17% 34% 31%

Sum of all cost ratio 82

Average 27%

Our proposed BAS model was statistically analyzed using the T-test. The T-test is a

useful tool for calculating the mean of a BAS model and demonstrating the use of

normality. The T-test results of the BAS model vs other algorithms such as Max-Min,

Round Robin, and SJF are tabulated in Table 3.28.

155

Table 3.28: T-test of BAS model compared to Max-Min, Round Robin and SJF

algorithms

Metrics

BAS model vs other algorithms

Max-Min Round Robin SJF

Average makespan 0.2 0.05 0.05

Mean of total average response time 0.2 0.05 0.05

Resource utilization 0.1 0.2 0.2

No. of violations 0.3 0.3 0.1

Provider profit 0.4 0.2 0.3

Total gain cost 0.3 0.1 0.1

VMs usage time (hour) 0.2 0.05 0.05

We presented a budget model that divides tasks into categories based on their

characteristics to make resource allocation decisions easier. This method is carried out

in the following manner:

o First, the budget-compliant VMs are labeled, and the task priority is

established.

o Task properties (length and file size) are identified.

o The task is assigned to resources that meet the budget limit and keep the

makespan as short as possible while incurring the least amount of resource use

cost.

The second question is answered by looking at the summary of this chapter: How to

create a model that reduces the entire cost of task scheduling in a cloud computing

156

environment, which includes the cost of processor, memory, bandwidth, and storage,

all of which are constrained by a budget. We presented a Budget-Aware Scheduling

model, in which we were concerned about the user's budget for their tasks when they

were run on virtual machines. Experiments on our proposed BAS model were

conducted and compared to state-of-the-art scheduling algorithms, demonstrating that

the BAS reduces the makespan, response time, and number of violations for task

execution on VMs, as well as increasing resource utilization and profit for the

provider, and achieving an acceptable total gain cost for any user. The proposed BAS

model improves the cost ratio by 17 percent, 34 percent, and 31 percent over the Max-

Min, Round Robin, and SJF algorithms, respectively. In addition, the T-test was used

to compare our suggested BAS model to other algorithms such as Max-Min, Round

Robin, and SJF statistically.

157

CHAPTER 4

DEADLINE BUDGET SCHEDULING FOR VIRTUAL

CLOUD ENVIRONMENT

In comparison to grid computing, cloud computing has become the most appealing

platform, offering a variety of services such as infrastructure, platform, and software

as a service, where users can use these services on the cloud and pay based on their

usage and the fulfillment of quality-of-service constraints such as deadlines and

budgets. Cost monetary metrics must be considered when improving execution time

performance within users' stated limits in order to schedule jobs efficiently. The

deadline and budget limitations are discussed in this chapter, and the proposed model

seeks to meet the goal of assigning jobs to the most appropriate VM based on the

deadline and budget restrictions.

4.1 INTRODUCTION

Cloud computing has changed the face of all computing paradigms in recent years by

making a wide range of services available over the internet. The cloud's resources,

such as infrastructure, platform, and software, are offered as services, with a pay-per-

use pricing model. Users would refuse to pay if the required performance is not met,

so it is vital to use efficient scheduling in the cloud computing environment to achieve

this goal. Furthermore, the inherent heterogeneity, highly dynamic nature, and

multidomain characteristics lead to variances in resource costs, as well as computing,

communication, and storage capabilities, all of which challenge resource

management. The heterogeneous resources, which are used to run heavy computing

applications, might be local or distributed geographically. Before beginning any

service use, the cloud user always negotiates with the cloud service provider to sign

on service level agreements. In the computing model, a user only pays for the services

and resources that he requires. The two most essential criteria for a user are money

and time. Task scheduling is tough due to cost and time constraints.

In cloud computing, task scheduling is critical since it is responsible for assigning

tasks to the appropriate resources. Task limitations are used to submit user jobs to

various cloud resources based on computing time and cost (deadline and budget). A

158

provider can reduce operating expenses while also assuring a high quality of service

by ensuring that all users have equal access to shared resources. As a result, task

execution must account for scheduling in a heterogeneous environment in order to

meet the user-defined deadline, and the monetary costs of completed tasks must not

exceed the user-defined budget. Due to rising resource leasing expenses, the cost of

execution and resource utilization leased has become increasingly important. In

general, task scheduling should meet the following scheduling objectives:

 Service Level Agreement/Quality of Service Constraint: The service level

agreement should explicitly outline the quality-of-service requirements for

scheduling tasks, including a deadline, task scheduling budget, service

security, and system reliability. As a result, task scheduling limitations that

affect quality of service should be considered in order to meet the quality-of-

service requirement.

 Service Revenue: Because cloud computing uses a large number of servers,

the input cost is higher. As a result, various economic ideas and methods are

applied in task scheduling in cloud computing, which appear to be more

successful in performance and appear more rational. So, in addition to meeting

quality of service limits and resource needs, increasing service revenue has

become another essential goal of task scheduling for cloud service providers.

Thus, how can jobs be planned with low payment prices and shorter completion times

(makespan) while simultaneously maximizing resource usage in a cloud computing

environment has become a growing problem, and it is also considered one of the

technical difficulties in the academic sector.

4.2 BUDGET AND DEADLINE CONSTRAINTS

For meaningful scheduling solutions, the deadline and budget values must be

discussed between users and cloud service providers so that the agreed values are fair

and mutually accepted. The time of task execution under the deadline constraint, as

well as the cost, which must not exceed the budget constraint supplied by the user, are

guaranteed according to the quality-of-service requirements. As illustrated in Figure

4.1, there are certain measures that can work and fall within the deadline and budget

159

limits, such as makespan, number of violations, improvement of makespan ratio,

improvement of cost ratio, total gain cost, provider profit, and resource usage.

Figure 4.1: Metrics under deadline and budget constraints

4.3 TASK SCHEDULING BASED ON DEADLINE BUDGET

MODEL

This contribution emphasizes deadline and budget limitations in task scheduling to

improve QoS in conjunction with two basic metrics: minimize execution time and

cost of executed activities, and eventually improve service income as well as VM and

host resource utilization (s). As a result, we introduced the Deadline Budget

Scheduling (DBS) model for executing users' tasks on VMs while adhering to QoS

requirements in order to reduce execution time. The DBS model's methodology

assumes that the cloud environment is hosted in a data center with a mix of servers,

each of which supports multiple virtual machines. Varying VM configurations may

have different processor capacities, memory sizes, and communication lines with

various bandwidths and storage capacities. The DBS model aims to reduce execution

time and cost while staying within a user-defined budget and deadline.

160

The following scenarios are considered while task scheduling: The virtual machines

(VMs) are heterogeneous, with varied performance efficiencies based on the

resources available to them. To define the DBS model, we define Dc as a data center

made up of many H hosts, each of which holds a set of virtual machines (VMs). VM

resources are denoted as RVM=RC, RB, RM, RS, where RC is the CPU capability

expressed in Million Instructions Per Second (MIPS). RB stands for bandwidth, RM

for virtual machine memory, and RS for virtual machine storage. The processing cost

of a task varies based on whose cost VMs it is allocated to. On the other hand, due to

bandwidth variability between two separate VMs, the communication cost between

two VMs is shifting. Furthermore, the cost of memory and storage varies from one

VM to the next, hence each RVM's cost is represented as CR = CRC, CRB, CRM,

CRS, accordingly. Each VM implements individual tasks represented by T, which

have numerous parameters such as a deadline, a budget, a length, an input file size,

and an output file size, and are denoted by T=TD, TB, Len, Fit, Fot. Our goal is to

reduce the time to market and the cost of execution while maintaining user happiness.

4.3.1 Type of Task Constraint

Based on user satisfaction, each task has a constraint type. As shown in Equation

4.1 there are three sorts of constraint types in our suggested DBS model.

(4.1)

4.3.2 Resources Clustering

The available resources are clustered in the following fashion based on the user's

satisfaction:

i. The first cluster consists of a collection of virtual machines (VMs) that adhere

to the budget and deadline requirements.

ii. The second cluster is made up of VMs that adhere to a strict deadline.

iii. The third cluster is made up of VMs that are simply constrained by a budget.

161

The scheduling DBS model, as shown in Figure 4.2, comprises of cloud users that

send their tasks, including the limitations (deadline, budget). Based on user

satisfaction, each task is examined for recognizing its constraint type. If the task's

constraint type is both deadline and budget, it will be implemented in cluster one; if

the constraint type is only deadline, it will be implemented in cluster two; and if the

constraint type is only budget, it will be implemented in cluster three. Other task

attributes (length, file size) are also taken into account in the selection.

Figure 4.2: Proposed Deadline Budget Scheduling model

4.3.3 Scheduling Strategy

Level one involves determining the task constraint type, whereas level two involves

the DBS model determining the task's needs based on the task attributes, as shown in

Figure 4.3. The deadline and budget limitations should be met when the constraint

type is D & B. For task implementation, our suggested DBS model will find the right

VM in the first cluster. The task length (Len) and input file size (Fit) are then

compared in stage two, as shown in Equation 4.2. When the task's length exceeds the

162

input file size, the task's completion time must be considered; otherwise, the data

transfer time must be considered.

(4.2)

Figure 4.3: Organogram of the DBS model

The VM with the shortest predicted completion time will be chosen in the first cluster.

Equation 4.3 is used to compute the Expected Completion Time (ECT). Where p is

the number of prior tasks in a given VMj, and EX is the task's execution time, which

is computed using Equation 4.4. When the task's length is smaller than the size of the

input file, the task will be assigned to a VM with a faster data transmission time. The

data transfer time is computed using Equation 4.5.

(4.3)

(4.4)

(4.5)

The task's estimated data transfer time in each VM is then determined using Equation

4.6.

163

(4.6)

The second constraint type in our proposed DBS model is D, which focuses solely on

the deadline constraint; the task completion time is calculated in the second cluster,

and the task is assigned to the VM with the shortest predicted completion time.

Equation 4.3 specifies the estimated completion time. Our proposed DBS model's

final constraint type is B. The task requirement is to calculate the cost of VMs in the

third cluster using Equation 4.7, which compares the task length and input file size as

follows:

(4.7)

When the task is the longest, it is computed using Equation 4.8, assuming that a faster

machine is used by selecting a VM with lower Expected CPU Gain (ECG). When the

file size is the highest, however, the data transfer cost is remained high. The task will

be translated to a faster virtual machine (VM), and the Expected Data Gain (EDG)

will be determined using Equation 4.9. Finally, using Equation 4.10, the task's Gain

Cost (GC) will be determined. The scheduling model computes the optimal solution

to determine the suitable scheduling decision after updating the state of all VMs.

(4.8)

(4.9)

(4.10)

4.3.4 Case Study

To demonstrate the mechanism of our proposed DBS model, we use Tables 4.1 and

4.2 to provide task attributes and virtual machine configurations, respectively:

164

Table 4.1: Task attributes

Task

_ID

Length Input file size Output file size TB TD Constraint

type

1 1000 1200 300 3 1 D & B

2 2000 2750 100 3 - B

3 5000 1500 200 - 10 D

4 4000 2000 500 4 - B

Table 4.2: VM configurations

VM_Id VM_MIPS VM-

BW

VM-RM VM-

ST

Cost-

MIPS

Cost-

BW

Cost-

RM

Cost-

ST

1 500 60 113 250 0.01 0.001 0.2 0.02

2 2000 80 210 250 0.04 0.001 0.3 0.02

3 1000 40 170 350 0.02 0.001 0.1 0.04

The three types of constraint types used in our proposed DBS model, as shown in

Equation 4.1, are used to detect the constraint type of each task. The tasks are divided

among the available VMs based on the identified constraint type; when the constraint

type is D & B, the expected deadline and estimated gain cost are calculated to see

which VMs meet the two constraints: deadline and budget. If the constraint type is D,

the expected deadline is checked to see if each VM has met the deadline constraint; if

not, the expected gain cost is calculated to find the VM that has met the budget

constraint; and each VM is then classified into cluster one, cluster two, and cluster

three, as shown in Table 4.3.

165

Table 4.3 Expected deadline and gain cost of each task into each VM

Task _ID Expected deadline Gain Cost (GC) Cluster of VM

VM1 VM2 VM3 VM1 VM2 VM3 VM1 VM2 VM3

1 2 0.5 1 2.815 2.298 1.107 -- C1 C1

2 --- --- --- 5.355 4.373 2.036 -- -- C3

3 10 2.5 5 --- --- --- C2 C2 C2

4 --- --- --- 4.741 3.881 1.897 -- C2 C3

The expected deadline is not calculated in tasks 2 and 4 because the user has already

defined the constraint as budget; also, the gain cost is not calculated in task 3 because

the user has already defined the constraint as the deadline.

The methods for obtaining the values in Table 4.3 are as follows:

The deadline and budget constraint types are used in task 1. For task 1, the projected

deadline and gain cost are computed as follows:

 Task 1 in VM1:

Expected deadline of task 1= length of task / MIPS of VM1= 1000/ 500 = 2

Gain CPU Cost of task 1= length of task / MIPS of VM1 * cost of CPU= 1000 / 500 *

0.01= 0.02

Gain Bandwidth Cost of task 1= Fit + Fot / Bandwidth * cost of Bandwidth= 1200 +

300 / 60 * 0.001= 0.025

Gain Memory Cost of task 1= Fit + Fot / Memory * cost of Memory= 1200 + 300 /

113 * 0.2= 2.65

166

Gain Storage Cost of task 1 = Fit + Fot / Storage * cost of Storage= 1200 + 300 / 250

* 0.02= 0.12

EGC of task 1 in VM1 = 0.02 + 0.025 + 2.65 + 0.12= 2.815

Expected deadline of task 1 in VM1> TD of task 1 2 > 1.

Expected GC of task 1 in VM1 < TB of task 1 2.815 < 3.

As a result, VM1 is tagged as 0 because the Expected deadline = 2 (beyond the

constraint defined) and Expected GC=2.815. The constraints are not met by VM1.

 Task 1 in VM2:

Expected deadline of task 1 = length of task / MIPS of VM2= 1000/ 2000=0.5

Gain CPU Cost of task 1= length of task / MIPS of VM2 * cost of CPU = 1000 / 2000

* 0.04= 0.02

Gain Bandwidth Cost of task 1 = Fit + Fot / Bandwidth * cost of Bandwidth= 1200 +

300 / 80 * 0.001= 0.018

Gain Memory Cost of task 1= Fit+ Fot / Memory * cost of Memory= 1200 + 300 /

210 * 0.3= 2.14

Gain Storage Cost of task 1 = Fit + Fot / Storage * cost of Storage= 1200 + 300 / 250

* 0.02= 0.12

EGC of task 1 in VM2 = 0.02 + 0.018 + 2.14 + 0.12= 2.298

supposed deadline of task 1 in VM2 < TD of task 1 → 0.5 < 1

Expected GC of task 1 in VM2 < TB of task 1 → 2.298 < 3.

As a result, VM2 is designated as meeting both conditions, with an expected deadline

of 0.5 and an expected GC of 2.298.

 Task 1 in VM3:

Expected deadline of task 1= length of task / MIPS of VM3= 1000/ 1000= 1

167

Expected GC of task 1= length of task / MIPS of VM3 * cost of CPU= 1000 / 1000 *

0.02= 0.02

Gain Bandwidth Cost of task 1= Fit + Fot / Bandwidth * cost of Bandwidth= 1200 +

300 / 40 * 0.001= 0.037

Gain Memory Cost of task 1= Fit + Fot / Memory * cost of Memory= 1200 + 300 /

170 * 0.1= 0.88

Gain Storage Cost of task 1= Fit + Fot / Storage * cost of Storage= 1200 + 300 / 350 *

0.04= 0.17

EGC of task 1 in VM3 = 0.02 + 0.037 + 0.88 + 0.17= 1.107

Expected deadline of task 1 in VM3= TD of task 1 → 1 = 1.

Expected GC of task 1 in VM3 < TB of task 1 → 1.107 < 3.

As a result, VM3 is tagged as 1 with an Expected deadline of 1 and an Expected GC

of 1.107. VM3 satisfies both requirements.

Because the constraint type for task 2 is budget, you just need to calculate the gain

cost as follows:

 Task 2 in VM1:

Gain CPU Cost of task 2= length of task / MIPS of VM1 * cost of CPU= 2000 / 500 *

0.01= 0.04

Gain Bandwidth Cost of task 2= Fit + Fot / Bandwidth * cost of Bandwidth= 2750 +

100 / 60 * 0.001= 0.047

Gain Memory Cost of task 2= Fit + Fot / Memory * cost of Memory= 2750 + 100 /

113 * 0.2= 5.04

Gain Storage Cost of task 2= Fit + Fot / Storage * cost of Storage= 2750 + 100/250*

0.02= 0.228

EGC of task 2 in VM1 = 0.04 + 0.047 + 5.04 + 0.228 = 5.355

168

VM1 is designated =0 because expected GC of task 2 in VM1 > TB of task 2→5.355

> 3.

 Task 2 in VM2:

Gain CPU Cost of task 2= length of task / MIPS of VM2 * cost of CPU= 2000 / 2000

* 0.04= 0.04

Gain Bandwidth Cost of task 2= Fit + Fot / Bandwidth * cost of Bandwidth= 2750 +

100 / 80 * 0.001= 0.035

Gain Memory Cost of task 2= Fit + Fot / Memory * cost of Memory= 2750 + 100 /

210* 0.3= 4.07

Gain Storage Cost of task 2= Fit + Fot / Storage * cost of Storage= 2750 + 100 / 250 *

0.02= 0.228

EGC of task 2 in VM2 = 0.04 + 0.035 + 4.07 + 0.228 = 4.373

VM2 is designated =0 because expected GC of task 2 in VM2 > TB of task 2 → 4.373

> 3.

 Task 2 in VM3:

Gain CPU Cost of task 2= length of task / MIPS of VM3 * cost of CPU= 2000 / 1000

* 0.02= 0.04

Gain Bandwidth Cost of task 2= Fit + Fot / Bandwidth * cost of Bandwidth= 2750 +

100 / 40 * 0.001= 0.071

Gain Memory Cost of task 2= Fit + Fot / Memory * cost of Memory= 2750 + 100 /

170 * 0.1= 1.6

Gain Storage Cost of task 2= Fit + Fot / Storage * cost of Storage= 2750 + 100 / 350 *

0.04= 0.325

EGC of task 2 in VM3 = 0.04 + 0.071 + 1.6 + 0.325 = 2.036

Expected GC of task 2 in VM3 < TB of task 2 → 2.036 < 3 means VM3 is labeled =1.

169

Because the constraint type for task 3 is deadline, you must compute the projected

deadline as follows:

 Task 3 in VM1:

Expected deadline of task 3= length of task / MIPS of VM1= 5000/ 500 = 10

Expected deadline of task 3 in VM1 = TD of task 3→10 = 10 means VM1 is labeled

=1.

 Task 3 in VM2:

Expected deadline of task 3= length of task / MIPS of VM1= 5000/ 2000 = 2.5

Task 3's expected deadline in VM2 equals TD of task 3→2.5, which indicates VM2 is

designated =1.

 Task 3 in VM3:

Expected deadline of task 3= length of task / MIPS of VM1= 5000/ 1000 = 5

Expected deadline of task 3 in VM3 < TD of task 3→5 < 10 means VM3 is labeled

=1.

Because the constraint type in task 4 is budget, you must calculate the gain cost as

follows:

 Task 4 in VM1:

Gain CPU Cost of task 4= length of task / MIPS of VM1 * cost of CPU= 4000 / 500 *

0.01= 0.08

Gain Bandwidth Cost of task 4= Fit + Fot / Bandwidth * cost of Bandwidth=

2000+500 / 60 * 0.001= 0.041

Gain Memory Cost of task 4= Fit + Fot / Memory * cost of Memory= 2000 + 500 /

113 * 0.2= 4.42

Gain Storage Cost of task 4= Fit + Fot / Storage * cost of Storage= 2000 + 500 / 250 *

0.02= 0.2

170

EGC of task 4 in VM1 = 0.08 + 0.041 + 4.42 + 0.2 = 4.741

Expected GC of task 4 in VM1 > TB of task 4 → 4.741 > 4 means VM1 is labeled =0.

 Task 4 in VM2:

Gain CPU Cost of task 4= length of task / MIPS of VM2 * cost of CPU=4000/ 2000 *

0.04= 0.08

Gain Bandwidth Cost of task 4= Fit + Fot / Bandwidth * cost of Bandwidth=

2000+500 / 80 * 0.001= 0.031

Gain Memory Cost of task 4= Fit + Fot / Memory * cost of Memory= 2000 + 500 /

210 * 0.3= 3.57

Gain Storage Cost of task 4= Fit + Fot / Storage * cost of Storage= 2000+500 / 250 *

0.02= 0.2

EGC of task 4 in VM2 = 0.08 + 0.031 + 3.57 + 0.2 = 3.881

TB of task 4 3.881 4 implies VM2 is labelled =1. Expected GC of task 4 in VM2

3.881 4 means VM2 is labelled =1.

 Task 4 in VM3:

Gain CPU Cost of task 4= length of task / MIPS of VM3*cost of CPU= 4000 / 1000*

0.02= 0.08

Gain Bandwidth Cost of task 4= Fit + Fot / Bandwidth * cost of Bandwidth=

2000+500 / 40 * 0.001= 0.062

Gain Memory Cost of task 4= Fit + Fot / Memory * cost of Memory= 2000 + 500 /

170 * 0.1= 1.47

Gain Storage Cost of task 4= Fit + Fot / Storage * cost of Storage= 2000 + 500 / 350 *

0.04= 0.285

EGC of task 4 in VM3 = 0.08 + 0.062 + 1.47 + 0.285 = 1.897

171

VM3 is tagged =1 because the expected GC of task 4 in VM3 is 1.897 and the TB of

task 4 is 1.897.

Following that, as indicated in Table 4.4, our suggested DBS model will check and

compare the length and file size for each task.

Table 4.4: Task constraint type and comparison of length and file size for each

task

Task_ ID Constraint

type

Len > Fit Len < Fit Procedure

1 D & B √ EDT

2 B √ EDG

3 D √ ECT

4 B √ ECG

The procedure for obtaining the table values in Table 4.4 is as follows:

The time and cost constraint is the first sort of constraint encountered in this task:

 The EDT was computed by multiplying the Len of task 1 by the input file of

task 1 → 1000 and 1200.

The cost constraint is the second sort of restriction in this task:

 The EDG was determined using the Len of task 2 input file of task 2→ 2000

2750.

Time is the third type of restriction in Task 3:

As a result, the ECT was calculated using the following formula:

 Len of task 3 > input file of task 3 → 5000 > 1500

172

The cost constraint is the fourth type of constraint:

As a result, the ECG was calculated using the following formula: Len of task 4 >

input file of task 4 →4000 > 2000.

Each task should be assigned to a VM that provides efficient performance, after which

we calculate the EDT, EDG, ECT, and ECG using Equations 4.6, 4.9, 4.3, and 4.8 as

shown in Table 4.5:

Table 4.5: Performance of each VM

Task_ID Procedure VM1 VM2 VM3

1 EDT Not meet TD & TB 18.75 37.5

2 EDG Not meet TB Not meet TB 0.07

3 ECT 10 3 5

4 ECG Not meet TB 0.08 0.08

We calculated all of the procedures for all of the tasks on the VMs using the results

from Table 4.4. The following are the computations for the Table 4.5 results:

o Task 1:

Because task 1 in the first virtual machine failed to meet the task deadline and budget

limits, we did not calculate the expected deadline and expected gain cost in VM1

using Table 4.3's values.

Task 1 EDT VM2 = DT of pervious task + DT of task = 0 + 1500 / 80 = 18.75

Task 1 EDT VM3 = DT of pervious task + DT of task = 0 + 1500 / 40 = 37.5

173

o Task 2:

We did not compute the predicted gain cost in VM1 and VM2 based on the data from

Table 4.3 since task 2 in the first and second virtual machines did not match the task

budget.

Task 2 EDG VM3=Fit + Fot / Bandwidth * cost Bandwidth=2850/40*0.001=0.07

o Task 3:

Task 3 ECT VM1=Ex of pervious task +EX of current task= 5000 / 500=10+0=10

Task 3 ECT VM2 = Ex of pervious task (task 1) + EX of current task= (1000/2000) +

(5000/2000)= 0.5 + 2.5= 3

Task 3 ECT VM3 = Ex of pervious task (task 2) + EX of current task= (2000/1000) +

(5000 / 1000)= 2+5= 7

o Task 4:

We do not calculate the predicted gain cost in VM1 based on the data from Table 4.3

since task 4 in the first virtual machine did not fulfill the task budget.

Task 4 ECG VM2 =length task / CPU * cost CPU = 4000 / 2000 * 0.04 = 0.08

Task 4 ECG VM3 =length task / CPU * cost CPU = 4000 / 1000 * 0.02 = 0.08

 Task 1 will be assigned to VM2, which has a lower EDT.

 Task 2 will be assigned to VM3 if it matches the task's requirements.

 Task 3 will be assigned to VM2, which will produce less ECT.

 Task 4 will be assigned to VM2, which produces less ECG than the first.

Deadline Procedures Model for Budget Scheduling

The DBS model has the following steps:

Input List of unmapped tasks which have user-defined constraints (deadline,

174

budget)

Output Minimizing the makespan and expenditure cost for these tasks

1 For each task check the user-defined constraint where:

If a user-defined constraint is TD & TB:

a. Create cluster one from a set of VMs which meet the two constraints.

b. Check the task requirements

For each VM in cluster one

If Len > Fit then

Calculate ECT

else

Calculate EDT

End for

c. Assign the task to VM that returns less ECT

Else, if a user-defined constraint is TB:

Create cluster three of VMs which meet the budget constraints.

Check the task requirements

For each VM in cluster three

If Len > Fit then

Calculate ECG

else

Calculate EDG

175

End for

Assign the task to fastest VM.

End for

2. Computation performance

Calculate the metrics:

o Average makespan based on the Equation 4.13.

o Total cost based on the Equation 4.14.

o Number of violations based on the Equation 4.15.

o Profit of provider based on the Equation 4.16.

o Resource utilization based on the Equation 4.17.

o Improvement of makespan ratio based on the Equation 4.18.

o Improvement of cost ratio based on the Equation 4.19.

4.4 PERFORMANCE METRICS

The performance indicators used to evaluate the suggested DBS model are presented

in this section. The following measures are used in task scheduling to assess the

algorithms' efficiency:

 Makespan: In terms of the user, the amount of time it takes to accomplish the

tasks must be lowered. As specified in Equation 4.11, the makespan is the time

it takes for all jobs conducted by a single VM to complete.

 (4.11)

176

In Equation 4.12, where n is the total number of tasks and 1 ≤ j ≤ m, A[i, j], a,

Boolean variable can be defined as follows:

(4.12)

The average makespan is then determined for all VMs, as shown in Equation 4.13.

(4.13)

 Cost of Gain in Total: Another performance indicator utilised to evaluate our

suggested DBS model is cost, which is defined by an algorithm's capacity to

execute tasks within a given budget limit, and is calculated by comparing the

task's cost to the budget. Equation 4.14 is used to compute the total gain cost.

(4.14)

 NoV (Number of Violations): The total number of tasks that miss their

deadline is the number of violations. In Equation 4.15, the NoV is defined.

(4.15)

 Profit for the provider: Profit, which is computed by subtracting the actual

implemented cost of the task from the budget of the completed task, is the

most important indicator for service providers. Equation 4.16 will be used to

compute the profit.

(4.16)

 Resource Utilization on the Average: Another important measure that the

177

service provider is concerned about is resource consumption. In comparison to

existing algorithms where resource utilization should be maximized, our

proposed DBS model was evaluated by efficient resource use by achieving the

users' limitations. Equation 4.17 defines the average resource consumption.

(4.17)

 Improvement of Makespan Ratio: Because makespan is such an important

metric for our model's performance, we need to calculate the improvement

ratio of this metric. Equation 4.18 is used to compute the improvement in the

makespan ratio.

(4.18)

where e is the number of experiments

 Cost Ratio Improvement: The cost ratio is a key parameter for evaluating

our DBS model's performance. As a result, we used Equation 4.19 to compute

the cost ratio improvement.

(4.19)

4.5 EXPERIMENTAL RESULTS AND ANALYSIS

4.5.1 Environment for Implementation

The DBS model experiments were implemented using the CloudSim toolkit

simulator. The CloudSim is distinguished by its ability to model behavior for cloud

system components such as data centers, processing elements, virtual machines, and

so on. Researchers and industry developers can focus on specific and essential system

design concerns without having to worry about infrastructure or cloud-based services.

178

Because of its flexibility and simplicity, the CloudSim toolkit is a widely used

simulator that runs on the Java programming language. The CloudSim's benefits

include the ability to create policies that connect tasks to VMs, allocate VMs for

hosting in data centers, scheduling VMs, and track energy use.

4.5.2 Experiments Configuration

The Table 4.6 clarifies the configuration for the tests:

Table 4.6: Configuration requirement for the experiments

Configurations Data center Server Virtual machine

Numbers 1 2 5, 7, 9, and 11

Core Quad-Core and Dual-Core 1 processing element

Memory (RAM) 16 GB 0.5 GB

Storage 1 TB 10 GB image size

Bandwidth 100 GB/s 1 GB/s

VM scheduling

algorithm

Time-Shared Time-Shared

Architecture X86 Architecture Xen

Operating system Linux

Virtual machine

monitor

Xen

Speed 10,000 MIPS 500, 1000, 2000 and

3000 MIPS

179

4.5.3 Dataset

The CloudSim allows you to model the task using a cloudlet, which is a programming

structure. The dataset in this section of the research is a cloudlet, and the cloudlet

represents a task in the CloudSim simulator. The number of instructions that must be

implemented is listed in the cloudlet. A cloudlet has the following characteristics:

1. Length.

2. Million Instructions (MI).

3. Input file size.

4. Output file size

There is also the option to expand and add more attributes such as deadlines and

budget limits. Tasks were developed and distributed as 250, 500, 750, and 1000 tasks

to analyze the results of our DBS model. Table 4.7 shows the results of the calculated

metrics (average makespan, total gain cost, number of infractions, provider profit, and

average resource utilization):

Table 4.7: Experiments conducted for tasks with different VMs of the DBS

model

Expts. No. of

VMs

No. of

tasks

Average

makespan

Total gain

cost

Number of

violations

Provider

profit

Average

resource

utilization

1 5 250 1883 576158 10 1686740 1827

2 7 500 2879 1200682 18 3337891 2927

3 9 750 3246 1770457 45 4975104 3174

4 11 1000 3659 2359776 45 6646103 3719

180

4.6 PERFORMANCE EVALUATION

We ran four tests to test the performance and efficiency of the proposed DBS model,

in which we used different numbers of VMs to host different numbers of jobs. The

following experiments were carried out:

1. 250 tasks with five VMs.

2. 500 tasks with seven VMs.

3. 750 tasks with nine VMs.

4. 1000 tasks with eleven VMs.

Comparing our suggested DBS model to state-of-the-art scheduling algorithms such

as Genetic (GA), Max-Min, Round Robin, and SJF algorithms demonstrates its

efficiency level. Each of these algorithms has a unique technique for allocating jobs to

available resources.

One of the main goals of this study is to evaluate the performance of our suggested

DBS model. Key performance measures are used to assess the efficacy of our model's

performance from both the users' and service providers' viewpoints. As a result, we

define makespan as the task of time it takes to accomplish all tasks as well as the

expense of doing so. The remaining budget and deadline metrics show if the

suggested DBS model is capable of completing the job within its restrictions.

Table 4.8 shows the results of testing with various numbers of tasks hosted on varying

numbers of VMs, comparing the average makespan of our proposed DBS model to

that of existing scheduling algorithms. The average makespan for each task conducted

on VM using the DBS model is less than the average makespan for tasks executed

using the other scheduling algorithms, as shown in the results.

181

Table 4.8: Average of makespan of DBS, GA, Max-Min, Round Robin and SJF

algorithms

Experiments Average makespan

No. of

tasks

No. of VMs DBS GA Max-Min Round Robin SJF

250 5 1883 2922 1926 3114 3052

500 7 2879 4909 3020 5015 4933

750 9 3246 5362 3402 5374 5383

1000 11 3659 6166 3922 6325 6284

As shown in Figure 4.4, our suggested DBS model is capable of running tasks

according to user satisfaction in a heterogeneous environment and minimizes the

average makespan in all trials when compared to other algorithms such as GA, Max-

Min, Round Robin, and SJF. By running the jobs (250, 500, 750, 1000) on VMs (5, 7,

9, 11), we can see that the SJF method has the longest average makespan, followed by

the Round Robin algorithm, the GA, and finally the Max-Min. Finally, the least

makespan is represented in the DBS model, which shows that the tasks' execution

time is as short as feasible given the deadline and budget limitations, maximizing the

DBS model's performance level.

182

Figure 4.4: Comparison of average makespan

Table 4.9 shows how the proposed DBS model achieves its goal of improving overall

gain costs by utilizing resources to perform activities at lower costs than state-of-the-

art scheduling algorithms.

Table 4.9: Total gain cost of DBS, GA, Max-Min, Round Robin and SJF

algorithms

Experiments Total gain cost

No. of

tasks

No. of

VMs

DBS GA Max-Min Round Robin SJF

250 5 576158 848033 660214 859654 921143

500 7 1200682 1910206 1418749 1893837 1894094

750 9 1770457 2728512 2050902 3103795 2878976

1000 11 2359776 3744648 2797295 3811976 3811306

183

The lowest gain cost was for tasks done with the DBS model, whereas the highest cost

was for activities executed with the SJF method, as shown in Figure 4.5.

Figure 4.5: Total gain cost

Another indicator for evaluating the algorithm's performance is the number of

violations. When the method obtains a lower number of violations, it implies that the

algorithm is efficient. This is accomplished in our suggested DBS model, which

achieves a lower number of violated tasks than the other existing algorithms shown in

Table 4.10.

Table 4.10: Number of violations of DBS, GA, Max-Min, Round Robin and SJF

algorithms

Experiments Number of violations

No. of tasks No. of

VMs

DBS GA Max-Min Round Robin SJF

250 5 10 29 19 28 28

184

500 7 18 63 42 58 52

750 9 45 96 59 84 97

1000 11 45 124 70 129 124

The amount of violations in our suggested DBS model is shown in Figure 4.6. When

compared to GA, Max-Min, Round Robin, and SJF algorithms, the DBS model has

less task violations due to deadline and budget limitations.

Figure 4.6: Number of violations

When comparing the provider profit for our proposed DBS model to existing

scheduling algorithms, Table 4.11 summarizes the trials done on varied numbers of

tasks hosted on varying numbers of VMs. The provider profit in the DBS model is

always higher than the provider profit for the same tasks completed in other

scheduling algorithms, as shown by the findings.

185

Table 4.11: Provider profit of DBS, GA, Max-Min, Round Robin and SJF

algorithms

Experiments Provider profit

No. of tasks No. of VMs DBS GA Max-Min Round

Robin

SJF

250 5 1686740 1414874 1602697 1403249 1341766

500 7 3337891 2628381 3119848 2644751 2644497

750 9 4975104 4017073 4694679 3641805 3866607

1000 11 6646103 5261244 6208620 5193870 5194580

Figure 4.7 graphically depicts all of the differences between state-of-the-art

scheduling methods and the proposed DBS model, demonstrating that the DBS model

achieves a higher provider profit while executing tasks on VMs than other algorithms.

Figure 4.7: Provider profit

The task scheduling method should maximize resource usage to improve the

performance of the cloud computing system. When compared to other algorithms, the

results of the proposed DBS model in Table 4.12 show that our model is capable of

optimal resource use based on deadline and budget limitations.

186

Table 4.12: Resource utilization of DBS, GA, Max-Min, Round Robin and SJF

algorithms

Experiments Resource utilization

No. of tasks No. of VMs DBS GA Max-Min Round

Robin

SJF

250 5 1827 1698 1486 1705 1700

500 7 2927 2653 2250 2686 2714

750 9 3174 2946 2591 3019 2934

1000 11 3719 3452 3090 3403 3439

In comparison to GA, Max-Min, Round Robin, and SJF algorithms, Figure 4.8 shows

that the suggested DBS model has the highest resource usage for all jobs based on

user satisfaction.

Figure 4.8: Comparison of resource utilization

187

Table 4.13 shows that our suggested DBS model outperforms GA, Max-Min, Round

Robin, and SJF algorithms by 39 percent, 5 percent, 41 percent, and 41 percent,

respectively, in terms of makespan ratio.

Table 4.13: Improvement in makespan ratio for DBS compared with GA, Max-

Min, Round Robin, and SJF algorithms

Improvement in makespan ratio

Experiments

DBS GA Max-Min Round Robin SJF

1883 2922 1926 3114 3052

2879 4909 3020 5015 4933

3246 5362 3402 5374 5383

3659 6166 3922 6325 6284

Sum of

Expts.

11667 19359 12270 19828 19652

Improvement DBS vs

algorithm

39% 5% 41% 41%

Sum of all makespan

ratio

126

Average 31.5 %

Table 4.14 shows that our suggested DBS model outperforms GA, Max-Min, Round

Robin, and SJF algorithms by 36 percent, 14 percent, 38 percent, and 38 percent,

respectively, in terms of cost ratio.

188

Table 4.14: Improvement of cost ratio for DBS compared with GA, Max-Min,

Round Robin, and SJF algorithms

Improvement of cost ratio

Experiments

DBS GA Max-Min Round Robin SJF

576158 848033 660214 859654 921143

1200682 1910206 1418749 1893837 1894094

1770457 2728512 2050902 3103795 2878976

2359776 3744648 2797295 3811976 3811306

Sum of Expts. 5907073 9231399 6927160 9669262 9505519

Improvement DBS vs other

algorithm

36% 14% 38% 38%

Sum of all cost ratio 126

Average 31.5 %

To perform statistical analysis on our suggested DBS model, we employed the T-test.

The T-test is a useful function for calculating the mean of a DBS model and

demonstrating the use of normality. The T-test results of the DBS model vs other

algorithms such as GA, Max-Min, Round Robin, and SJF are tabulated in Table 4.15.

Table 4.15: T-test of DBS model compared to GA, Max-Min, Round Robin, and

SJF algorithms

Metrics DBS model vs other algorithms

GA Max-Min Round Robin SJF

Average makespan 0.02 0.3 0.01 0.02

Total gain cost 0.1 0.3 0.1 0.1

189

Number of violations 0.03 0.1 0.04 0.04

Provider profit 0.2 0.4 0.2 0.2

Resource utilization 0.3 0.1 0.3 0.3

We've suggested a novel model in which the user specifies two constraints: deadline

and budget:

 Tasks will be assigned to relevant VMs based on the constraints set by the

user.

 User satisfaction is achieved by minimizing the process's completion time and

cost by performing the tasks on VMs and adhering to the QoS requirements.

 Maximizing profit income and resource usage leads to provider satisfaction.

4.7 AUTO-SCALING TO MINIMIZE COST AND MEET

APPLICATION DEADLINES IN CLOUD WORKFLOWS

The cloud application accepts jobs supplied by service customers on a continuous

basis, and the workload is constantly changing. As a result, the auto-scaling

mechanism must continue to monitor dynamic workload information as well as the

progress of submitted jobs, and then respond quickly in terms of scaling and

scheduling. This is a continuous process rather than a one-time event. As a result, the

method employs a monitor-control loop. A scaling decision and a scheduling decision

are made every time inside the loop based on the most recent updated information.

Because cloud VMs are now invoiced by instance hours (rather than by the precise

amount of time consumed), scaling and scheduling decisions should avoid wasting

partial instance hours. Furthermore, unlike in a fixed-size resource environment, the

auto-scaling method can acquire a VM instance and assign a task to it as long as there

is unhandled workload. The scaling and scheduling decisions are made step by step in

this dissertation, as indicated in the remainder of this section. Based on the workload,

190

it first calculates the number of VMs required for each VM type. It then determines if

two or more existing virtual machines can be merged. Finally, it uses the Earliest

Deadline First (EDF) algorithm to schedule jobs on the active VMs.

4.7.1 Preprocessing

Step 1- The auto-scaling system pre-analyzes the job classes and determines

deadlines for each sub task using the following strategies to reduce runtime overhead

and accelerate dynamic scaling plan development. Task bundling is the first step.

Task bundling combines tasks that prefer the same instance type into a single task and

requires them to run on the same instance. As a result, it can save data transfers by

relying on locally stored temporary findings. One example of task bundling is shown

in Figure 4.9. Because Task 6 and Task 8 are most cost-effective on computers with

several CPUs, the auto-scaling system will treat them as a single task, Task 6'. Only

jobs that prefer the same sort of instance and have one-to-one task dependencies are

grouped together in this chapter.

Figure 4.9: Task bundling

Step 2 – There is a deadline for this task. Jobs, not tasks, are related with deadlines.

When a job is submitted, separate subtasks are given their own deadlines. If each task

is completed by the deadline allocated to it, the job will be completed on deadline.

Introduces and describes the concept of deadline assignment in a DAG. The shortest

job makespan can be calculated by assuming that all tasks do not wait for resources,

and then extending the task execution time by the ratio of deadline to job makespan.

They allocate deadlines according to the quickest task execution time, and then look

for the cheapest provider for each task. Individual deadlines are set in this dissertation

based on task processing time on the most cost-effective equipment. The reason for

191

this is that the price of a cloud VM is not always proportional to its processing

capacity, and a more expensive machine does not necessarily guarantee a speedier

computer. If the initial deadline assignment fails to complete the project on time, this

dissertation employs a heuristic proposed to find a feasible plan. The goal is to

compute the job makespan for the initial deadline assignment, and then halt the

process if the project can be completed inside the deadline. If not, it tries to schedule

each task on a faster but more expensive machine and calculate the new job makespan

to see which task upgrade cuts the makespan the most for the same money. In other

words, it assigns a faster machine to the task with the higher cost-efficiency rank

(equation 4.20). It repeats this process until the project is completed within the

specified deadline frame. The auto-scaling technique breaks the task precedence

limitations and treats each task independently throughout the deadline assignment

process. One example of a deadline assignment is shown in Figure 4.10.

(4.20)

Figure 4.10: Deadline assignment

Other strategies can be utilized at this point to further customize the approach to the

cloud features. Unlike in a utility computing environment, the scheduling algorithm

can reserve a time slot and place the task on the service as long as services are

available. Although there are unlimited resources in the cloud and a service provider

can purchase an instance at any time, it is not always prudent to do so every time a

task needs to be completed, especially if the task will use a major chunk of a

192

purchased instance hour. As a result, limiting task concurrency is a cost-effective

strategy to enhance instance usage. This concept is depicted in Figure 4.11. If tasks

T3, T4, and T5 are all less than one hour, three instance hours can be saved by

processing them sequentially rather than in simultaneously. It combines parallel jobs

using breadth-first search, and the search terminates when a task has to change its

initially scheduled machine type to finish before the deadline. It stops looking because

this method is exclusively for job-level optimization and should have no bearing on

global scheduling decisions. Algorithm 1 depicts the total deadline assignment

algorithm.

Figure 4.11: Parallelism reduction

193

4.7.2 Dynamic Scaling-consolidation-scheduling

The most up-to-date information is used to make dynamic scheduling and scaling

decisions inside each monitor-control loop. The auto-scaling mechanism uses the

earliest-deadline-first technique to recalculate task deadlines in order to determine the

instance number, consolidate incomplete instance hours, and schedule jobs (EDF).

Step 3 - Scaling. This dissertation introduces a metric called load vector to determine

the number of virtual machines. Load Vector (definition 7) Each task has its own load

vector (LV). Following the deadline assignment, each task is assigned an execution

interval [T0, T1], and the task execution time on V Mv is tv. As a result, the task's

load vector LVv is defined as [tv/(T1 T0)], with T0 being the starting point and T1

being the end point. The vector denotes the number of machines required to complete

the task on V Mv within the time interval. If the ratio is bigger than 1, the task cannot

be completed in time since it cannot be further divided and executed in parallel.

Assume, as shown in figure 4.12, that the execution interval for task T1 is between

3:00 and 4:00 p.m., and that it will take 15 minutes to complete on V M1. It signifies

that the task must be completed between 3:00 and 4:00 p.m. on V M1. Another task,

T2, must be completed between 3:15 and 3:45 p.m. and takes 15 minutes on V M1. In

all, the auto-scaling system can process both T1 and T2 on a single instance. When

defining the load vector, the finest granularity is 1 minute.

Figure 4.12: Load vector

The auto-scaling mechanism calculates and adds the load vectors for each task. Each

VM type has its own load vector, and each task can only add to the load vector of the

scheduled machine type. All tasks will be completed within the allotted execution

interval if the auto-scaling system can ensure that the number of current machines is

always larger than or equal to the load vector at any moment. Because cloud VMs

may take some time to boot up, task load vectors are generated between the intervals

[T0 + lagv,, T1] rather than [T0, T1] for scaling-up scenarios. The load vector is also

194

used to make scaling-down decisions. Every instance's acquisition time is known to

the auto-scaling algorithm. When the number of instances exceeds the load vector and

one instance is approaching full hour operation, it might be shut down. Another aspect

that may influence the decision to shut down an instance is VM churn. If the instance

acquisition lag cannot be precisely calculated, too many VM acquisitions/releases will

damage the auto-scaling mechanism's performance. In the assessment section, the

impacts of erroneous parameter estimation are shown. Note that deadline assignments

must be adjusted on a regular basis because certain tasks may be completed before

their initial deadlines, and reassignment may allow later jobs to execute on less

expensive machines.

Consolidation of instances is the fourth step. If all jobs can be completed on the most

cost-effective instances and all instances are completely utilized, that is ideal. When

considering the arrival timings and execution times of the jobs, it is not always

possible to ensure that no partial instance hours are lost. Consolidating partial instance

hours can assist customers lower overall cloud costs, thus it's often necessary to

conduct jobs on non-cost-effective machines to consolidate partial instance hours.

Instance consolidation is the term for this procedure. This is seen in Figure 4.13. T11

and T12 were initially planned on a high-CPU and a normal CPU instance,

respectively. Because both jobs only require a fraction of an instance hour and no

other processes are using the instances at the same time, consolidating the two tasks

on the same standard machine and saving one high-CPU instance hour is a prudent

scheduling option (although T11 runs slower and costs more on a standard machine).

A "consolidated task" must, of course, be completed by the original deadline.

Algorithm 2 describes the procedure.

Figure 4.13: Instance consolidation

195

Step 5 - Scheduling that is flexible. After identifying the number of instances for each

VM type, the auto-scaling system schedules tasks on each VM type using the Earliest

Deadline First (EDF) algorithm. Each task is assigned to a VM type when the

deadline is set and the instances are consolidated. For each VM type, tasks are

classified according to their deadlines, and the task with the earliest deadline is

scheduled when an instance becomes available. The task facing deadline misses can

be detected in time using dynamic scaling, and the auto-scaling system can quickly

acquire instances to complete the task. In other words, dynamic scaling assures that

the load vector for each instance type is always less than 1 (equation 4.21). In such

instances, EDF is known to be the best scheduling approach. As a result, all of the

tasks, as well as the entire workflow project, will be completed ahead of schedule.

The overall auto-scaling solution is described in Algorithm 3.

 (4.21)

196

4.8 EVALUATION

The provided auto-scaling technique is evaluated using three types of applications and

four workload patterns in this dissertation. Simulating the input parameters and

locating the key factors in the auto-scaling mechanism aids in controlling the input

parameters and locating the key factors in the auto-scaling mechanism. It also aids in

the analysis of the relationship between the performance of the mechanism and the

budget restrictions. It also reduces the cost of evaluation by speeding up the

procedure. The first part of this dissertation analyses two baseline techniques in terms

of cost and instance utilization. It then considers the impact of workload volume and

the mechanism's capacity to deal with erroneous input parameters (e.g. estimated task

running time and the instance acquisition lag). Finally, it calculates the overhead of

the mechanism.

197

4.8.1 Application, Workload, and Virtual Machine

Pipeline, Parallel, and Hybrid are the three types of representative applications.

Pipeline applications are simple multi-stage applications in which tasks must be

processed one at a time while adhering to strict precedence rules. Because there are

few precedence constraints, parallel programs have a large degree of potential

concurrency. Hybrid applications combine the benefits of both pipeline and parallel

applications. Hybrid programs might have a lot of task dependencies. The pipeline

application, parallel application, and hybrid application used in the evaluation are

depicted in Figure 4.14 is where they came from.

Figure 4.14: Application models

Stable, Growing, Cycle/Bursting, and On-and-Off are the four typical workload

patterns in the cloud (figure 4.15). Each workload is an example of a common

application or scenario. The Growing Workload pattern, for example, depicts a

scenario in which a story or video gets famous overnight and attracts an increasing

number of users to press the button. The workload is rapidly increasing. The workload

pattern of an online store is represented by the Cyclic/Bursting workload. The

daytime has a higher burden than the nighttime, and holiday shopping seasons may

see more traffic. The On-and-Off workload pattern represents work that is processed

on a regular or irregular basis, such as batch processing and data analysis in a research

department that is done daily or weekly. These programs have a short active duration,

after which the service can be turned off or kept at the lowest level of service. The

task execution time on different types of VMs is randomly generated in the evaluation

(the task execution time and distribution are produced based on), and 200

198

permutations for each workload pattern are generated. All of the test results showed a

similar level of performance. As a result, there is no information about the task's

completion time provided here. This dissertation mimics a 72-hour timeframe for each

test with four different deadlines - 0.5-hour, 1 hour, 1.5 hour, and 2 hour - for each

application and workload pattern. During the observation time, the total cost is

recorded.

Figure 4.15: Workload patterns

This dissertation replicates four types of VMs: Micro, Standard, high-CPU, and high-

I/O instances, in addition to the three application models and four workload patterns.

These VMs' costs (table 4.16) are taken from Amazon EC2.

Table 4.16: VM types and prices

VM Type Price

Micro $0.02/hour

Standard $0.085/hour

High-CPU $0.68/hour

High-I/O $0.50/hour

199

4.8.2 Cost and Resource Utilization

It is difficult to construct a benchmark against which this dissertation may be

measured. Previous research has focused on either a batch-queue model (which

ignores task relationships) or a single workflow instance (not a stream of submitted

jobs). Furthermore, cost-effectiveness (deadline and cost) is not always a top priority.

The rule-based trigger system is a good starting point. However, determining the

scaling indicators and thresholds using this dissertation is really difficult. The trigger

mechanism, as discussed in Chapter 2, does not truly solve the performance-resource

mapping dilemma, and any rules chosen in this dissertation run the risk of creating an

"unfair game."

As a result, the baseline for this dissertation is to extend two current techniques,

Greedy and GAIN. This section compares the Scaling Consolidation-Scheduling

(SCS) strategy from the preceding part with these two alternatives. These two

methodologies were created for the cost-conscious execution of a single workflow in

a utility computing environment. This dissertation expands on these two ideas to

support continuous workflow submissions and to make them aware of the cloud's

instance hour charging model. To begin, they treat each work individually using their

original algorithms. They set aside instances for each job and add more when the

number of active instances becomes insufficient. Second, acquired instances can only

be released once they have reached full hour operation and no longer have any duties

that require them. As a result, all job requests are fulfilled on time, and the number of

unused partial instance hours is decreased. Note that the original GAIN method

begins with the lowest option and improves iteratively based on cost-efficiency rank

until the budget cap is achieved. The break condition is changed in this dissertation

such that the predicted job completion time is shorter than the deadline. The Greedy

algorithm always tries to discover the cheapest instance first, out of all the live

instances. If there aren't enough instances, it chooses the cheapest one from among the

possible instance kinds. Figures 4.16, 4.17, and 4.18 demonstrate the results of the

tests with various workload patterns. This dissertation displays the overall running

cost and average instance utilization for each application model and deadline. It is

assumed that the task running duration and instance acquisition lag (6.5 minutes) can

be reliably approximated in all circumstances. As a result, SCS, Greedy, and GAIN

can all complete jobs ahead of schedule. When compared to the Greedy and GAIN

200

techniques, SCS incurs the least cost and has the highest instance utilization (greater

utilization indicates fewer idle instance hours), as demonstrated in the data. The cost

savings vary from 9.8% to 40.4 percent. Because all jobs are required to run on their

fastest computers to finish the project within the deadline, these three techniques tend

to perform similarly when the deadline is short.

To put it another way, all three systems provide extremely similar scheduling/scaling

plans, leaving little room for cost-cutting optimization. When the deadline is longer

(the "scheduling slack time"), SCS saves the most money, Greedy performs the

poorest, and GAIN performs somewhere in the middle Instead of evaluating cost-

efficiency for each task, the Greedy strategy always chooses the cheapest machine. In

this situation, running numerous jobs on the cheapest equipment really costs more

than running them on their preferred machines. As a result, the overall cost is

significant. This result demonstrates the necessity of selecting appropriate VM types

for various workloads. The GAIN strategy, on the other hand, always schedules tasks

at their most cost-effective times. In this way, it accomplishes cost optimization for

each work and saves more money than the Greedy technique, but it has a lower

instance utilization rate, implying that more partial instance hours are lost. Through

instance consolidation, the SCS strategy not only takes advantage of task-level cost-

efficiency, but also makes better use of incomplete instance hours. As a result, it saves

more money and has a higher instance utilization rate than the GAIN technique. The

Growing example has the highest utilization of the four workload patterns, since as

more and more jobs are submitted swiftly, all instances are loaded with tasks, and

partial instance hours grow fewer and fewer. In general, if the workload volume is big

enough, task-level cost-efficiency may outweigh overall cost. As a result, the Greedy

strategy is always defeated by the SCS and GAIN approaches. When the deadline is

longer, the cost-saving benefits become more apparent, because the Greedy strategy

will assign the majority of work to the cheapest machines, incurring higher costs than

shorter deadlines.

201

Figure 4.16: The performance for pipeline applications

4.8.3 Heavy Workload vs Light Workload

In extreme instances, such as a single workflow instance, the task volume can be quite

minimal. In such scenarios, the idea of assigning tasks to the most cost-effective

instances may not always save money, because instances are not always fully utilized,

and there may be a significant amount of unutilized instance hours. In other words,

the cost-effectiveness of individual tasks is outweighed by the advantage of instance

consolidation. When the workload volume is high enough to occupy all of the

instances, however, cost-effective task placement also implies global cost-

effectiveness. This is due to the fact that all of the jobs can be completed at a low cost,

and there are relatively few idle instances. The evaluation results of the pipeline

application are shown in this dissertation to demonstrate this argument.

202

Figure 4.17: The performance for parallel applications

Figure 4.18: The performance for hybrid applications

Using a one-hour deadline, with both low (X) and high (10X) workload volumes.

Figure 4.19 shows that when the workload volume is low, the Greedy technique

outperforms GAIN, but when the workload volume is high, it outperforms GAIN.

203

This is because it schedules as many tasks as possible on the cheapest machines,

which is an example of consolidation technique. In both low and high-volume

workload environments, the SCS technique outperforms the Greedy and GAIN

approaches. When the workload volume grows high, it takes advantage of task level

cost-efficiency and tackles low volume cases through instance consolidation. Because

parallel and hybrid applications perform similarly, their outcomes are not explored

here.

Figure 4.19: Heavy workload and light workload

4.8.4 Sensitivity to Inaccurate Parameters

The task execution time and the instance acquisition lag can be estimated in this

dissertation. Under these conditions, it is demonstrated that the dynamic scaling and

EDF scheduling technique can meet all deadlines. In practice, however, reliable task

execution time estimates are not always available, and the latency in instance

acquisition is out of the user's control. The ability of the auto-scaling system to handle

erroneous input parameters is assessed in this section. It first allows the real task

running time to be calculated with a 20% inaccuracy and then checks the pipeline

application's deadline non-miss rate with a 0.5-hour deadline (figure 4.20). The

dynamic scaling characteristic of SCS copes admirably with erroneous task runtime

estimation. It can accomplish more than 90% of jobs on time, which is significantly

better than the other two methods. In reality, because customers can set longer dates,

SCS can achieve a higher non-miss rate. Following that, this dissertation allows for a

20% inaccuracy in the expected instance acquisition lag and examines the pipeline

204

application's deadline non-miss rate using a one-hour deadline (figure 4.21). Because

the auto-scaling mechanism reacts to dynamic changes through instance acquisition,

which is the core function of the auto-scaling mechanism, the instance acquisition lag

can have a greater impact on the mechanism's performance than the task running time

estimation (deadline non-miss rate is below 80%). In the most severe scenarios, where

the acquired instance is never ready to handle user tasks, all jobs will be incomplete

and the deadline would be missed.

The user's performance requirement is another consideration to consider when

determining whether or not the instance acquisition lag is acceptable. When the

requirement is no deadline misses, a 1-minute or 10-minute lag makes no difference if

the user has an extremely tight deadline and wants to acquire additional instances

right away. Even if the instance acquisition latency is 30 minutes, if the deadline is 2

hours for a brief job, the job can still be completed on time. The Growing workload

pattern has the worst performance of all the workload patterns. This is due to the fact

that it gets more instances than the other test cases, and hence is more affected by

improper lag estimation. This test case demonstrates that the instance acquisition lag

has a significant impact on an auto-scaling mechanism's performance. To plan for

instance acquisitions ahead of time, workload prediction techniques are required. It's

also useful to reduce the number of operations required for instance acquisition and

release (for example, parallelism reduction).

Figure 4.20: Inaccurate task execution time

205

Figure 4.21: Inaccurate instance acquisition lag

4.8.5 Mechanism Overhead

Finally, the mechanism overhead is assessed in this dissertation. It ignores the

overhead of monitoring and updating runtime information, such as the number of

freshly submitted jobs and the status of running processes, in this test. In practice,

cloud providers such as Windows Azure Diagnostics and AWS Cloud Watch [90]

may provide such information monitoring functionality, or the application itself may

incorporate it. As a result, the overhead is very dependent on how it is implemented.

Instead, then focusing on the entire monitor-control loop, this dissertation just looks at

the performance of the basic scheduling and scaling mechanism. The test is performed

on a desktop computer with an Intel P4 2.4GHz processor, 4GB of memory, and

512GB of storage. It calculates the time it takes to update load vectors, consolidate

partial instance hours, and make scaling/scheduling decisions for various job sizes

(from 10 to 100000). The test employs 100 hybrid job classes and 16 virtual machine

kinds. The overhead is negligible, and the performance scales linearly with the work

number, as illustrated in figure 4.22. The following two strategies are used to produce

a reduced mechanism overhead. Preprocessing can handle the most time-consuming

part, deadline assignment, and the result can be cached after the first computation.

Later jobs in the same class do not need to recalculate deadline assignments on a

regular basis. Second, instead of requiring a large array for each task, the other time-

consuming part, updating the Load Vector, can be implemented using pair-wise data

structures, which reduces both memory and computation time.

206

Figure 4.22: SCS overhead

It is not the same as the batch-queue model described in the preceding chapter.

Instead of bags of chores, the workload is in the form of workflows. It enables the

service provider to complete projects in a cost-effective manner before the user-

specified timeframes. The system is built around a monitor-control loop that can

respond to dynamic changes like workload bursting and delayed instance acquisitions.

The results of the evaluation suggest that it can assist in cost reduction for a variety of

application architectures and workload patterns. When compared to the two baseline

procedures, cost savings range from 9.8% to 40.4 percent. Not only does the instance

consolidation procedure increase instance utilization, but it also lowers partial

instance hour waste. It effectively manages both high and low workload volumes, and

it analyses both job-level and global-level cost-efficiency. Furthermore, the system

has a high tolerance for incorrect settings. The monitor-control loop can assist with

task execution time and instance acquisition latency assumptions that are erroneous. It

reacts quickly to dynamic changes. The overhead of the approach is also significantly

reduced because to preprocessing and caching. This paper was presented at the 2011

international conference on high-performance computing, networking, storage, and

analysis (SC 2011). In the following chapter, this dissertation looks at the flip side of

the optimization problem: minimizing task turnaround time while staying within

budget limitations.

In conclusion, we can claim that this contribution will address the third question: How

can we create a task scheduling model that will execute tasks while meeting user-

207

defined constraints? We suggested a Deadline Budget Scheduling (DBS) model for

scheduling jobs in a heterogeneous cloud environment with two competing QoS

requirements: time and cost, all while maintaining user happiness. The suggested

DBS model's most important KPIs are to reduce monetary expenses while staying

within the user-defined budget and to minimize the makespan under a user-defined

deadline. In numerous different conditions, such as limited resources or high

resources ability, variable number of tasks and VMs, simulation results show that the

proposed DBS model achieves greater performance in decreasing the makespan and

cost when compared to state-of-the-art techniques. The number of violations is

minimized in the DBS model to meet user requirements while maximizing the

provider's profit and resource utilization. As a result, our model outperforms state-of-

the-art algorithms such as GA, Max-Min, Round Robin, and SJF. The improvement in

makespan ratio for our proposed DBS model over GA, Max-Min, Round Robin, and

SJF algorithms is 39 percent, 5 percent, 41 percent, and 41 percent, respectively, as

well as a 36 percent, 14 percent, 38 percent, and 38 percent improvement in cost ratio

for our proposed DBS model over GA, Max-Min, Round Robin, and SJF algorithms.

In addition, the T-test was used to compare our suggested DBS model to other

algorithms such as GA, Max-Min, Round Robin, and SJF statistically.

208

4.8.6 Proposed Additions in Thesis

 Alternative approaches or variations that could offer additional

insights or improvements

Deadline-Aware Priority Scheduling

In the cloud, where users and applications share resources, different versions and

extensions of time-sensitive priority scheduling can provide additional insights and

enhancements to optimize resource usage and meet deadlines efficiently. Below are

some variations unique to cloud:

1.Cost-Aware Deadline Scheduling: Integrate cost into deadline-aware planning so

that you can allocate resources based on both the time of the task and the cost of the

resource. This way, you can ensure that your high-priority tasks are completed on

time while reducing resource costs, which is in line with your budget.

2.Multi-Tenant Scheduling: Design scheduling algorithms that take into account the

fact that cloud environments have multiple tenants, where users and applications share

resources. By taking into account the different workloads and priorities of tenants, a

scheduling algorithm can optimize resource allocation and accommodate diverse

deadline requirements.

3.Service-Level Agreement (SLA): Develop scheduling strategies that give priority

to tasks according to their SLA commitments and the penalties incurred for failing to

meet deadlines. By taking into account the SLA requirements and associated

penalties, the scheduling algorithm can efficiently assign resources to tasks, ensuring

maximum adherence to SLA agreements while minimizing expenses.

4.Data Locality-Aware Scheduling: Consider data locality when scheduling tasks in

cloud environments with distributed data storage. By placing tasks near the data they

need, this method can lower data transfer expenses and enhance system performance,

especially for workloads that heavily rely on data and have tight deadlines.

5.Hybrid Cloud Scheduling: Enhance deadline-aware scheduling in hybrid cloud

environments that combine resources from both public and private clouds. By taking

209

into account the unique characteristics and costs of resources from different clouds,

the scheduling algorithm can optimize the allocation of resources and meet deadlines

while minimizing costs across hybrid environments.

6.QoS-Driven Scheduling: Prioritize tasks based on their quality-of-service

requirements, such as response time, throughput, or availability. By considering QoS

metrics alongside deadlines, the scheduling algorithm can ensure that tasks meet

performance objectives while also meeting their deadlines within budget constraints.

7.Dynamic Pricing and Resource Negotiation: Integrate dynamic pricing

mechanisms and resource negotiation protocols into the scheduling process to

optimize resource allocation and efficiently meet deadlines. By leveraging real-time

pricing information and negotiation strategies, the scheduling algorithm can

dynamically adjust resource allocations to meet deadline requirements while

minimizing costs.

8.Elastic Scheduling and Auto-scaling: Implement elastic scheduling and auto-

scaling mechanisms that dynamically adjust resource allocations based on workload

fluctuations and deadline requirements. By scaling resources up or down in response

to changing demand, this approach ensures the timely completion of tasks while

optimizing resource utilization and minimizing costs.

9.Geographical and Regulatory Constraints: Take into consideration geographical

and regulatory constraints when scheduling tasks in distributed cloud environments

that span multiple regions or jurisdictions. By adhering to legal and regulatory

requirements, as well as optimizing resource allocation based on geographical

proximity, the scheduling algorithm can ensure compliance and optimize

performance.

10.Feedback-Driven Optimization: Incorporate feedback mechanisms to collect

performance data and user feedback, which can be utilized to continuously optimize

scheduling decisions.

By investigating these different possibilities and expansions, deadline-conscious

priority scheduling in cloud computing can be customized to meet specific application

210

needs, enhance the efficiency of resource allocation, and guarantee the punctual

accomplishment of tasks while minimizing expenses and fulfilling SLA obligations.

Budget-Aware Scheduling

In the realm of cloud computing, effective resource provisioning and allocation play a

critical role in cost management and meeting performance standards. Various

strategies have been devised to address budget-conscious scheduling, all with the goal

of enhancing resource utilization while ensuring compliance with service-level

agreements (SLAs) and financial limitations. Here are a few of these strategies:

1.Adaptive Scheduling: Adaptive scheduling dynamically modifies resource

allocations in response to workload fluctuations and budget constraints. It adjusts

resource levels up or down as needed to accommodate changes in demand, thereby

preventing budget overruns while upholding performance and availability.

2.Utilization of Spot Instances: Spot instances refer to unused cloud resources

available at a reduced cost. Leveraging spot instances opportunistically helps

minimize expenses while meeting workload demands. Tasks are assigned to spot

instances when they fall within budget constraints.

3.Time-Conscious Scheduling: Time-conscious scheduling prioritizes tasks based on

their deadlines and allocates resources accordingly to ensure timely completion

without exceeding budget limits. This approach optimizes resource usage by adjusting

priorities and allocations dynamically based on task deadlines and budget availability.

4.Serverless Architecture: Serverless architecture abstracts infrastructure

management from users, enabling them to concentrate on application development

and execution without the burden of resource provisioning. In serverless

environments, users are charged based on resource consumption and execution

duration, facilitating budget-conscious scheduling through automated resource scaling

in response to workload requirements and budget restrictions.

5.Strategies for Cost-Effective Task Placement: The objective of cost-aware task

placement strategies is to minimize expenses by strategically assigning tasks to cloud

resources that offer the best balance between cost and performance. These strategies

211

take into account various factors, including resource prices, performance

characteristics, and task requirements, in order to optimize resource allocations within

the given budget constraints.

6.Enhancing Resource Utilization through Workload Consolidation: Workload

consolidation involves the consolidation of multiple tasks or workloads onto a smaller

number of resources, resulting in improved resource utilization and reduced costs. By

dynamically adjusting resource allocations and consolidating workloads based on

workload characteristics and budget limitations, this approach optimizes the

utilization of resources while still meeting performance requirements.

7.Efficient Resource Scaling with Budget Considerations: Budget-aware

autoscaling mechanisms dynamically adapt resource allocations based on the demand

of the workload and budget constraints. This ensures that resources are scaled up or

down in a cost-effective manner, maximizing resource utilization while staying within

the defined budget limits.

8.Anticipating Resource Needs with Predictive Resource Allocation: Predictive

resource allocation utilizes predictive analytics and machine learning algorithms to

forecast future workload demands and resource requirements. By anticipating

resource needs, this approach enables proactive resource allocation decisions that

optimize resource usage and effectively utilize the allocated budget.

9.Coordinated Resource Allocation with Federated Cloud Scheduling: Federated

cloud scheduling coordinates resource allocation and scheduling across multiple cloud

providers or data centers. By leveraging resources from multiple providers based on

pricing and availability, federated cloud scheduling optimizes resource usage and

cost-effectiveness while ensuring workload and budget constraints are met.

These alternative methods for budget-aware scheduling in cloud computing present

diverse strategies to optimize resource utilization, reduce costs, and meet performance

requirements within budget constraints. The selection of a particular approach

depends on factors such as workload characteristics, budget considerations, and the

specific demands of the cloud environment.

212

Deadline budget scheduling

Deadline budget scheduling in cloud computing involves the management of tasks

based on their deadlines and allocated budgets. There are several variations and

extensions that can provide additional insights and improvements in this area:

1.Dynamic Budget Adjustment: Algorithms can be developed to dynamically adjust

task budgets based on fluctuations in workload, resource availability, and deadline

requirements. This adaptive approach ensures that tasks have enough budget

allocations to meet their deadlines while optimizing the utilization of resources.

2.Budget-Aware Elastic Scaling: Elastic scaling mechanisms can be integrated with

budget-awareness to dynamically adjust resource allocations based on budget

constraints. This ensures that resource provisioning aligns with budget allocations and

deadline requirements, maximizing cost-effectiveness and meeting deadlines.

3.Budget-Based Resource Reservation: Resource reservation mechanisms can be

implemented based on task budgets to ensure that tasks have access to the necessary

resources within their allocated budgets. By reserving resources in advance, this

approach guarantees that tasks can meet their deadlines without exceeding budget

constraints.

4.Cost-Optimized Deadline Scheduling: Deadline-aware scheduling can be

combined with cost optimization techniques to schedule tasks in a way that minimizes

costs while meeting deadlines. This involves considering both task deadlines and

budget constraints when making scheduling decisions to achieve cost-effectiveness.

5.Budget-Driven Task Migration: Algorithms can be developed for migrating tasks

between different cloud resources based on their budget allocations and deadline

requirements. By migrating tasks to resources with lower costs or better performance

characteristics, this approach optimizes resource utilization while meeting deadlines

within budget constraints.

6.Budget-Aware QoS Differentiation: By incorporating task budgets into the

prioritization and resource allocation process, the QoS differentiation mechanisms can

be extended. This approach guarantees that tasks with higher budgets are given

213

priority, allowing for optimal resource allocation and ensuring that deadlines are met

while maximizing the return on investment.

7.Budget-Optimized Multi-Objective Scheduling: Discover multi-objective

scheduling algorithms that enhance resource allocation across various dimensions,

such as task deadlines, budgets, and performance goals. Through effectively

balancing these conflicting objectives, the scheduling algorithm is able to make well-

informed choices that optimize cost-effectiveness and ensure timely completion.

8.Budget-Conscious Workload Consolidation: Implement workload consolidation

techniques that take into account task budgets when consolidating workloads onto a

reduced number of resources. By optimizing the utilization of resources according to

budget allocations, this strategy effectively reduces costs while ensuring that deadline

requirements are met.

9.Budget-Aware Fault Tolerance: Improve fault tolerance mechanisms by

incorporating budget considerations to guarantee task completion despite failures. By

setting aside funds for fault tolerance strategies, this method enhances dependability

without exceeding financial limits.

By exploring these variations and extensions, deadline budget scheduling in cloud

computing can be enhanced to optimize resource utilization, minimize costs, and

ensure timely completion of tasks while meeting budget constraints.

 Potential Challenges or methods for assisting users in Specifying

Constraints

It is of utmost importance to effectively specify constraints in a DAPS, BAS, and

DBS model in order to achieve the desired performance outcomes. Nevertheless,

users might encounter difficulties in accurately defining these constraints due to

various factors, including complexity, uncertainty, and diverse requirements.

Presented below are several potential challenges and approaches to aid users in

effectively specifying constraints.

214

1.Understanding Requirements: Users might not have a complete grasp of their

application's requirements or the consequences of different constraints on scheduling

results. By offering educational materials, tutorials, and documentation, users can gain

a better understanding of the significance of various constraints and make well-

informed choices.

2.Complexity of Constraints: The complexity of DAPS, BAS, and DBS lies in the

various parameters it encompasses, including task deadlines, priorities, resource

requirements, and dependencies. By providing user-friendly interfaces and

visualization tools, the process can be simplified as users can easily specify

constraints in a clear and comprehensible manner.

3.Uncertainty and Variability: Variations in task characteristics and workload

conditions can result in uncertainty when specifying constraints. By implementing

adaptive algorithms that can adjust constraints in real-time based on feedback and

workload changes, it is possible to mitigate uncertainty and enhance scheduling

efficiency.

4.Trade-offs and Prioritization: Users might require help in comprehending the

compromises associated with establishing various limitations and arranging them

according to their significance. Offering guidance via interactive decision support

systems or recommendation engines can aid users in making well-informed choices

regarding constraint specification.

5.Automated Constraint Inference: Users can effectively specify constraints by

implementing algorithms that automatically infer constraints based on historical data,

workload patterns, and system characteristics. By utilizing machine learning

techniques, past scheduling decisions can be analyzed to derive appropriate

constraints for similar scenarios.

6.Constraint Validation and Feedback: Implementing validation mechanisms to

verify the coherence and practicality of defined constraints can assist users in

detecting mistakes or discrepancies in their specifications. Offering guidance on

constraint breaches and proposing remedial measures can aid users in enhancing their

constraints.

215

7.Template-Based Constraint Specification: Providing pre-designed templates or

templates tailored to common scenarios can assist users in easily defining limitations

without the need for extensive understanding of scheduling algorithms or parameters.

These templates can be personalized by users to align with their individual needs.

By addressing these challenges and implementing methods to assist users in

specifying constraints effectively, the usability and effectiveness of DAPS, BAS, and

DBS can be enhanced, leading to improved scheduling outcomes and user

satisfaction.

 Trade-offs between different metrics or consider additional

factors such as scalability and adaptability

Consider some trade-offs between different metrics, focusing on scalability and

adaptability of DAPS, BAS, and DBS in a cloud computing environment:

1.Makespan vs. Resource Utilization:

•Trade-off: As the makespan decreases (tasks are completed at a faster rate), there is

a tendency for resource utilization to increase. This occurs because tasks may be

scheduled more assertively in order to meet deadlines, resulting in greater resource

competition and potentially reduced overall system efficiency.

•Scalability Implication: In systems with a high number of concurrent tasks,

prioritizing the reduction of makespan can lead to problems with resource contention

and scalability. This occurs when the system faces difficulties in efficiently allocating

resources to an ever-growing number of tasks.

2.Cost of Execution vs. Deadline Adherence:

•Trade-off: Reducing the expense of execution frequently entails enhancing resource

allocation and workload scheduling to minimize idle time and maximize resource

utilization. Nevertheless, this approach may result in compromising task deadlines, as

tasks could be postponed or interrupted to minimize costs.

•Adaptability Implication: In environments that are constantly changing, with prices

of resources fluctuating and priorities of workloads varying, it becomes difficult to

216

find a balance between optimizing costs and meeting deadlines. Scheduling strategies

that can adapt are necessary to constantly reassess task priorities and allocate

resources in order to ensure timely completion without exceeding budget constraints.

3.Scalability vs. Adaptability:

•Trade-off: Scalability pertains to the system's capacity to effectively manage

growing workloads and resource requirements as the system expands in size.

Nevertheless, as the system expands, preserving flexibility becomes increasingly

difficult due to the rising complexity and diversity of the environment.

•Scalability Implication: Scheduling algorithms that are scalable must have the

capability to allocate resources dynamically and adapt scheduling policies to support

increasing workloads and resource requirements without causing a notable impact on

performance or adding to the overhead.

•Adaptability Implication: Adaptable scheduling algorithms need to be capable of

adjusting to fluctuations in workload attributes, availability of resources, and system

behavior instantly, all while guaranteeing scalability. This necessitates strong

monitoring, forecasting, and decision-making mechanisms to uphold peak

performance in diverse circumstances.

4.Resource Utilization vs. Energy Efficiency:

•Trade-off: Enhancing resource allocation frequently leads to increased energy

usage, since additional resources are maintained in an active state to fulfill workload

requirements. Conversely, prioritizing energy efficiency may require combining tasks

onto a smaller number of resources or enforcing stringent power management

strategies, potentially resulting in decreased resource utilization.

•Scalability Implication: Achieving energy efficiency in extensive cloud

environments with numerous servers can lead to substantial cost savings and

environmental advantages. Nevertheless, maintaining energy efficiency on a large

scale involves managing resource utilization alongside power management overhead,

while also guaranteeing that performance remains unaffected.

217

 Application in real cloud computing environment

Conducting simulations in a real cloud computing environment offers several

advantages over using simulation toolboxes like CloudSim. Here's how applying

DAPS, BAS, and DBS in a real cloud environment can enhance research:

1.Real-world Validity: Simulations frequently rely on assumptions or simplifications

that may not accurately capture the intricacies of actual cloud environments. By

performing experiments in an authentic cloud setting, researchers can verify the

efficacy of DAPS, BAS, and DBS under genuine conditions, guaranteeing the

applicability and reliability of the findings.

2.Scalability Testing: Real cloud environments enable researchers to assess the

scalability of DAPS across various workloads, resource configurations, and system

sizes. This grants valuable insights into the performance of the scheduling algorithm

as both the workload and system complexity grow.

3.Dynamic Adaptability: In an actual cloud setting, researchers have the opportunity

to witness the dynamic adaptation of DAPS, BAS, and DBS to variations in workload

patterns, resource availability, and system dynamics. This encompasses situations like

abrupt surges in demand, resource malfunctions, or alterations in task priorities that

might not be completely replicated in simulations.

4.Resource Cost Analysis: Researchers have the ability to evaluate the cost-

effectiveness of DAPS, BAS, and DBS by taking into account various factors

including the efficiency of resource usage, operational expenses, and potential savings

in both time and money. The utilization of real cloud experiments offers precise data

for conducting a thorough cost-benefit analysis, thereby supporting the rationale

behind implementing DAPS, BAS, and DBS in real-world cloud deployments.

5.Industry Relevance: Showing the efficacy of DAPS, BAS, and DBS in an actual

cloud setting enhances its significance for industry players, including cloud service

providers, IT experts, and software developers. This may result in wider acceptance

and utilization of the scheduling algorithm in practical cloud scenarios.

218

6.Benchmarking Against Alternatives: Researchers have the opportunity to

evaluate DAPS, BAS, and DBS by comparing it with various scheduling algorithms

or methods in an actual cloud setting, allowing for a thorough assessment of their

efficiency, adaptability, and applicability to diverse scenarios in real-world cloud

applications.

Overall, applying DAPS, BAS, and DBS in a real cloud computing environment

enhances the credibility, relevance, and practicality of the research, providing

valuable insights into its effectiveness and potential impact on real-world cloud

deployments.

 Comparative analysis for insights into relative strengths and

weaknesses of proposed models compared to alternative solutions

Deadline-Aware Priority Scheduling (DAPS)

Compare Deadline-Aware Priority Scheduling (DAPS) with another common

scheduling algorithm in cloud computing, such as Round Robin (RR) scheduling:

Strengths of Deadline-Aware Priority Scheduling (DAPS) in Cloud Computing:

1.Deadline Compliance: DAPS prioritizes tasks with approaching deadlines, a

critical aspect in cloud computing settings where tasks frequently come with time-

sensitive demands. Timely completion not only boosts user satisfaction but also helps

avoid penalties for failing to meet deadlines.

2.Resource Optimization: DAPS enhances resource utilization in cloud

environments by prioritizing tasks according to their deadlines. The allocation of

resources is initially focused on critical tasks, guaranteeing the timely completion of

significant workloads.

3.Efficiency in Resource Allocation: DAPS optimally distributes resources among

tasks according to their significance, resulting in enhanced system performance and

throughput. This advantage is especially valuable in multi-tenant cloud environments

where resource conflicts are prevalent.

219

4.Dynamic Adaptability: DAPS has the capability to flexibly modify task priorities

in response to evolving workload conditions and deadline constraints. This flexibility

enables it to adeptly manage variations in workload levels and optimize resource

allocation.

Weaknesses of Deadline-Aware Priority Scheduling (DAPS) in Cloud

Computing:

1.Complexity: Deploying DAPS in cloud environments necessitates an advanced

scheduling algorithm that takes into account task deadlines, introducing intricacy to

the scheduling procedure. This intricacy could potentially raise the costs associated

with implementation and upkeep.

2.Overhead: DAPS might result in increased overhead as a result of the requirement

to consistently monitor task deadlines and adapt priorities as necessary. This

additional workload has the potential to affect system performance, particularly in

extensive cloud deployments with a significant volume of tasks.

3.Fairness: DAPS focuses on tasks according to their deadlines, potentially resulting

in unequal treatment of low-priority tasks that have longer deadlines. This lack of

equity could pose challenges in cloud environments where equal treatment of all users

or tasks is essential.

4.Dependency on Deadline Accuracy: The efficiency of DAPS greatly depends on

precise deadline information. Incorrect or vague deadline estimates may result in less

than optimal scheduling choices, which can have a negative impact on system

performance and meeting deadlines.

Comparative Analysis with Round Robin (RR) Scheduling:

1.Deadline Compliance: DAPS surpasses RR scheduling in meeting task deadlines

by prioritizing tasks according to their deadlines, unlike RR scheduling which treats

all tasks equally regardless of their urgency. This characteristic renders DAPS more

appropriate for time-sensitive workloads.

2.Resource Utilization: DAPS generally leads to improved resource utilization in

contrast to RR scheduling by giving priority to critical tasks, guaranteeing that

220

resources are assigned to the most crucial workloads initially. RR scheduling could

potentially result in resource underutilization, particularly when significant tasks are

postponed because of equal treatment.

3.Adaptability: Although RR scheduling is straightforward and convenient to

execute, it does not possess the flexibility of DAPS in managing changing workload

patterns and organizing tasks according to their level of importance. DAPS has the

capability to adaptively modify task priorities for efficient resource distribution,

rendering it better suited for dynamic cloud settings.

4.Fairness: RR scheduling is commonly regarded as more equitable than DAPS as it

provides equal treatment to all tasks. Nevertheless, this impartiality may result in the

possibility of failing to meet deadlines for crucial tasks in time-sensitive cloud

environments.

In conclusion, Deadline-Aware Priority Scheduling presents significant advantages in

meeting task deadlines and optimizing resource utilization in cloud computing

environments. However, it introduces added complexity and overhead, and its

effectiveness relies on accurate deadline information. In contrast, Round Robin

scheduling is simpler and fairer but may result in missed deadlines for critical tasks

and underutilization of resources in time-sensitive cloud environments.

Budget-Aware Scheduling (BAS)

Compare Budget-Aware Scheduling (BAS) with another common scheduling

algorithm in cloud computing, such as Proportional-Share Scheduling:

Strengths of Budget-Aware Scheduling (BAS) in Cloud Computing:

1.Cost Optimization: BAS strives to enhance cost-effectiveness by taking into

account budget limitations when organizing tasks in cloud settings. This guarantees

that resource distribution is in line with the financial boundaries of users, avoiding

excessive spending and facilitating improved resource management.

2.Resource Efficiency: BAS optimizes the allocation of resources by considering

users' budgets, guaranteeing that resources are distributed in a way that maximizes

221

cost-effectiveness. As a result, resource utilization is enhanced and wastage is

minimized, benefiting both users and cloud providers.

3.Fairness: BAS aims to uphold equity by distributing resources in proportion to

users' budgets. This guarantees that users with higher budgets are allocated a fair

share of resources, thus averting resource domination by those with larger budgets.

4.Adaptability: BAS possesses the capability to flexibly modify resource allocations

in response to evolving budgetary limitations and workload requirements. This

flexibility enables it to efficiently manage resource utilization while staying within the

confines of users' budgetary restrictions, thereby optimizing cost effectiveness.

Weaknesses of Budget-Aware Scheduling (BAS) in Cloud Computing:

1.Complexity: The integration of BAS necessitates a complex scheduling algorithm

that considers budget limitations, thereby complicating the scheduling procedure. This

complication could potentially raise the costs associated with implementing and

maintaining cloud services.

2.Overhead: BAS might result in increased overhead as a result of the continuous

monitoring of users' budget usage and the subsequent adjustment of resource

allocations. This additional workload has the potential to affect system performance,

particularly in large-scale cloud deployments with a significant number of users.

3.Budget Accuracy: The efficiency of BAS relies on precise evaluation and

monitoring of users' budgets. Incorrect or vague budget estimations may result in less

than optimal allocation of resources, affecting cost effectiveness and user

contentment.

4.Fairness Trade-offs: While the primary goal of BAS is to ensure fairness by

distributing resources in proportion to users' budgets, it can unintentionally put users

with smaller budgets at a disadvantage in fiercely competitive settings. Achieving a

balance between fairness and cost optimization objectives can be a complex task that

necessitates making compromises.

222

Comparative Analysis with Proportional-Share Scheduling:

1.Cost Optimization: BAS prioritizes cost optimization by taking into account the

budget limitations of users, while Proportional-Share Scheduling assigns resources

based on predetermined shares, without explicitly considering budget constraints.

BAS is more suitable for users or applications that are conscious of costs or have

strict budget limitations.

2.Resource Efficiency: BAS and Proportional-Share Scheduling have a common goal

of enhancing resource utilization. However, BAS accomplishes this objective by

adaptively modifying resource allocations according to users' budgets, while

Proportional-Share Scheduling allocates resources based on predetermined shares. By

aligning resource allocations with users' budgetary needs, BAS has the potential to

optimize resource utilization more effectively.

3.Fairness: Both Budget-Aware Scheduling (BAS) and Proportional-Share

Scheduling aim to ensure equity in distributing resources. BAS accomplishes this by

distributing resources in proportion to users' budgets, while Proportional-Share

Scheduling assigns resources according to predetermined shares that may not

necessarily align with users' specific needs. BAS could potentially offer a more

equitable allocation method by taking into account users' budget limitations explicitly.

4.Adaptability: BAS and Proportional-Share Scheduling exhibit contrasting

characteristics when it comes to accommodating fluctuating workload demands and

budget limitations. BAS possesses the ability to dynamically modify resource

allocations by considering users' budget utilization, enabling it to effectively respond

to changing conditions. On the other hand, Proportional-Share Scheduling may have

limited adaptability since it relies on predetermined shares that may not accurately

align with users' evolving requirements.

To summarize, Budget-Aware Scheduling provides benefits in terms of cost

optimization, resource efficiency, fairness, and adaptability in cloud computing

environments. Nevertheless, it introduces additional complexity and overhead, and its

effectiveness relies on precise budget estimation and tracking. On the other hand,

Proportional-Share Scheduling offers a simpler resource allocation approach but may

223

not deliver the same degree of cost optimization and adaptability as BAS, particularly

in environments with varying budget constraints and fluctuating workload demands.

Deadline Budget Scheduling (DBS)

Compare Deadline Budget Scheduling (DBS) with another scheduling algorithm

commonly used in cloud computing, such as Priority-based Scheduling:

Strengths of Deadline Budget Scheduling (DBS) in Cloud Computing:

1.Deadline and Budget Compliance: DBS guarantees that tasks are arranged to

adhere to both their deadlines and budget restrictions. This is beneficial in cloud

settings where users face budget constraints and time-critical tasks. DBS ensures that

tasks are finished within their designated deadlines while also staying within budget

boundaries.

2.Cost Optimization: DBS enhances cost efficiency by taking into account deadline

and budget limitations during task scheduling. Through strategic resource allocation

according to task deadlines and user budgets, DBS reduces resource wastage and

avoids exceeding budget limits, ultimately resulting in enhanced cost-effectiveness.

3.Resource Utilization: DBS enhances resource allocation efficiency by dynamically

assigning resources according to task deadlines and budget limitations. This

guarantees that resources are distributed to tasks in a way that optimizes both meeting

deadlines and utilizing the budget effectively, resulting in improved resource

utilization within the cloud environment.

4.Fairness: DBS ensures fairness by taking into consideration the deadlines of tasks

as well as the budgets of users during the task scheduling process. This approach

guarantees that resources are distributed equitably among users, while also accounting

for their specific needs and limitations.

Weaknesses of Deadline Budget Scheduling (DBS) in Cloud Computing:

1.Complexity: Implementing DBS necessitates a refined scheduling algorithm that

takes into account task deadlines as well as user budgets. This introduces intricacy to

224

the scheduling procedure and could potentially amplify the expenses associated with

implementation and maintenance for cloud providers.

2.Overhead: DBS could potentially affect system performance, particularly in large-

scale cloud deployments with a high volume of tasks and users, as it requires constant

monitoring of task deadlines and user budgets, along with adjusting resource

allocations accordingly. This additional overhead may have an impact on the overall

efficiency of the system.

3.Accuracy Requirements: The efficiency of DBS relies on precise evaluation and

monitoring of task deadlines and user budgets. Incorrect or vague estimations may

result in less than optimal scheduling choices, affecting both adherence to deadlines

and utilization of budgets.

4.Trade-offs between Deadline and Budget: DBS might encounter difficulties in

achieving a balance between meeting task deadlines and adhering to budget

constraints. In situations where task deadlines clash with budget limitations, DBS may

have to make compromises that prioritize either one, potentially resulting in less than

optimal results.

Comparative Analysis with Priority-based Scheduling:

1.Deadline and Budget Consideration: DBS takes into account task deadlines and

user budgets when organizing tasks, guaranteeing that resources are distributed

efficiently to satisfy both limitations. On the other hand, Priority-based Scheduling

might prioritize tasks solely on their significance or urgency, neglecting to explicitly

factor in budget constraints.

2.Cost Optimization: DBS effectively manages expenses by taking budget

restrictions into consideration, unlike Priority-based Scheduling which may overlook

financial limitations. DBS guarantees that resources are distributed in a way that

reduces costs and meets deadlines, resulting in improved cost efficiency within

budget-constrained settings.

3.Resource Utilization: DBS optimizes resource allocation by dynamically adjusting

based on task deadlines and budget constraints, resulting in enhanced resource

225

utilization. Priority-based Scheduling, on the other hand, may not be as efficient in

maximizing resource utilization since it focuses on task importance or urgency

without taking budget restrictions into account.

4.Fairness: DBS ensures equity by taking into account both task deadlines and user

budgets during resource allocation. In contrast, Priority-based Scheduling may

prioritize tasks solely based on their priority, potentially resulting in uneven resource

allocation, particularly in multi-tenant cloud environments.

In essence, Deadline Budget Scheduling presents advantages in meeting task

deadlines and adhering to budget constraints in cloud computing environments.

However, it introduces added complexity and overhead, and its effectiveness relies on

accurate estimation and tracking of task deadlines and user budgets. Conversely,

Priority-based Scheduling may not explicitly account for budget constraints and may

not optimize resource allocation as effectively in budget-constrained environments.

226

 CHAPTER 5

CONCLUSION

5.1 CONCLUSION

We provided three models in this study to address the task scheduling problem in a

cloud computing environment, with the models focusing on the following: Tasks were

planned in the first model based on a deadline restriction. The tasks were scheduled

based on the budget constraint in the second model, and the tasks were scheduled

based on the deadline and budget constraints in the third model, with the user defining

all of the restrictions. In addition, we developed a set of criteria for evaluating the

efficacy of our suggested models for solving the task scheduling problem.

Cloud computing has transformed IT by allowing users and consumers to access

services via the Internet. These services range from hardware to software, saving

money on both the expense of setting up physical resources and the cost of obtaining

the appropriate software licenses. The task scheduling problem is one of the most

important and prominent challenges facing the cloud computing system. Task

Scheduling is concerned with assigning user-generated tasks to the appropriate

resources given by the service provider. Some restrictions such as deadline and

budget are the major constraints in QoS applied on the users' requirements of cloud

resources, according to the Quality of Service (QoS) agreed in the Service Level

Agreement (SLA), which means the service provider commits to perform not only the

tasks within a specified time but also to ensure that the cost of execution does not

exceed the user's budget. As a result, we strive to solve the problem of task scheduling

in many ways in this thesis, beginning with improving task scheduling within a

deadline restriction by presenting the Deadline-Aware Priority Scheduling (DAPS)

model.

The DAPS model's method is that tasks are ranked in ascending order based on length

priority, and the Virtual Machine's (VM's) state is labeled as successful when the

deadline restriction is met. The jobs are then assigned to the appropriate VM while

keeping the make span and completion time to a minimum. The DAPS model aims to

achieve the optimum performance by lowering metrics like average makespan, mean

227

of total average reaction time, number of violations, and violation ratio in order to

achieve user satisfaction. In addition, the DAPS model aims to maximize resource

usage and guarantee ratio when the user is primarily concerned with the cost of

completing tasks, which includes the cost of processing, memory, bandwidth, and

storage depending on the budget constraint. The Budget-Aware Scheduling (BAS)

model was designed to address this issue. The BAS model's mechanism is that tasks

are scheduled depending on a budget limitation. The task priority is established first,

and then the VM that fits the budget is labeled. The task attributes are then checked

and assigned to the resources that fulfill the budget limit, in order to minimize the

resource use cost and makespan to a minimum. The BAS model schedules work by

accepting user submission requests, and task priority is determined by computing the

average of task budget constraints and comparing them to the overall task budget

constraints. The VMs that meet the budget constraint are next examined. The task is

then assigned to the appropriate VM, and the cost of resources used is determined.

The users have a lot of chores that they need to schedule on the cloud resources. The

task has a number of critical properties, such as length and file size, that must not be

overlooked, and each resource has a different cost than the others.

Some task performance indicators (gain cost, profit, resource usage, violations

number, makespan, and response time) can influence resource cost, as these metrics

are critical for the suggested BAS model. In addition to the obstacles that the user and

the service provider confront, the user must complete the task while adhering to many

constraints, such as a deadline and a budget. The Deadline Budget Scheduling (DBS)

model was introduced to execute users' tasks on virtual machines under QoS

restrictions with the shortest feasible execution time and the lowest possible cost. The

suggested DBS model works by having the user define two constraints: a deadline and

a budget, and then assigning a constraint type to each task based on user satisfaction.

Task constraint type is D & B if the constraints are deadline and budget, D if the

constraint is a deadline, and B if the constraint is a budget in the DBS model. The

following is how the available resources are clustered based on customer satisfaction:

The first cluster is made up of VMs that adhere to the budget and deadline

requirements. The second cluster is made up of virtual machines that must meet a

deadline. The third cluster is made up of VMs that only meet the budget constraint.

Cloud customers send their jobs to the service provider, along with any deadlines or

228

budget limits. Based on user satisfaction, each task is examined for recognizing its

constraint type. If the task constraint type is both deadline and budget, it will be

implemented in cluster one; if the constraint type is only deadline, it will be

implemented in cluster two; and if the constraint type is only budget, it will be

implemented in cluster three (length and file size). Finally, under the DBS model,

customer satisfaction is accomplished through reducing the process's completion time

and cost. Provider satisfaction, on the other side, is attained through optimizing profit

revenue and resource usage. The CloudSim toolbox is used in this thesis to simulate

cloud computing system investigations.

In conclusion, this study provides answers to the following questions:

i. Q1- How do you create a scheduling model that makes efficient use of

resources during load management and reduces total completion time while

meeting a deadline? In Chapter 3, the Deadline-Aware Priority Scheduling

(DAPS) model was proposed to plan tasks and assign them to available

resources while minimizing makespan based on a deadline constraint and a

minimal completion time.

ii. Q2- How to develop a model which reduces the total cost for task scheduling

problem in a cloud computing environment, which comprises of the cost of

processor, memory, bandwidth, and storage based on a budget constraint? In

Chapter 4, the answer was found by presenting the Budget-Aware Scheduling

(BAS) model for user budget when performing tasks on VMs in order to keep

resource use costs to a minimum.

iii. Q3- How can we create a task scheduling model that allows us to complete

activities while adhering to user-defined deadlines and budgets? In Chapter 5,

the answer was found by introducing a Deadline Budget Scheduling (DBS)

model capable of scheduling jobs in a heterogeneous cloud environment to

minimize the makespan under a user-defined deadline while lowering

monetary expenses while staying within the user-defined budget.

229

5.2 CONTRIBUTIONS

The following are the contributions to improving task scheduling algorithms in the

cloud computing environment offered in this study: Based on the deadline constraint,

we suggested a Deadline-Aware Priority Scheduling (DAPS) model capable of

assigning jobs while responding to user and provider satisfaction. When compared to

GA, Min-Min, SJF, and Round Robin algorithms, the DAPS model guarantees an

increase in both makespan and resource utilization under deadline constraints.

Furthermore, the DAPS model's performance evaluation shows that our model

outperforms the competition by reducing metrics like average makespan, mean total

average reaction time, number of violations, and violation ratio while maximizing

resource utilization and guarantee ratio. Our proposed DAPS model improves the

makespan ratio by 10%, 6%, 12%, and 12.7 percent when compared to GA, Min-Min,

SJF, and Round Robin algorithms, respectively. In addition, the T-test was used to

compare our suggested DAPS model to other algorithms such as GA, Min-Min, SJF,

and Round Robin in a statistical study. A budget distribution technique to allocate

jobs according to their attributes in order to assist resource selection decisions is

proposed in the Budget-Aware Scheduling (BAS) model.

The experiments were carried out on the BAS model and compared to state-of-the-art

scheduling algorithms, demonstrating that the BAS minimizes the makespan,

response time, and number of violations for task execution on VMs, as well as

increasing resource utilization and provider profit, and achieving an acceptable total

gain cost for any user. The proposed BAS model outperforms the Max-Min, Round

Robin, and SJF algorithms by 17 percent, 34 percent, and 31 percent, respectively, in

terms of cost ratio. In addition, the T-test was used to compare our suggested BAS

model to other algorithms such as Max-Min, Round Robin, and SJF in a statistical

study. The user must complete the task while adhering to other constraints, such as the

deadline and budget. As a result, we've devised a novel model in which the user sets

two constraints: a deadline and a budget. Simulation results indicate that the Deadline

Budget Scheduling (DBS) model outperformed state-of-the-art algorithms in lowering

the makespan and cost in a variety of configurations, including low resources or high

resources model, varied number of jobs and virtual machines (VMs). The violation

ratio is lowered in the DBS model to meet user requirements while enhancing the

230

provider's profit and resource utilization. As a result, the DBS model is preferred over

state-of-the-art algorithms such as GA, Max-Min, Round Robin, and SJF. The DBS

model outperforms the GA, Max-Min, Round Robin, and SJF algorithms in terms of

makespan ratio by 39 percent, 5 percent, 41 percent, and 41 percent, respectively, as

well as cost ratio by 36 percent, 14 percent, 38 percent, and 38 percent, respectively.

In addition, the T-test was used to compare our suggested DBS model to other

algorithms such as GA, Max-Min, Round Robin, and SJF in a statistical study.

5.3 FUTURE SCOPE OF THE WORKS

While wrapping up this study, we'd want to highlight some of the research's future

directions, which are still open and potential to pursue in order to address the

following issues:

 Allocating virtual machines at the physical machine level that is, reallocating

them to the needs of the user while also achieving high performance in

resource exploitation for the service provider.

 As virtual machines are relocated from one host to another in the cloud

datacenter, load balancing in the datacenter is achieved.

 Reducing the amount of energy utilized by the datacenter in a cloud

computing environment while scheduling as many operations or processes as

possible in the datacenter.

231

 REFERENCES

1. Gagandeep Kaur (2021). Framework for Resource Management in Cloud

Computing. 10.1007/978-981-15-7062-9_3.

2. Shaw, Rachael (2021),” Applying machine learning towards automating

resource management in cloud computing environments”,

3. Harvinder Singh et al (2020),” Cloud Resource Management: Comparative

Analysis and Research Issues”, International Journal of Scientific &

Technology Research Volume 9, Issue 06

4. Mohd Ameen Imran et al (2020),” Log as a Secure Service Scheme (LASS)

for Cloud”, Journal of Scientific Research

5. Singh, Saurabh, Young-Sik Jeong, and Jong Hyuk Park. "A survey on cloud

computing security: Issues, threats, and solutions." Journal of Network and

Computer Applications 75 (2016): 200-222.

6. Gao, Yue, et al. "An energy and deadline aware resource provisioning,

scheduling and optimization framework for cloud systems."

Hardware/Software Codesign and System Synthesis (CODES+ ISSS), 2013

International Conference on. IEEE, 2013:1-10.

7. Dong, Ziqian, Ning Liu, and Roberto Rojas-Cessa. "Greedy scheduling of

tasks with time constraints for energy-efficient cloud-computing data centers."

Journal of Cloud Computing 4.1 (2015): 1-14.

8. Xu, Minxian, Wenhong Tian, and Rajkumar Buyya. "A survey on load

balancing algorithms for virtual machines placement in cloud computing."

Concurrency and Computation: Practice and Experience 29.12 (2017):1-20.

9. Deldari, Arash, Mahmoud Naghibzadeh, and Saeid Abrishami. "CCA: a

deadline-constrained workflow scheduling algorithm for multicore resources

on the cloud." The journal of Supercomputing 73.2 (2017): 756-781.

232

10. Singh, Sukhpal, Inderveer Chana, and Maninder Singh. "The Journey of

QoSAware Autonomic Cloud Computing." IT Professional 19.2 (2017): 42-

49.

11. Panda, Sanjaya K., Indrajeet Gupta, and Prasanta K. Jana. "Task scheduling

algorithms for multi-cloud systems: allocation-aware approach." Information

Systems Frontiers (2017): 1-19.

12. Shawish, Ahmed, and Maria Salama., 2014. "Cloud computing: paradigms

and technologies." Inter-cooperative Collective Intelligence: Techniques and

Applications. Springer Berlin Heidelberg, pp. 39-67.

13. Gill, Sukhpal Singh, and Rajkumar Buyya. "A Taxonomy and Future

Directions for Sustainable Cloud Computing: 360 Degree View." arXiv

preprint arXiv: 1712.02899 (2017).

14. Kratzke, Nane, and Peter-Christian Quint. "Understanding cloud-native

applications after 10 years of cloud computing-A systematic mapping study."

Journal of Systems and Software126 (2017): 1-16.

15. Yousafzai, Abdullah, et al. "Cloud resource allocation schemes: review,

taxonomy, and opportunities." Knowledge and Information Systems 50.2

(2017): 347-381.

16. Shah, Manan D., and Harshad B. Prajapati. "Reallocation and allocation of

virtual machines in cloud computing." arXiv preprint arXiv: 1304.3978

(2013).

17. Masdari, Mohammad, et al. "A Survey of PSO-based scheduling algorithms in

cloud computing." Journal of Network and Systems Management 25.1 (2017):

122-158.

18. Deka, Rup Kumar, Dhruba Kumar Bhattacharyya, and Jugal Kumar Kalita.

"DDoS Attacks: Tools, Mitigation Approaches, and Probable Impact on

Private Cloud Environment." arXiv preprint arXiv: 1710.08628 (2017).

233

19. Pandey, Asmita. "Virtual machine performance measurement." Recent

Advances in Engineering and Computational Sciences (RAECS), IEEE,

2014:1-3.

20. García-Valls, Marisol, Tommaso Cucinotta, and Chenyang Lu. "Challenges in

real-time virtualization and predictable cloud computing." Journal of Systems

Architecture 60.9 (2014): 726-740.

21. Gill, Sukhpal Singh, et al. "CHOPPER: an intelligent QoS-aware autonomic

resource management approach for cloud computing." Cluster Computing

(2017): 1-39.

22. Sahal, Radhya, Mohamed H. Khafagy, and Fatma A. Omara. "A Survey on

SLA Management for Cloud Computing and Cloud-Hosted Big Data Analytic

Applications." International Journal of Database Theory and Application 9.4

(2016): 107-118.

23. Singh, Sukhpal, and Inderveer Chana. "QRSF: QoS-aware resource scheduling

framework in cloud computing." The Journal of Supercomputing 71.1 (2015):

241-292.

24. Buyya, Rajkumar, Rajiv Ranjan, and Rodrigo N. Calheiros. "Intercloud:

Utilityoriented federation of cloud computing environments for scaling of

application services." International Conference on Algorithms and

Architectures for Parallel Processing. Springer, Berlin, Heidelberg, 2010: 13-

31.

25. Kaur, Er Amanpreet, Bikrampal Kaur, and Dheerendra Singh.

"CHALLENGES TO TASK AND WORKFLOW SCHEDULING IN CLOUD

ENVIRONMENT." International Journal 8.8 (2017): 412-415.

26. Buyya, Rajkumar, Rodrigo N. Calheiros, and Xiaorong Li. "Autonomic cloud

computing: Open challenges and architectural elements." Emerging

Applications of Information Technology (EAIT), 2012 Third International

Conference on. IEEE, 2012: 3-10.

234

27. JongBeom Lim et al (2019),” Intelligent Resource Management Schemes for

Systems, Services, and Applications of Cloud Computing Based on Artificial

Intelligence”, J Inf Process Syst, Vol.15

28. J. Antony John Prabu (2019),” Performance Analysis of Proposed D1FTBC

Approach for Improving Consistency in Cloud Data Transactions”,

International Journal of Scientific & Technology Research Volume 8, Issue 08

29. Dr. Diwakar Ramanuj Tripathi (2019),” Analytical Study of Cloud Computing

Databases Performance on the Basis of Expenditure and Implementation

Time”, International Journal of Science and Research (IJSR)

30. Gawali, M.B., Shinde, S.K. Task scheduling and resource allocation in cloud

computing using a heuristic approach. J Cloud Comp 7, 4 (2018).

https://doi.org/10.1186/s13677-018-0105-8

31. Mitrevski, Filip & Pajkovski, Darko & Dimovski, Tome. (2017). Transaction

Processing Applications in Cloud Computing.

32. Qusay Kanaan Kadhim et al (2017),” A Review Study on Cloud Computing

Issues”,

33. Sultan Aldossary (2016),” Data Security, Privacy, Availability and Integrity in

Cloud Computing: Issues and Current Solutions”, International Journal of

Advanced Computer Science and Applications, Vol. 7, No. 4,

34. Artan Mazreka et al (2016),” Pricing Schemes in Cloud Computing: An

Overview”, International Journal of Advanced Computer Science and

Applications, Vol. 7, No. 2

35. Joundy, Manar. (2016). Improving Tasks Scheduling In Cloud Computing.

36. J. Antony John Prabu (2015),” Issues and Challenges of Data Transaction

Management in Cloud Environment”, International Research Journal of

Engineering and Technology

37. D. S. B. R. Kumar (2015),” Issues and Challenges of Data Transaction

Management in Cloud Environment”,

235

38. R. Velumadhava Rao (2015),” Data Security Challenges and It’s Solutions in

Cloud Computing”, Procedia Computer Science 48 (2015) 204 – 209

39. Usman Namadi Inuwa (2015),” The Risk and Challenges of Cloud

Computing”, Int. Journal of Engineering Research and Applications

40. Azim, Nesrine & El-Bastawissy, Ali. (2014). Transactions Management in

Cloud Computing. Egyptian Computer Science Journal. 38.

41. Nesrine Ali Abd-El Azim (2014),” Transactions Management in Cloud

Computing”, Egyptian Computer Science Journal Vol. 38 No. 1

42. Petter Svard (2014),” Dynamic Cloud Resource Management”,

43. Linlin Wu (2014),” SLA-based Resource Provisioning for Management of

Cloud-based Software-as-a-Service Applications”,

44. Shri V D Garde (2013),” Concurrency Lock Issues in Relational Cloud

Computing”, Network and Complex Systems

45. Pranita P. Khairnar (2013),” Cloud Computing Security Issues and

Challenges”, International Refereed Journal of Engineering and Science

46. Kashif Munir (2013),” Framework for Secure Cloud Computing”,

International Journal on Cloud Computing: Services and Architecture

47. Sindhu S (2011),” Efficient Task Scheduling Algorithms for Cloud Computing

Environment”,

48. Muhammad Usman Sana and Zhanli Li (2021),” Efficiency aware scheduling

techniques in cloud computing: a descriptive literature review”, PeerJ Comput.

Sci.

49. Fahd Alhaidari (2021),” Enhanced Round-Robin Algorithm in the Cloud

Computing Environment for Optimal Task Scheduling”, Computers

50. J. Kok Konjaang (2021),” Multi-objective workflow optimization strategy

(MOWOS) for cloud computing”, Journal of Cloud Computing: Advances,

Systems and Applications

236

51. Farooq Hoseiny et al (2021),” Joint QoS-aware and Cost-efficient Task

Scheduling for Fog-Cloud Resources in a Volunteer Computing System”,

ACM Trans. Internet Technol., Vol. 1, No. 1

52. Honglin Zhang (2021),” EHEFT-R: multi-objective task scheduling scheme in

cloud computing”,

53. Zeinab Shahbazi (2021),” Improving Transactional Data System Based on an

Edge Computing–Blockchain–Machine Learning Integrated Framework”,

Processes 2021, 9, 92. https://doi.org/10.3390/ pr9010092

54. Dinh C. Nguyen (2020),” Integration of Blockchain and Cloud of Things:

Architecture, Applications and Challenges”, IEEE Communications Surveys

& Tutorials

55. Rasha Makhlouf (2020),” Cloudy transaction costs: a dive into cloud

computing economics”, Journal of Cloud Computing: Advances, Systems and

Applications

56. Tahani Aladwani (2020),” Types of Task Scheduling Algorithms in Cloud

Computing Environment”,

57. Aida Amini Motlagh (2019),” Task scheduling mechanisms in cloud

computing: A systematic review”, International Journal of Advanced

Computer Science and Applications, Vol. 10, No. 5,

58. Preethi Sheba Hepsiba (2019),” Intelligent Scheduling of Bag-of-Tasks

Applications in the Cloud”,

59. Danlami Gabi et al (2019),” Minimized Makespan Based Improved Cat

Swarm Optimization for Efficient Task Scheduling in Cloud Datacenter”,

60. Simanta Shekhar Sarmah (2019),” Application of Blockchain in Cloud

Computing”, International Journal of Innovative Technology and Exploring

Engineering

61. Abhishek A. Singh et al (2019),” WedgeDB: Transaction Processing for Edge

Databases”,

237

62. J. Antony John Prabu (2019),” Performance Analysis of Proposed D1FTBC

Approach for Improving Consistency in Cloud Data Transactions”,

International Journal Of Scientific & Technology Research Volume 8, Issue

08

63. Gui Huang et al (2019),” X-Engine: An Optimized Storage Engine for Large-

scale E-commerce Transaction Processing”, SIGMOD ’19

64. Dr. Diwakar Ramanuj Tripathi (2019),” Analytical Study of Cloud Computing

Databases Performance on the Basis of Expenditure and Implementation

Time”, International Journal of Science and Research (IJSR)

65. Dileep Mardham (2018),” Cloud tr Cloud transactions and caching for impr

ansactions and caching for improved performance in formance in clouds and

DTNs”,

66. Aasha Begum (2018),” Database Transaction Processing with Effective

Locking Mechanism for Consistency in Cloud Database”, International

Journal of Computer Sciences and Engineering

67. Alejandro Zlatko Tomsic. Exploring the design space of highly-available

distributed transactions. Databases [cs.DB]. Sorbonne Université, 2018.

English.

68. AR. Arunarani (2018),” Task scheduling techniques in cloud computing: A

literature survey”,

69. Fatema Akbar Lokhandwala (2018),” A Heuristic Approach to Improve Task

Scheduling in Cloud Computing using Blockchain technology”,

70. Ankit Patel et al (2017),” Power-Aware Scheduling for Urgent Tasks in Cloud

Environment”, International Journal of Computational Intelligence Research

71. Mokhtar A. Alworafi et al (2017),” Cost-Aware Task Scheduling in Cloud

Computing Environment”, I. J. Computer Network and Information Security

72. Qiang Guo (2017),” Task Scheduling Based on Ant Colony Optimization in

Cloud Environment”,

238

73. Zhihao Peng (2017),” Energy-Aware Scheduling of Workflow Using a

Heuristic Method on Green Cloud”,

74. Mitrevski, Filip & Pajkovski, Darko & Dimovski, Tome. (2017). Transaction

Processing Applications in Cloud Computing.

75. Qusay Kanaan Kadhim et al (2017),” A Review Study on Cloud Computing

Issues”,

76. Jin Ho Park et al (2017),” Blockchain Security in Cloud Computing: Use

Cases, Challenges, and Solutions”, Symmetry

77. Yousri Mhedheb (2016),” Energy-efficient Task Scheduling in Data Centers”,

78. Sultan Aldossary (2016),” Data Security, Privacy, Availability and Integrity in

Cloud Computing: Issues and Current Solutions”, International Journal of

Advanced Computer Science and Applications, Vol. 7, No. 4,

79. Ali Gholami (2016),” Security and Privacy of Sensitive Data in Cloud

Computing”,4

80. Akon Samir Dey (2016),” Transactions across Heterogeneous Data Stores”,

81. Artan Mazreka et al (2016),” Pricing Schemes in Cloud Computing: An

Overview”, International Journal of Advanced Computer Science and

Applications, Vol. 7, No. 2

82. Chaowei Yang et al (2016),” Big Data and cloud computing: innovation

opportunities and challenges”,

83. D. S. B. R. Kumar (2015),” Issues and Challenges of Data Transaction

Management in Cloud Environment”,

84. III Albert Horvath (2015),” An Analytical Study Of Consumer Trust In Cloud

Computing”,

85. R. Velumadhava Rao (2015),” Data Security Challenges and Its Solutions in

Cloud Computing”, Procedia Computer Science 48 (2015) 204 – 209

239

86. Usman Namadi Inuwa (2015),” The Risk and Challenges of Cloud

Computing”, Int. Journal of Engineering Research and Applications

87. Ettazi, Widad and Hafiddi, Hatim and Nassar, Mahmoud and Ebersold, Sophie

A cloud-based architecture for transactional services adaptation. (2015) In:

International Conference onTechnologies and Applications (CloudTech 2015),

88. Azim, Nesrine & El-Bastawissy, Ali. (2014). Transactions Management in

Cloud Computing. Egyptian Computer Science Journal. 38

89. Vinit A Padhye (2014),””, Transaction and Data Consistency Models for

Cloud Applications

90. Padhye, Vinit A. (2014),” Transaction and data consistency models for cloud

applications”,

91. Shri V D Garde (2013),” Concurrency Lock Issues in Relational Cloud

Computing”, Network and Complex Systems

92. Jagirdar, Srinivas & Venkata, K & Reddy, Subba & Qyser, Dr. (2013). Cloud

Computing BASICS. International Journal of Advanced Research in

Computer and Communication Engineering. 1. 343.

93. Waleed Al Shehri (2013),” Cloud Database Database as a Service”,

International Journal of Database Management Systems (IJDMS) Vol.5, No.2

94. Pranita P. Khairnar (2013),” Cloud Computing Security Issues and

Challenges”, International Refereed Journal of Engineering and Science

95. Katarina Grolinger et al (2013),” Data management in cloud environments:

NoSQL and NewSQL data stores”, Journal of Cloud Computing: Advances,

Systems and Applications

96. Jichao Hu (2015),” Task Scheduling Model of Cloud Computing based on

Firefly Algorithm”, International Journal of Hybrid Information Technology

97. Lizheng Guo (2012),” Task Scheduling Optimization in Cloud Computing

Based on Heuristic Algorithm”, Journal of Networks, VOL. 7, NO. 3

240

98. Xiaoli Wang et al (2012),” Energy-efficient task scheduling model based on

MapReduce for cloud computing using genetic algorithm”, Journal Of

Computers

99. Dillon, Tharam, Chen Wu, and Elizabeth Chang. "Cloud computing: issues

and challenges." Advanced Information Networking and Applications

(AINA), 2010 24th IEEE International Conference on. Ieee, 2010: 27-33.

100. Qu, Chenhao, Rodrigo N. Calheiros, and Rajkumar Buyya. "A reliable and

costefficient auto-scaling system for web applications using heterogeneous

spot instances." Journal of Network and Computer Applications 65 (2016):

167-180.

101. Singh, Poonam, Maitreyee Dutta, and Naveen Aggarwal. "A review of task

scheduling based on meta-heuristics approach in cloud computing."

Knowledge and Information Systems 52.1 (2017): 1-51.

102. Jintao, Jiao, Yu Wensen, and Guo Lei. "Research on Batch Scheduling in

Cloud Computing." TELKOMNIKA (Telecommunication Computing

Electronics and Control) 14.4 (2016): 1454-1461.

103. Patel, Swachil, and Upendra Bhoi. "Priority based job scheduling techniques

in cloud computing: a systematic review." International journal of scientific &

technology research 2.11 (2013): 147-152.

104. Liu, Zhongli, et al. "Algorithm optimization of resources scheduling based on

cloud computing." Journal of Multimedia 9.7 (2014): 977-985.

105. Atiewi, Saleh, et al. "A review energy-efficient task scheduling algorithms in

cloud computing." Long Island Systems, Applications and Technology

Conference (LISAT), 2016 IEEE. IEEE, 2016: 1-6.

106. Alworafi, Mokhtar A., and Suresha Mallappa. "An Enhanced Task Scheduling

in Cloud Computing Based on Deadline-Aware Model." International Journal

of Grid and High Performance Computing (IJGHPC) 10.1 (2018): 31-53.

241

107. Nehru, E. Iniya, Saswati Mukherjee, and Abhishek Kumar. "Deadline-based

Priority Management in Cloud." Artificial Intelligence and Evolutionary

Algorithms in Engineering Systems. Springer, New Delhi, 2015. 745-751.

108. Dhari, Atyaf, and Khaldun I. Arif. "An Efficient Load Balancing Scheme for

Cloud Computing." Indian Journal of Science and Technology 10.11 (2017).

109. Zhang, Yi, and Baomin Xu. "Task Scheduling Algorithm based-on QoS

Constrains in Cloud Computing." International Journal of Grid and Distributed

Computing 8.6 (2015): 269-280.

110. Pop, Florin, et al. "Deadline scheduling for aperiodic tasks in inter-Cloud

environments: a new approach to resource management." The Journal of

Supercomputing 71.5 (2015): 1754-1765.

111. Shin, SaeMi, Yena Kim, and SuKyoung Lee. "Deadline-guaranteed

scheduling algorithm with improved resource utilization for cloud computing."

Consumer Communications and Networking Conference (CCNC), 2015 12th

Annual IEEE. IEEE, 2015: 814-819.

112. Peng, Zhiping, et al. "A Reinforcement Learning-Based Mixed Job Scheduler

Scheme for Cloud Computing under SLA Constraint." Cyber Security and

Cloud Computing (CSCloud), 2016 IEEE 3rd International Conference on.

IEEE, 2016: 142-147.

113. Khorsand, Reihaneh, et al. "ATSDS: adaptive two-stage deadline-constrained

workflow scheduling considering run-time circumstances in cloud computing

environments." The Journal of Supercomputing 73.6 (2017): 2430-2455.

114. Arabnejad, Vahid, Kris Bubendorfer, and Bryan Ng. "Scheduling deadline

constrained scientific workflows on dynamically provisioned cloud

resources." Future Generation Computer Systems 75 (2017): 348-364.

115. Toosi, Adel Nadjaran, Richard O. Sinnott, and Rajkumar Buyya. "Resource

provisioning for data-intensive applications with deadline constraints on

hybrid clouds using Aneka." Future Generation Computer Systems 79 (2018):

765- 775.

242

116. Arabnejad, Hamid, and Jorge G. Barbosa. "A budget constrained scheduling

algorithm for workflow applications." Journal of grid computing 12.4 (2014):

665-679.

117. Thanasias, Vasileios, et al. "VM capacity-aware scheduling within budget

constraints in IaaS clouds." PloS one 11.8 (2016): e0160456.

118. Rodriguez, Maria A., and Rajkumar Buyya. "Budget-driven scheduling of

scientific workflows in IaaS clouds with fine-grained billing periods." ACM

Transactions on Autonomous and Adaptive Systems (TAAS) 12.2 (2017): 5.

119. Chen, Weihong, et al. "Efficient task scheduling for budget constrained

parallel applications on heterogeneous cloud computing systems." Future

Generation Computer Systems 74 (2017): 1-11.

120. Shi, Jiyuan, et al. "Elastic resource provisioning for scientific workflow

scheduling in cloud under budget and deadline constraints." Cluster

Computing 19.1 (2016): 167-182.

121. Arabnejad, Hamid, Jorge G. Barbosa, and Radu Prodan. "Low-time

complexity budget–deadline constrained workflow scheduling on

heterogeneous resources." Future Generation Computer Systems 55 (2016):

29-40.

122. Verma, Amandeep, and Sakshi Kaushal. "A hybrid multi-objective Particle

Swarm Optimization for scientific workflow scheduling." Parallel Computing

62 (2017): 1-19.

243

List of Publication

1) “Tasks Scheduling with Virtual Machines of the Deadline-Aware Priority

Scheduling Model in Cloud Computing” Arvind Kumar Singh, Dr. Hitendra Singh

and Dr. Manish Varshney in International Journal of INTELLIGENT SYSTEMS

AND APPLICATIONS IN ENGINEERING, ISSN: 2147-6799, IJISAE, 2024,

12(8s), 123–127.

2) “The Significance and Diversity of Task Scheduling Methods in Cloud Computing

Platforms” by Arvind Kumar Singh, Dr. Hitendra Singh and Dr. Manish Varshney in

International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING, ISSN:2147-6799, IJISAE, 2024, 12(14s), 644–649.

244

Ph.D.

Computer

Science and

Engineering

Computer Science and Engineering

Maharishi University of Information Technology

Sitapur Road, P.O. Maharishi Vidya Mandir, Lucknow, 226013

Arvind Kumar Singh

Ph.D

(Computer
Science and
Engineering)

2017

M
O

D
E

L
S F

O
R

 IM
P

R
O

V
IN

G
 O

F
 SC

H
E

D
U

L
IN

G
 O

F

T
A

S
K

 A
N

D
 C

H
E

C
K

IN
G

 IT
S E

F
F

IC
IE

N
C

Y
 IN

C

L
O

U
D

 C
O

M
P

U
T

IN
G

