






































 

Abstract 
 

Cloud computing is becoming more important since it facilitates the transition of existing 

services from client-server architectures to cloud computing, in addition to allowing digital 

trading platforms. Providers and customers all across the globe have benefited from the 

technological and economic advancements made in this sector. Virtualization of services is 

becoming more important in a variety of industries, and digital marketplaces are being utilized 

for much more than the trade of physical items. Recent years have seen a rise in the frequency 

and severity of service disruptions for many prominent cloud providers, including Amazon 

Web Services (AWS), Microsoft Azure, and Google Cloud Platform. Human mistake, 

ineffective change control, and more lately, targeted cyber-attacks like distributed denial of 

service (DDoS) are all causes for these disruptions, which affect the whole supply chain and 

result in the temporary suspension of multiple widely used online services. These web-based 

solutions provide cloud service subscribers (CSS) with a platform that may be used to access 

and make use of various services in the cloud, such as computing, storing data, and 

communicating with other users. CSP and CSS sign a legally binding agreement, such as a 

Service Level Agreement, before any cloud service is implemented (SLA). A failure guarantee 

and service scope are included in the SLA. Either side to the SLA, often the CSP, has the option 

to terminate the agreement at any time. 

The use of SLAs as tools to establish and sustain trust in a society where interdependence 

between services is becoming more and more important is discussed. By identifying and 

resolving pertinent research issues, the thesis proposes general approaches to automate SLA 

lifecycle management. The techniques allow for adaptability in a dynamic corporate 

environment and may be localized using policy-based restrictions. Business models, services, 

and delivery technology are distinct ideas that may be delicately woven together by SLAs, 

according to a conceptual vision that arises from this effort. The message of this thesis is 

supported by experimental evaluations, which show that using SLAs as the cornerstones of 

market innovation and infrastructure regulation does, in fact, offer win-win scenarios for both 

cloud clients and cloud providers. It is also difficult to enforce SLA and prevent potential 

disputes and inappropriate behaviour during the exchange of cloud-based services because our 



proposed architectures utilize automated and engage with hardcoded procedures and 

verification mechanisms, incorporating a diverse set of trusted third parties and authorities. 

Keywords: Cloud Computing, Security Orchestration, Service Level Agreement, Generic 

Service Level Agreement, Security Orchestration Automation and Response, Fair Exchange 

Protocol, Low Level Metrics to High Level SLA, Detecting SLA Violation, Cloud Application 

SLA Violation Detection Architecture, Simple Bilateral Negotiation Protocol ,Service Level 

Agreement @ Service Oriented Infrastructure ,Security Incident and Event Management 

,Infrastructure as a Service, Platform as a Service , Software as a Service, Trusted Third Party 

, Unique Message Identification Number, Average Response Time, Protocol Engine ,Cloud 

Service Provider ,Cloud Service Subscriber 

 

 

 

 

 

 

 































































































 

47 
 

CHAPTER -2 

2.0 Literature Review 

 

Al-hamideh and E.W.G.(2022)The approach taken to assessing IaaS in the cloud was 

straightforward, time-consuming, and sequential. Tools included Iperf3, Netperf, MTR, 

WinSCP, and Putty; locations ranged from Canada to Tokyo; and there were three 

distinct server configurations tested: "general purpose," "memory optimize," and 

"compute optimize" (10,50,100). On par with, or parallel to, both of the competing 

service suppliers. 

Ravele et al. (2022)As a result of cloud computing, we now store all of our systems and 

data on remote servers located all over the world. The study set out to discover what 

elements are most indicative of successful cloud computing on the part of individual 

users, and how this relates to the overall performance of the platform. The cross-

sectional, descriptive, quantitative survey was carried out in communities across South 

Africa, and 254 responses were collected (with a response rate of 66.1%). The findings 

of the measurement model (SRMR = 0.071) showed that the quality of cloud computing 

platforms used by individual customers is best defined as a combination of low cost, 

dependability, adaptability, availability, security, and scalability. Convergent validity, 

reliability, and discriminate validity were all validated by AVE (0.575-0.694), CR 

(0.844-0.901), Fornell-Larcker criteria, and cross-loadings. Statistics show that there is 

a modest to medium impact size between how well the platform secures data and how 

well it scales, how reliable it is, and how fast it processes requests. An improved cloud-

computing-based domestication theory of technology has theoretical implications for 

understanding what's needed to adapt to existing environments and contexts. The data 

also shed light on how individuals were making cloud computing decisions. Ultimately, 

the research improves cloud computing for individuals by helping them realize that 

their own cloud computing decisions and values may differ from those of established 

businesses. 

Dadhich et al.(2021) The primary goal of this article is to identify the most influential 

technological, organizational, environmental, and economical components on library 

cloud computing (LCC) among library patrons and professionals at a set of Indian 



 

48 
 

colleges. In this study, we explore the merits, prospects, and threats, as well as the 

models, of a Smart Library in the information and communications technology era. To 

determine the strength of the links between the study's chosen components and LCC 

uptake, the researchers used exploratory factor analysis (EFA), canonical correlation 

(CC), and structural equation modeling (SEM). By focusing on the technical, 

organizational, environmental, and financial structures, as well as the 16 manifestations 

in the given model, empirical study has presented four theories. After developing the 

model, SEM-ANN was used to put it to the test using data from 510 students at 26 

public, private, and state institutions across India. The first step was to use SEM to 

identify the contributing factors of LCC. Second, the ANN output ranked the influential 

predictors found by SEM. The results also show that users and stakeholders can gain 

fresh insights from people's behavioral intentions while using a library's cloud services. 

 Sayginer, C.,& Ercan,T.(2020) Using the Diffusion of Innovation (DOI) and Theory 

of the Firm (TOF) models, this study will examine the internal and external factors that 

influence CC adoption decisions among businesses in Izmir, Turkey. This confirmatory 

study polled 176 IT decision-makers from companies in Izmir, Turkey, that either don't 

utilize the cloud or are already cloud users. The factors influencing the shift to cloud 

computing are analyzed with the help of SmartPLS 3.0. Summary of Major Results: 

Security and privacy worries, as well as cost savings, were shown to act as mediators 

of relative advantage for CC adoption, alongside the study's other identified factors of 

relative advantage—compatibility, complexity, and support from upper management. 

According to the results of the poll, both complexity and the backing of upper 

management are crucial for successful CC implementation. The model accounted for 

41.2% of the variance in CC uptake. The significance of these findings: It is anticipated 

that this research will be of help to those in company administration, sales, marketing, 

and IT infrastructure, as well as those developing businesses across a variety of 

industries. In particular, our research and the proposed approach will assist firms in 

making sensible CC adoption decisions. As the research also suggests, governments 

might make use of such frameworks to persuade cloud service providers to aid 

businesses during the decision-making and transition phases associated with CC 

adoption. 



 

49 
 

Wan Mohd Isa, et al (2020)  Few research have examined what factors affect the uptake 

of cloud computing in academic settings. However, there is a lack of awareness of the 

challenges associated with cloud computing adoption on campus. The primary goal of 

this research was to identify barriers to cloud computing adoption in a university 

setting. The study included a case study approach and qualitative interviews with key 

participants at a single public institution in Malaysia. The Atlat.ti software was used for 

the analysis. There are nineteen different elements, all of which have been assigned 

codes that fall under one of three broad headings: technological, organizational, and 

environmental. When deciding whether or not to utilize cloud computing, these are 

some of the considerations a public institution will make. The findings might serve as 

a benchmark for expanding cloud computing use in mobile education and computing. 

In the future, we hope to replicate this research at additional Malaysian institutions of 

higher education, both public and private. 

Islam, Chadni, et al. (2020) Security Operation Centers (SOCs) employ a wide range 

of techniques to detect, prevent, and respond to security attacks. Faster integration of 

security technology and operational duties is a big challenge for the SOC. Security 

Orchestration, Automation, and Response (SOAR) systems are being used by more and 

more enterprises to address this problem, but their design needs solid architectural 

backing. Our research on the advantages of architecture-centric support throughout the 

SOAR platform design process is presented in this article. Our method includes a 

conceptual model of the SOAR platform as well as a list of the major architectural 

design space criteria. We have shown the effectiveness of this method by building and 

releasing a Proof of Concept (PoC) SOAR platform for I automated security tool 

integration and (ii) automated activity interpretation to carry out incident response 

activities. We also provide a preliminary assessment of the suggested architectural aid 

for enhancing a SOAR's design. 

Chadni Islam (2020) Companies use a wide range of security measures to thwart 

cybercriminals. Different companies' security products use a wide range of technology 

and conceptual approaches. Thus, achieving seamless operation between different 

security measures is challenging at best. Security orchestration aims to help the security 

staff of a Security Operation Center by integrating multivendor security technologies 

that are able to interoperate rapidly and effectively (SOC). There has been an increase 



 

50 
 

in the amount of published content on various security orchestration systems due to the 

significance and relevance of security orchestration. However, little work has been put 

into thoroughly examining and assessing the purported answers. In this work, we 

provide the results of a multi vocal literature analysis that began in January 2007 and 

went through July 2017; it aimed to identify and analyze published academic and grey 

(blogs, websites, white papers) literature on a broad variety of security orchestration 

subjects. Based on these findings, we are able to define security orchestration and 

separate its core components into the categories of automation, orchestration, and 

unification. We have also broken down the factors that influence security orchestration 

into technical and socio-technical categories, as well as defined the components of a 

security orchestration platform. We also give a security orchestration taxonomy that 

classifies solutions according to execution setting, automation method, deployment 

type, task mode, and resource type. We were able to pinpoint several opportunities for 

further study and advancement in the subject of security orchestration by conducting 

this evaluation. 

 Hassan et al., (2019) The proliferation of cloud computing has forced a reappraisal of 

software distribution, development methods, and supporting infrastructure. Solutions 

that are adaptable, easy to manage, robust, and reasonably priced are all within reach, 

thanks to cloud computing. The rapid spread of cloud computing has prompted 

concerns about data safety. In a shared cloud environment with many other users, there 

are more opportunities for data and application theft. Several studies have been 

undertaken to evaluate the security challenges that cloud computing systems face, and 

a plethora of proposed solutions have also been made public. Increases in security 

threats need the creation of comprehensive security measures. This page discusses 

cloud computing from every angle, from the fundamental concepts to the most useful 

services. This research not only assesses the many threats to cloud computing security, 

but it also examines potential countermeasures. Also included is a brief summary of the 

relevant regulatory agencies and compliance requirements for cloud security. This 

presentation covers various unresolved research difficulties and barriers in the field of 

cloud security. 

Skafi, M., et al (2019)  The adoption of cloud computing is discussed, and a survey of 

the relevant literature is offered. The growing popularity of cloud computing amongst 



 

51 
 

enterprises worldwide, and in the MENA region in particular, highlights the 

significance of investigating the variables that are likely to affect the adoption of this 

computing paradigm amongst SMEs operating in a variety of industries and sectors. To 

achieve cost effectiveness and higher returns on investments in information 

technologies and systems, researchers largely agree that the Software as a Service 

(SaaS) model of cloud computing has a considerable influence. This computing model 

is still relatively new and contributes for a tiny fraction of overall IT spending, despite 

its rapid development compared to traditional computing models. The enablers and 

restraints influencing the option to adopt cloud computing are still an issue that needs 

to be addressed in the MENA region, especially in the SMEs segment of organizations. 

This literature synthesis does this by defining the facilitating and impeding factors that 

impact cloud computing adoption and by highlighting the knowledge gap about factors 

that may be especially relevant to Lebanon, a Middle Eastern country. The acceptance 

of cloud computing, investment in cloud computing services, enablers, difficulties, and 

cloud computing adoption in the MENA area were the main points of focus in a 

literature study of a few carefully chosen articles. Google Scholar was used as the first 

stop in the evaluation process, followed by other available research databases including 

EBSCOHOST, Emerald, and the ACM Digital Library. This page provides a 

bibliography of the most influential books published on these subjects, mostly between 

the years 2011 and 2017. We cover 22 papers here. The primary objective of this article 

is to provide academics in Lebanon and the MENA area with a framework for 

examining the factors that influence small and medium-sized enterprise (SME) 

adoption of the cloud computing paradigm. This study also outlines the primary 

theoretical frameworks used in this line of inquiry and the important factors that explain 

the dynamics that are driving or limiting adoption. By classifying reviews according to 

aspects emphasised and the theoretical framework employed by the authors, this study 

develops a model based on the synthesis done of the various components acquired from 

the literature and the relevant theoretical frameworks. 

Islam et al., (2019)  Businesses use several different types of security measures to 

prevent cyber attacks. The many different types of security solutions available today 

are the result of a wide range of technological and conceptual foundations. That's why 

it's so challenging, if not impossible, to achieve seamless operation across different 

security measures. Due to the importance and relevance of security orchestration, the 



 

52 
 

amount of written material on different security orchestration systems has increased. 

However, there has been little effort to properly examine and assess the alleged 

solutions. This research allowed us to define security orchestration and classify its core 

capabilities as either automated, orchestrated, or unified. We have also classified the 

variables that impact security orchestration into technical and socio-technical groups, 

and identified the core features of a security orchestration platform. 

Senarathna et al.,(2018) Cloud computing is a newer computing paradigm that provides 

high-end computer capabilities to organizations through the Internet for a pay-per-

service cost. It allows SMEs to catch up to their larger competitors in terms of 

technological innovation without making huge financial commitments. In this analysis, 

we analyzed the critical factors that influence the rate at which SMEs embrace cloud 

computing. The data was analyzed using a multiple regression model, and the results 

revealed that small and medium-sized enterprises were affected less by risk factors than 

by factors relating to improving their organizational competency. The findings might 

be useful for small and medium business owners, cloud service providers, and 

policymakers as they work to help SMEs migrate to the cloud. 

Mubeen, et al., (2017) Technology advancements in the realm of computing, such as 

cloud computing and the Internet of Things (IoT), have enabled businesses to better 

respond to consumer demand and market shifts by providing a wider range of services 

to their customers. Therefore, it is essential for service providers and service consumers 

to establish QoS via Service Level Agreements (SLAs) for such cloud-based services. 

Since SLAs are essential for cloud deployments and increased usage of cloud services, 

their management in cloud and IoT has become an important and fundamental 

component. SLA management for cloud-based IoT applications is explored in this 

article. Systematic Mapping studies are used by academics as a regular process for 

sorting through the literature in search of studies that are relevant to SLAs. Major 

research on service level agreements (SLAs) is broken down into seven technical areas 

(SLA management, SLA definition, SLA modeling, SLA negotiation, SLA monitoring, 

SLA violation and trustworthiness, and SLA evolution), with a total of 328 papers 

listed. Research methods, key results, and demographics of study participants are also 

summarized in the report. The review of the data reveals that most approaches to 

managing SLAs are used in academic or controlled research with constrained industry 



 

53 
 

settings rather than in actual industrial settings. There has been a lot written on SLA 

management, but practitioners still have a hard time since the evolution perspective 

hasn't been well explored and there isn't enough tool support. Very few studies have 

also concentrated on genuine metrics for qualitative or quantitative evaluation of QoS 

in SLAs, hence there is an urgent need for research into the development and 

measurements of metrics for SLAs. 

Kanagasabapathy et al., (2016) In cloud computing, you're supposed to pool your 

resources for maximum efficiency. Being adaptable, cheap, and quick to store data, it 

has quickly become one of the most popular services on the web. The widespread use 

of third-party cloud service providers raises security concerns. Since they go over the 

same traditional network protocols as cloud data, if those protocols are hacked, cloud 

data is equally at danger. This research looks at the major security issues with cloud 

computing and offers solutions to them. 

RadhyaSahal et al., (2016)  A new form of computing called cloud computing uses a 

layered paradigm and offers its users a variety of services. The idea behind cloud 

computing is to provide a scalable platform for Big Data Analytic Applications 

(BDAAs) that may elastically provide resources dependent on the complexity of the 

analytic applications and the expansion of the data. Large data quantities and huge 

businesses' preference for quick, efficient decision-making cause the complexity of 

analysis to rise. In order to clarify the duties between a client (such as a cloud user or a 

big data analyst) and a provider for a certain service supply, the relevance of Service 

Level Agreements (SLAs) has emerged. A set of Service Level Objectives (SLOs) must 

be met, and Quality of Service metrics must be monitored to find breaches. In fact, a 

variety of SLA management techniques have been created as remedies for preventing 

SLA infractions to avoid exorbitant fines. As a result, several creative ways for 

managing SLA violations in cloud technology and cloud-hosted BDAAs were created. 

In this study, an overview of the ideas, benefits, and drawbacks of the existing works is 

presented. To give a thorough overview and a big-picture perspective, the obstacles and 

fresh research paths in this field that need more examination will be presented in the 

meanwhile. 

Conte de Leon et al., (2016)  Today, sensitive data and systems, such as intranets and 

crucial control systems, are accessed and modified via web browsers. Browsers are 



 

54 
 

susceptible to a variety of assaults because of their processing power and network 

connection, even when they are properly patched. Phishing attacks mainly target 

browsers as well. By utilizing site-, user-, and device-specific security measures in a 

varied browsing ecology, many browser assaults, including phishing, might be avoided 

or lessened. However, our study showed that the security configuration processes, 

option names, values, and meanings exposed by all the main browsers differ. As a 

result, the browsing ecology becomes very challenging to safeguard. In three main 

browsers, we thoroughly examined more than a thousand security configuration 

choices, and we discovered that just 17 of them had names and meanings that were 

widely used. We outline the findings of our in-depth investigation in this publication. 

We also discuss Open Browser GP, a knowledge-based program that would let 

businesses set up extremely specific safe configurations for their information and 

operational technology (IT/OT) browsing ecosystem. 

Fiaz Khan (2016) Global consumers can access scattered resources using cloud 

computing. Scalable design seen in cloud computing offers firms in several industries 

on-demand services. However, there are several difficulties with using cloud services. 

For various types of issues present in cloud services, many approaches have been 

presented. In order to address the issues with SLA, this study examines the many 

models for SLA in cloud computing that have been presented.  

Garg, Radhika & Stiller (2015) There are several aspects to consider when deciding 

whether or not to embrace cloud-based technologies in a particular IT (Information 

Technology) environment. In order to properly deploy cloud-based services and assess 

their subsequent impact, it is necessary to identify key parameters that signal the 

performance of such services. The purpose of this study is to examine and identify the 

technological, financial, and administrative considerations that are important. This is 

exploratory study that entails (a) reading up on cloud computing and (b) doing various 

case studies with 17 companies who have already implemented or are considering cloud 

computing. This research also addresses the intricacy and interdependence of these 

aspects, since they are not independent of one another. 

De Marco et al.,(2015) A legal document known as a Service Level Agreement governs 

the provision of cloud computing services (SLA). It is signed by both the client and the 

service provider after a period of negotiation, and both parties must abide by certain 



 

55 
 

stipulations while the contract is in effect. Cloud services are widely utilized, but they 

are also often exploited, especially by cybercriminals. In rare cases, criminal acts may 

result in a breach of a contract's terms, even if the parties involved were unaware of the 

breach. A specialized system communicating with the cloud services and identifying 

the SLA breaches by analyzing the log files is one way to ensure better control over the 

SLA respect. As part of an automated technique for identifying SLA breaches, we 

develop a formal model to express the contents of such SLAs. 

V. Binu& N. Gangadhar Binu (2014)  When it comes to the service-oriented business 

model at the heart of Cloud Computing, Service Level Agreements (SLAs) are crucial. 

There must be a technique for negotiating and monitoring service delivery in SLA 

frameworks for cloud computing. For SLAs to be effective and widely accepted, they 

must be monitored in a reliable and safe manner. This article creates a Service Level 

Agreement (SLA) Framework that uses a third-party to negotiate and implement a 

secure system for monitoring compliance. We conduct a reference implementation of 

the Framework and utilize it to create a case study of a cloud-hosted video Trans- 

coding service provider. The case study demonstrates how useful the established 

framework is for developing SLAs for the kinds of complicated scenarios typically 

encountered while utilizing cloud computing services. The Service Level Agreement 

(SLA) service criteria used to define services are characterized via the lens of workload 

characterization. 

S. Sen et al (2013) Cloud computing is revolutionizing the use and administration of IT 

by providing advantages such as lower costs, quicker innovation and time to market, 

and scalable on-demand application expansion. Our primary concerns are with cloud 

computing's security, privacy, and regulation. The future of cloud computing is briefly 

discussed, and some approaches are offered to addressing the issues that have been 

raised. 

Andr´esGarc´ıa-Garce´ıa, et al., (2013), “SLA-Driven Dynamic Cloud Resource 

Management” presents the cloud compass framework could be dynamic adopted the 

for quality-of-service violations. The work contribution Cloud compass manages the 

resource lifecycle of SLA aware Pass Cloud platform. 



 

56 
 

A.S.Ferreira et al., (2013) presents a security monitoring architecture for the IaaS 

service model that is based on SLA. The monitoring strategy does not need the host to 

have a monitoring agent installed. Due to the method for checking the effectiveness of 

the deployed resources, the task can assist the management and execution of the Phase. 

Additionally, it aids in negotiation and deployment thanks to resource deployment 

based on security SLAs and security parameter specification thanks to a method for 

expressing security rules in SLAs. 

Blasi et al.,(2013) the cloud market is rapidly evolving, resulting in the introduction of 

new services, methods for delivering services, and interaction and cooperation models 

between cloud providers and service ecosystems that utilize cloud resources. The rules 

of engagement for the participating businesses are laid out in Service Level Agreements 

(SLAs), which regulate the afore-mentioned interactions. 

K. W.Ullah et al., (2012) This article introduces an automated technique for assessing 

cloud service providers' conformity with established security standards. It reveals the 

specifics of the safety measures provided by the cloud service. 

J.Luna,et al.,(2012) “Benchmarking closed security level agreement using quantitative 

policy trees” presents a qualitative and quantitative method in security SLA between 

cloud provider and consumer. Evaluation security requirement based on Quantitative 

policy tree. The work contribution in specification and definition, negotiation in 

security parameter.  

C.A.Silva,et al.,(2012)Evaluation of cloud resource provisioning according to 

hierarchical security metrics is proposed in "A methodology for management of cloud 

computing using security criteria." The GQM (Goal-Question-Metric) method is used 

to create the hierarchical metrics. Because of the security metrics that are created and 

can be stated in SLAs, Phase 2 is facilitated, allowing for service provision based on 

security needs and specification of security metrics. 

The VEP (Virtual Execution Platform) is described by Y. Jegou et al.,(2012) Managing 

of apps under sla limitations on contrail," and is responsible for allocating IaaS 

resources according to the SLA's specifications. It is also VEP's job to keep an eye on 

the deployed instance over its whole lifetime. This effort contributes to Phase 2 through 



 

57 
 

execution and management monitoring of the deployed instance's execution based on 

security SLA requirements. 

Salman Baset (2012) With so much variation across cloud service providers, we 

wondered how these SLAs stack up against one another and how they need to be set for 

the future of cloud computing. In this article, we'll dissect a cloud SLA into its 

component parts so you may evaluate the terms offered by different public cloud service 

providers. According to our research, customers are responsible for detecting SLA 

violations and none of the assessed cloud providers provide any performance 

guarantees for compute services. As a follow-up, we offer recommendations for the 

future definition of SLAs for cloud services. 

Nie, Guihua et al., (2012) More and more people are switching to cloud services 

because of the convenience and lower upfront costs associated with cloud computing. 

The parties to a cloud computing service should enter into a service level agreement 

(SLA). It has the potential to standardize the monetary terms of the partnership while 

also ensuring the highest possible standard of cloud service delivery. The authors offer 

a web service level agreement–inspired approach for cloud service agreements. Both a 

management and a coordination model are a part of this. The cloud service may be 

created, released, measured, evaluated, managed, and discontinued mechanically. 

Stankova et al., (2012) We examine SLAs for cloud computing services, focusing on 

those offered by infrastructure-as-a-service (IaaS) providers and available on their own 

websites. The goal is to examine whether or not SLAs actually serve as instruments that 

boost trust. There has not been as much general adoption of cloud computing as there 

could be because many decision makers do not trust the technology or the providers 

enough to do so. By fostering confidence, we may speed up the development of cloud 

computing. The most important facets of trust are covered, together with the standard 

qualities outlined in SLAs. The next section presents a review of the SLAs that are 

actually used by IaaS providers and may be found on their websites. One conclusion is 

that few providers now make use of SLAs to their full potential as trust-building tools. 

 Takabi et al., (2011) Although the cloud computing paradigm is still under 

development, it has lately accelerated significantly. However, the main obstacle to its 

rapid adoption is security and privacy concerns. The authors of this paper discuss 



 

58 
 

security and privacy issues that are made more difficult by the peculiarities of clouds 

and demonstrate how these issues relate to various delivery and deployment 

approaches. They talk about alternative strategies to deal with these issues, current 

fixes, and upcoming work required to deliver a reliable cloud computing environment. 

 J. L.Gracia et al., (2011) A security metrics framework for the cloud   proposed a 

framework to develop security metrics for evaluation by cloud provider, taking into 

cloud service model and deployment. This work contributes definition and specification 

of security parameter in SLA Lifecycle. 

Rajkumar Buyya et al., (2011) SLA-Oriented Resource Provisioning for Cloud 

Computing: Challenges, Architecture, and Solutions presents architecture, vision and 

challenges of SLA orientated resource management in cloud computing. SLA oriented 

resource improve the system efficiency and minimization the SLA violation of service 

provider.  

 Mohammed Alhamad et.al., (2010) SLA-Based Trust Model for Cloud Computing  

advocated the novel trust model collaborate with the conceptual SLA framework for 

cloud computing Different domain of cloud service provider evaluate the reliable 

resource to domain of cloud user. 

Artur Andrzejak et al., (2010) Decision Model for Cloud Computing SLA constraints 

proposed the probabilistic model for optimization of reliability ,monetary cost and 

performance for dynamic condition. The work contributes Cloud SLA constraint given 

resource availability for job compilation. 

 
 
 
 
 
 

 



 

59 
 

CHAPTER 3 
 

Execution Of Negotiation Protocols And Sla-Resource 

Manangement In Cloud Computing Framework 

 

3.1 An Approach To Negotiation Protocol Development And Use 

 

This section offers a general solution to the issue, namely the creation and use of 

negotiation protocols. This section draws on the author's published works. As was 

stressed, there is market demand in cloud services with additional value that are QoS-

based. This highlights the usefulness of Service Level Agreement (SLA) discussions, 

which enable customization of service requirements and the acquisition of necessary 

resources across the value chain. To reduce their liability, carriers already provide 

rigorous take-it-or-leave-it SLAs. Take-it-or-leave-it SLAs have been condemned by 

the European Cloud Computing Strategy as being unfavorable to users and have been 

replaced with phrases like data integrity, confidentiality, ownership, and service 

continuity. The US government's cloud computing policy makes similar requests.[36] 

This research frames agreements as flexible business models that can leverage the ever-

changing nature of clouds to sell individualized services that offer value for customers. 

A negotiating protocol is a predetermined procedure for making a proposal of a certain 

value. Additionally, the European Commission recommended that service providers 

"allow runtime adaptability via dynamic automated SLA (re)negotiation procedures" in 

its 2013 exploitation report on cloud computing SLAs. Here, SLA talks bolster the on-

demand acquisition of cloud services. Advantages are compounded when a SLA is 

negotiated. For instance, it may be necessary to modify your business plan or account 

for swings in demand by renegotiating your present SLAs. Negotiation strategies are 

used as business models to distinguish various services. For instance, by allocating 

spare resources (referred to as spot instances) through a bidding process, Amazon 

developed a distinct cloud market for fault-tolerant applications. EBay is a similar 

platform for exchanging products that operates on an auction model. As long as price 

is the only topic of discussion during negotiations, these processes lack the idea of SLA. 



 

60 
 

This encourages the use of multi-round SLA agreements as a workable market segment 

for cloud or cloud-based services.[37] 

Specific market niches are targeted by protocol-governed electronic marketplaces, such 

as spot instances, which don't replace on-demand or reserved instances markets. 

Additionally, it is true that no one protocol can address every possible negotiating 

circumstance. It is suggested that eventually, a system of marketplaces employing 

various protocols would evolve rather than a single protocol or central marketplace. But 

creating and using several protocols is still a difficult task. The majority of earlier 

efforts have only used one protocol. Diversification is hampered by this rigidity, which 

is made worse by three problems. First, research on protocol development has been 

quite subjective, focusing on the steps of specifying, validating, and implementing in 

split or case-based ways. Second, business configurations frequently mix up the 

architecture of the protocol and prevent its reusability. Thirdly, it might be challenging 

to guarantee that the protocol will be followed exactly and consistently by all 

participants. In keeping with that, this part offers a general-purpose framework for 

initiating and carrying out negotiation procedures. Our method seeks to coherently 

amalgamate essential ideas from the design, verification, and implementation phases of 

protocol development. It is based on a comprehensive examination of the previous art 

and needs from the SLA@SOI use cases. The aforementioned features are clearly 

covered: 

• Creating protocol specs that can be tested for correctness and other features. 

• Domain-specific hooks for parametric setting of the protocol to enable tailoring 

of negotiation sessions via code flexibility. 

• Interoperable protocol execution without hitches. 

The following are some of the specific contributions made to address these issues and 

fill in some of the gaps in the state of the art: 

1. One, a methodology that can be used to the whole process of designing and 

deploying negotiation protocols, which treats them as objects that can be 

independently verified and interpreted by machines. As an example, we 

introduce the Simple Bilateral Negotiation Protocol (SBNP), a multi-round, 

flexible protocol used in SLA@SOI use cases and seen in action in the context 



 

61 
 

of the cloud value chain use case. 

2. The ability for geographically dispersed parties to use the same negotiating 

platform to carry out the same protocol with the same results. 

3. A verification-based assessment demonstrating the protocol's effectiveness if 

value chains are coordinated on a centralized marketplace. 

3.1.1. SLA management framework 

 

In the course of working on SLA@SOI, a framework for Generic SLA Management 

(GSLAM) was developed. The GSLAM platform automates SLA management across 

IT infrastructure. In Fig. 1, we see a simplified version of the overall architecture of the 

GSLAM framework. Generic parts are included within the dashed line; the remaining 

parts must be tailored to the provider domain by implementing the appropriate 

interfaces.[38] 

 

Figure 3.1.: Framework of Generic SLA Management 



 

62 
 

The Protocol Engine, a platform for negotiations, is a crucial component of the GSLAM 

implementation. Section below provides an explanation of its structure and operation. 

A storage for existing SLAs is provided by the SLA Registry component. Information 

about the provider's service landscape, licensing, dependencies, and resource 

requirements across service tiers is kept in the Service Manager Registry. The Planning 

and Optimization subsystem acts as the pilot when putting into action decision models 

for negotiating or consolidating and managing resources.[39] 

In a nutshell, the framework facilitates effective communication, collaboration, and 

platform development and maintenance amongst geographically separated partners that 

are bound by a service agreement. To do this, individual modules must locate one 

another and establish communication channels through their respective SLA Managers. 

To locate and disseminate a provider's SLA templates to interested parties, the SLA 

Template Registry employs a broker component of it’s publish/subscribe based 

marketing system. This results in the open cluster of widely spaced SLA Managers seen 

in Fig. 3.2. 

 

Figure 3.2.: SLA Template Discovery by SLAM Advertisement System 

 



 

63 
 

3.1.2 Development of Negotiation Protocols 

 

We express the following prerequisites for protocol design based on our usecases and 

an extensive examination of pertinent literature. 

 R1 Interaction and negotiation scenario: SLA dependencies, such as the delivery 

of infrastructure or software from other providers, may be present in service 

proposals. A conversation is intended to include parties in this negotiating 

scenario. 

 R2 Visual descriptions are simple to understand, but formal descriptions clear 

up any confusion. 

 R3 Functional and non-functional aspects: Non-functional characteristics like 

state space development and inconsistent states must be checked for in a 

protocol. Similar checks must be made for accuracy requirements. 

 R4 Implementation: The interaction is carried out in machine executable form 

according to a confirmed protocol. 

We propose a systematic protocol development lifecycle with four stages—modeling, 

verification, implementation, and general execution—to fulfill these needs everywhere. 

In order to illustrate these steps, we propose the SBNP protocol to be used in the 

negotiation.[40] 

Situations under which negotiations take place: The success of a negotiation depends 

on the characteristics of the scenario being discussed. Our situation was based on the 

cloud value chain use case. The common practice of chaining among SaaS, PaaS, and 

IaaS providers simplifies the purchasing process for the consumer. To counter this, the 

PaaS provider has the ability to dynamically expand the PaaS cloud by, for instance, 

incorporating more (or removing existing) virtual resources from participating IaaS 

providers in the PaaS federation. 

Cloud value chains offer a practical setting in which to negotiate service level 

agreement (SLA)-based procurement over the whole life cycle. The ultimate (SaaS) 

customer has QoS concerns. As illustrated in Fig. 3.3, a PaaS provider's service level 



 

64 
 

agreement (SLA) duties relate to the quality and number of PaaS resource containers 

that the PaaS provider must make available to its customers. At each tier, negotiations 

take place to resolve any SLA issues and prevent over- or under-procurement of 

resources.[41] 

3.1.2.1.Modelling 

 

Sequence diagrams have been used to represent interaction behaviors in protocol 

specifications for ICNP and WSAG/N. Sequence diagrams have the drawback of only 

capturing incomplete activities. Though vital, seeing a relationship is insufficient. 

Unambiguity may be removed using a modeling technique that can be formally 

described, and automated verification can be used to weed out inconsistencies and 

undesirable behaviors.[42] 

As a result, we employ Communicating Finite State Machines (CFSM), which may 

abstractly address these needs to variable degrees. Bilateral protocols with "sender" and 

"receiver" process roles are of special interest to us. We now use CFSM to demonstrate 

how these processes interact with one another. 

 

Figure 3.3.: Negotiation scenario and SLA dependencies 



 

65 
 

The very first thing that happens throughout the modeling process is the discovery of 

feasible states. In order to precisely characterize an interaction, we propose a finite set 

S = "waiting, initiate, renegotiation, initialized, customized, negotiate, negotiated, 

decide, cancel, terminate, and agreed." Sender and receiver CFSM for SBNP are 

depicted in Fig. 3.4(a) and Fig. 3.4(b), respectively (b). There is a clear distinction 

between the request state and the response state, and messages trigger transitions 

between both.[43] 

Finding the messages that can be sent to the states is the second step. In response, we 

offer a list of messages, which are listed in Table 3.1 along with an explanation and 

their alphabetic abbreviation. The negotiation interface that results from messages has 

a crucial relationship with it. The claim is that the suggested states and messages can 

be expanded or reused to create new protocols. 

The third step is where protocols' parametric configuration is dealt with. Six parameters 

were identified; they are listed in Table 3.2. This allows for the setting of various 

parameter values for various negotiations.[44] 

For this reason, we provide a partial CFSM formalism for SBNP, a two-way (client-

server-like) protocol. We define SBNP as a network of CFSM(s) A such that each 

machine in this network represents one negotiating agent, given the set of states' S and 

a non-empty finite set of negotiating agents A = {a0, a1,..., an}. Agent and machine 

mean the same thing in this setting. This means that every a ∈ A 

𝐴 =  (𝐴, 𝐼, 𝐹) 



 

66 
 

 

(a) Sender 

 

(b) Receiver 

Figure 3.4.: Simple Bilateral Negotiation Protocol (SBNP) 

 

 



 

67 
 

Table 3.1.: Protocol States, Messages and Alphabets  

State Message Alphabet Describition 

Waiting  - -  Wait for negotiation commencement request 

Initate intiateNegotiation I Request to initiate negotiation 

Renegotiate renegotiateAgreement r Request to renegotiate an existing SLA 

Initialized  -  - Response state for initate and renegotiate 

Customize customizeParameters u Resquest to modify protocol's default parameters 

Customized  -   Response state for customize 

Negotiate Negotiate o Request that provides an SLA offer 

Negotiated  - -  Response state for negotiate 

Cancel cancelNegotiation c Resquest to gracefully cancel negotiation session 

Decide create Agreement a Request create an SLA of proposed(final) offer 

Terminated  - -  Response state that ends negotiation unsuccessfullt 

Agreed  - -  Response state that ends negotiation successfully 

 - successfully response s A positive response message 

 - Unsuccesful response e A negitive  response message 

 

Table 3.2.: Protocol Parameters 

Parameter                    Descripition 

Process Timeout Life time of negotiation process 

Customization 

Rounds Rounds for fixing protocol parameters 

Negotiation Rounds Rounds for exchanging offers 

Max Counter Offers Offers sent as response to received offer 

Optional Critique On 

Qos 

Critique on term value e.g.., increase,decrease,change or 

acceptable 

Quiescence Time Inactivity time among negotiating agents 

Chain Length Allow  length of negotiation service chain 

 

 



 

68 
 

Aa=(Sa, →) is a finite state machine                   

Sa is a set of local states 

→⊆ × Act a × Sa is a set of local transitions 

Acta ⊆ Act is a  set of local actions 

I is a non –empty set of global final states 

F is a non-empty set of global final states 

The set Act = {send, receive}is a collection of A's linguistic behaviours employed by 

its local transitions to convey Aa from one state to another. All interactions between 

agents occur via FIFO channels, where messages arrive and are processed in reverse 

order of receipt. Agent ai and ai+1 communicate over a channel c = (ai, ai+1) and c’ = 

(ai+1, ai) where 1 ≤ i< n.  To convey message m from agent a to agent b, the action send 

has been specified ai+1 as 𝐴𝑐𝑡
! = (c!m). The analogous action, receive, is defined at agent 

ai+1 to pick up the old message as𝐴𝑐𝑡ାଵ
?   = (c?m). Similarly, send is defined for agent 

ai+1 as 𝐴𝑐𝑡ାଵ
! = (c’!m).For Agent A, the equivalent send is defined as𝐴𝑐𝑡ାଵ

?  = (c’?m). 

Then, Ch = c, cj is a set of outgoing and incoming channel per agent-pair.  The message 

m ∈ Σ where Σ = {i, r, u, o, c, a, s, e} consists of a group of letters used for sending and 

receiving.[45] 

3.1.2.2  Interactions and Marketing Enablements 

 

The structure of SBNP interactions is depicted in Figs. 3.4(a) and (b). Until a 

negotiation session is formed, the receiver process (the provider) remains in the waiting 

state after the sender process (the customer or the provider) invokes the commence 

Negotiation or renegotiate Agreement message. The negotiate message makes it 

possible to make many (non-binding) offers and counteroffers. By default, a negotiation 

platform will enforce a provider's preferred settings for negotiation parameters. 

Through the customize, SBNP also offers an optional interaction. Prior to the exchange 

of offers, parameters messages are sent between the parties to adjust parameter values. 

The cancel Negotiation message command can be used to end a negotiation. The final 

(binding) SLA offer is submitted using the create Agreement message. If the recipient 

agrees to the terms of the SLA, the agreement is generated and sent back. To further 

understand how SBNP facilitates a negotiation (value) chain, consider the hypothetical 

situation shown in Fig. 3.5. [46] 



 

69 
 

 

Figure 3.5: Negotiation Chain enabled by SBNP 

A single operation may include several contacts. For instance, interactions including a 

single offer, many rounds, and customized multiple rounds are supported by SBNP. 

Interaction design reflects the service offer. SBNP performs effectively for ideas that 

only require one stage. However, identical procedures may be used to design protocols 

that enable multistage proposals. Consider a SaaS-IaaS proposition. After the first step, 

in which IaaS resources like storage are addressed, a second stage is optionally done to 

negotiate QoS for file synchronization and management services, such as own Cloud 

(SaaS), to be delivered over bought storage. Afterward, based on whether each 

negotiation step is optional or necessary, special service proposals can be developed. 

The development of service proposals using SLA aggregation techniques has been 

proposed. These may be utilized to develop novel negotiation procedures that allow for 

the inclusion of both the consumer and the supplier in the resolution of aggregation 

points.[47] 

 

 



 

70 
 

3.1.2 .3. Verification 

 

As has already been mentioned, protocols must be validated before use. We use 

propositional dynamic logic as opposed to Spin model checker. If you want to use Spin, 

you'll need to have a protocol model that's been expressed in PROMELA abstract 

syntax. PROMELA provides in-built primitives for encrypting processes, states, 

channels, and messages sent between any numbers of processes. Based on the 

PROMELA description, Spin constructs the protocol graph and exhaustively explores 

all of its edges to see whether the correctness behaviors specified by LTL (linear 

temporal logic) attributes are respected or disregarded. Due to these characteristics, 

Spin may be used to validate not just SBNP but any CFSM protocol model. Considering 

the breadth and depth of the subject matter, we are confined to discussing only three 

specific contributions that have been overlooked by the existing literature. [48] 

1. Spotting problems with the procedure before it's put into action or during 

operation. 

2. Assessing the development of state space. 

3. Establishing correctness properties in LTL form. 

3.1.2 .4. Error Detection 

 

No inconsistencies, such as undefined receptions or acceptance cycles, were found 

during SBNP's spin verification run. Progress cycles are defined for periods of 

negotiation and customization, which indicates the existence of a limit in practical 

application. As a result, Spin does not flag cyclic faults. SBNP is a secure protocol since 

there are no deadlocks or live locks. 

However, the controller component, which powers the negotiation platform, is 

responsible for some control activities in negotiation systems. Retransmitting a message 

if it is not promptly responded to is standard procedure at this level, as long as the 

allotted time for negotiations or the number of rounds are not exceeded. Through non-

determinism, such control scenarios may be simulated via PROMELA/Spin based 

verification. This powerful feature enables the detection of flaws in the planned runtime 

use of the protocol. A transition (referred to as timeout) was added to the SBNP 

verification program using this non-determinism. Using this change is similar to what 

a timeout would accomplish in a real system; the message is resent. Timeout transitions 



 

71 
 

like this one are shown in Fig. 3.6, which depicts their usage during the sender's 

negotiate phase, while waiting for a response. 

As soon as Spin tested the new protocol model, it found deadlocks. Spin independently 

confirmed the error's specific nature. It's possible that the new change may cause 

messages to be repeatedly resent, leading to a backlog at the receiver. A single (late-

arriving) wrong response to an earlier offer may force the receiver to transfer to the 

terminated state while it is still active, prompting the sender to change to the decide 

state. And if the receiver accepts the late agreement request after the sender has already 

terminated, the ensuing SLA will be unilateral. This kind of inconsistency (invalid final 

states) is unacceptable. Therefore, in this study, "Process Timeout" was chosen as a 

more secure alternative, with request level quiescence at the negotiation states being 

optional.[49] 

 

Figure 3.6.: Timeout at Sender 

If a request or answer is lost, the machine will continue in its present state until the 

"Quiescence Time" option expires, at which time the communicating parties will cease 

the session willingly to prevent inconsistencies. 

 

3.1.2 .5. Evaluating Protocol Scalability 



 

72 
 

 

While the SLA@SOI architecture is primarily intended for decentralized bargaining 

groups, its recommended negotiation platform may also be used to set up centralized 

marketplaces like eBay or Amazon. In contrast to current systems, the proposed work 

centre on linked negotiations, in which one provider agent's interactions with clients 

often spark off further conversations between that agent and other registered providers 

in the marketplace. In this case, determining the scaling requirements of a protocol is 

essential for dealing with memory issues. Keep in mind that a CFSM network is built 

up of paths that FSMs take to communicate with one another (representing client and 

provider agents). In this case, the term "scalability" of an SBNP refers to the fact that 

the number of states in a CFSM network will increase as more agents join the 

negotiation chain (see Fig. 3.5). Expanding the state space in the worst possible way 

involves.[50] 

ෑ(|#FSM states| ෑ |𝑑𝑜𝑚(𝑦)|) ෑห𝑑𝑜𝑚൫𝑐൯ห


ೕ

 



ୀଵ

௬∈



ே

ୀଵ

 

According to our experiment conducted with SBNP's PROMELA program, the values 

of these variables have been adjusted accordingly. Spin uses this to model a series of 

negotiations in a chain. The software may make use of the variable set V to implement 

the PROMELA abstract syntax protocol automata. For the purpose of verification, these 

parameters are not included in the graphical (CFSM) model. The number of links in the 

chain, N, is the number of agents. States in the SBNP transmitter and receiver 

automatons, abbreviated "FSM states," number 12. As a single variable, y V, was 

employed for both transmission and reception. 

Since the starting agent in a negotiation chain is simply concerned with recording 

whether or not a response was effective, its dom(y) is 2. In order to hold the six potential 

messages in SBNP and the two possible answers, the dom(y) for agents midway down 

the chain must equal 8. Finally, the agent at the end of the chain has dom(y) = 6 since 

it has no further processing requirements beyond storing messages. Each of the K 

channels has its own unique domain, denoted by dom(cj). Each agent-pair has two 

channels, with dom(c) = 6 for outgoing channels carrying the 6 potential messages and 

dom(c) = 2 for incoming channels carrying the 2 possible answers. The term "capacity 



 

73 
 

per communication junction" (capcj) is used to describe the maximum amount of 

messages that may be exchanged in a certain period of time, such as a single negotiation 

cycle. 

Spin distils state space by using partial order reduction to generate only reachable 

protocol states. In our experiment, Spin generated from 139 to 1363 states for N = {2, 

..., 10} agents exchanging a single offer.  

 

         Figure 3.7.: Growth in States(E.Yaqub et al.,2014) 

When trading 2, 3, and 4 offers, these rise from 159 to 1463 states, 182 to 1566 states, 

and 208 to 1672 states, respectively. This increase is controllable, and the graph in  

therapy. Additionally, it demonstrates the necessity of setting protocol settings like 

"Chain Length" and "Max Counter Offers" to minimal levels. In negotiation chains, 

linearly or sub-linearly scaling protocols are chosen since negotiation tactics increase 

the computing burden.[51] 

3.1.2 .6. Functional Correctness 

 

It is the negotiating context that informs the functional needs (s). Requirements 

formalization is not a simple task. Therefore, we illustrate this with an example, which 

provides a useful method for validating other protocols as well. Our case (Figs. 3.3, 3.5) 

necessitates two SBNP capabilities: 



 

74 
 

1. To prevent over committing, it is necessary to build dependent SLAs at each 

stage of the negotiation chain while drafting a SLA with the client. The opposite 

is true: over-procurement may be avoided by not establishing dependent SLAs 

if a SLA is not established with the client. 

2. No more than one SLA may be established between any two parties in a 

discussion. 

Requirements are formalized in LTL as liveness behaviors or safety behaviors. State 

transitions in time are stated concisely as LTL characteristics, making up behaviors. 

As a first step, the verification software stores a flag whenever a particular condition is 

reached. A boolean condition written in flag form is called a proposition (s). The 

validity of a hypothesis may be established by a search. Property may be decked up in 

security garb if desired (preceded by ⊡ symbol, which tests its universality) or as 

liveness property (preceded by ♦ symbol, which tests its eventual permanence). 

Combining propositions with logic and modalities like or allows us to investigate the 

occurrence of intricate sequences of states conjunction (∧), disjunction(∨), negation (¬), 

implication (→) and until (∪).Dwyer's property specification pattern templates make 

this onerous effort more manageable by allowing you to transfer your existing, well-

understood understanding of system behaviors into LTL properties. 

Our primary criteria have a precedence and response structure. The concept of 

precedence states that the occurrence of one state (the cause) is required for the 

occurrence of another condition (the consequence) to take place. Reaction holds that 

the presence of a cause prompts the emergence of an effect. Precedence The cardinality 

to precedence chain pattern describes the relationships between a single cause and 

several effects. The Response Chain Pattern applies cardinality to Response in a way 

that's similar to the Response Chain Pattern, which shows how one stimulus may have 

several responses (effects) and vice versa. When using these patterns, identifying the 

states of cause and effect is essential. The circumstance that leads to the first agreement 

is sometimes called the "cause." The reason for this is because under SBNP negotiation 

chains, the last provider in the chain is given the authority to draught the first 

agreement.[52] 



 

75 
 

The l_agr flag indicates that an agreement was made at the recipient end of a two-party 

SBNP discussion, while the s agr flag indicates that an agreement was created at the 

sender end. If the PaaS provider sets the flag l_agr, indicating that they want the IaaS 

provider to make an agreement, then there is grounds for SBNP chained discussions. 

To indicate that the agreement was made by the PaaS provider at the behest of the SaaS 

provider, the flag m agr is set. When a client requests a new agreement with their SaaS 

provider, the flag s_agr is set to indicate that the provider has fulfilled that request. This 

is how we get to our LTL features. 

The concept of "Precedence" is not strictly enforced in LTL theory. This simple rule 

allows causes to take place even if there are no following consequences. Reaction 

makes uncaused consequences possible. Response is the opposite of Precedence and is 

used to establish causation. Properties like Precedence and Response work hand in hand 

to pinpoint behavior. 

3.1.2 .7. Implementation 

 

Implementation is the pinnacle of protocol development. Using a format that is 

informative, simple to encode, and capable of generic execution with little to no 

recompilation presents issues in this context. The body of knowledge on using 

negotiation procedures is scant. The WSAGN standard has a Java implementation that 

is offered by the WSAG4J framework. The protocol is implemented in this case as 

imperative code, which makes it difficult to change or expand. promotes the use of 

XML to implement protocols. Although XML offers the advantages of an explicit and 

expressive syntax, achieving protocol-generic execution requires expanding the 

platform to parse and handle each additional protocol. 

We contend that a protocol that precisely describes finite state machine (FSM) 

interactions should exist as a self-contained, executable product. This implies that a 

protocol may be made available for download as a file, preventing inconsistent 

implementations of a single protocol definition. This requirement is strongly contested. 

By executing many protocols in a single execution environment, this also results in a 

protocol-generic footprint in numerous marketplaces. 



 

76 
 

Declarative rules properly satisfy these technological criteria. FSM semantics like 

transitions and guard conditions are amenably mapped by rules into executable logic 

that may be simply expressed as "IF-THEN" clauses. Because the majority of the 

platform's processing complexity may be delegated to the rules rather than the platform 

itself, we place emphasis on the executable nature of rules. By doing this, it is prevented 

that the protocols in the platform code get cluttered or that XML documents become 

challenging to understand. We take use of the rules' adaptability to accomplish generic 

execution.[53] 

We specifically chose the very powerful Drools rule syntax, which enables declarative 

Java object composition. In the IF section of the rule, our rule encoding approach links 

an input event to a state. This serves as a prerequisite. If accurate, the THEN section 

takes a specific action. A feedback command (setProcessed) indicates whether the event 

that the current state is processing resulted in a positive or negative response. At the 

conclusion of the rule, the event is withdrawn from working memory. In this manner, 

rules create transitions between state objects in the working memory and match 

permitted events with states. 

To illustrate how SBNP is implemented using rules, we now give three condensed rule 

snippet examples. On receiving an offer, initialization state transits to the negotiation 

state, as shown in Fig. 3.8. Figure 3.9 depicts a rule that carries out 

                          Rule Initialized_To_Negotiate_Transition 

                            1:  IF 

                            2:  initializedState : State(name==INITALIZED); 

                            3:  event : Event(name==OfferArrivedEvent); 

                            4:  THEN 

                            5:  initializedState.remove(); 

                            6:  insert(new State(name=NEGOTIATE)); 

                            7:  event.setProcessed(true); 

                            8:  retract(event); 

                               Transition Rule 

In the event that an offer is received, a guard condition is applied to the negotiation 

state. If there have been no more than the specified number of rounds of negotiations, 



 

77 
 

the rule is executed. The round counter for negotiations is then increased. Lifespan 

constraints in negotiations are enforced by the rule shown on Fig. 3.10. To determine 

whether the allotted time has elapsed, it employs the program's internal evaluation 

mechanism. If that's the case, the platform will conclude the negotiating session with a 

negative response and an explanation. This rule is not limited to any specific 

occurrence, but rather applies universally (line 4). A salience (priority) value may be 

set on rules to fix execution order when several rules share the same event and are both 

eligible for execution. Since the time for negotiations has expired, the rule with the 

greatest salience (here, 5 in our example) will now apply.[54] 

                                  Rule Guard_Negotiation_Rounds 

                                  1:  IF 

                                  2:  negotiateState : State(name = = NEGOTIATE, rounds ≤   

                                       maximumNegotiationRoundsAllowed);          

                                  3:  event : Event(name = = OfferArrivedEvent); 

                                  4:  THEN 

                                  5:  negotiateState.rounds++; 

                                  6:  negotiateState.update(); 

                                  7:  event.setProcessed(true); 

                                  8:  retract(event); 

                                 

                           Guard Condition Rule 

                                      

                             Rule Control_Negotiation_Time 

                                    1:  salience 5 

                                    2:  IF 

                                    3:  params: Parameters( eval(currentTime() ≥ (startTime +   

                                         processTimeout) ) );  

                                    4:  event : Event(); 

                                    5:  THEN 

                                    6:  event.setProcessed(false); 

                                    7:  event.setReason(‘Negotiation time out’); 

                                    8:  retract(event); 



 

78 
 

 

                            Negotiation Time Rule 

In addition to the implementation of the protocol, domain-specific business rules are 

established, such as rules for defining the values of protocol parameters at the outset of 

negotiation or rules for defining the customization states. The ability to tailor protocol 

parameters according to predefined business rules is thus enabled. At the outset of a 

negotiation, the rule engine receives an object representing each participant's profile; 

this object is used by one of the rules to determine a ranking. On the basis of her profile, 

the provider's business policy rules may assign values to protocol parameters like 

negotiation time and the number of rounds of negotiation. This enables a negotiator-

specific trade-off between negotiation complexity and convergence probability. Such a 

business rule is demonstrated in Fig. 3.11. Similar to how customers may be favoured 

or negotiations can be refused entirely by writing whitelisting and blacklisting 

rules.[55] 

                                                                              

                                   Rule Customize_Protocol_Parameters 

                                        1:  IF 

                                        2:  initializedState  : State(name = =INITIALIZED); 

                                        3:  event : Event(name = = CustomizationArrivedEvent); 

                                        4:  THEN 

                                        5:  initializedState.remove(); 

                                        6:  insert ( new State(name=CUSTOMIZE)); 

                                        7:  if( partnerProfile.getRank = = DESIRED) 

                                        8:  insert new parameter(NEGOTIATION_ROUNDS=100)); 

                                        9:  else 

                                       10:  insert(new Parameter(NEGITIATION_ROUNDS=10)); 

                                       11:  event.setProcessed(true); 

                                       12:  retract(event); 

                                     Business Rule 

3.1.3. Negotiation Platform for Protocol Execution 

 



 

79 
 

To facilitate direct negotiations amongst themselves, SLA Managers use the Protocol 

Engine's SLA template. A webservice end point reference negotiation interface is used 

to deliver messages to the Protocol Engine (EPR). Methods discovered during 

modelling provide the basis of the negotiating interface seen in Fig. 3.12. (see Table 

3.1). Their role is described in summary form below. 

initiateNegotiation: Make a formal request to begin bargaining. Each time a session 

begins and ends, a unique ID is created and returned. 

renegotiateAgreement: Make a formal request to modify an existing service level 

agreement. Each time a session begins and ends, a unique ID is created and returned. 

customizeParameters: Specify suggested values for the protocol's configuration 

parameters and submit the request. 

negotiateOffer: Make a SLA proposal. The platform will then forward the proposal to 

the POC section. POC is able to make counter offers that are then sent back. 

createAgreement: If the presented offer is satisfactory, please request that we enter into 

a SLA. The POC component makes the final call after receiving the offer from the 

platform.[56] 

cancelNegotiation: Request to cancel negotiation 

Negotiation Platform for Protocol Execution 

              UUID initiateNegotiation( SLATemplate offer) 

              UUID renegotiateAgreement (SLATemplate offer) 

              Parameters customizeParameter ( UUID negotiationID, Parameters params) 

             SLA Template[ ]negotiateOffer (UUIDnegotiationID, SLATemplate offer) 

             SLA  createAgreement( UUID negotiationID, SLATemplate offer) 

             cancelNegotiation(UUID negotiationID) 

 Negotiation Interface 

To ensure maximum adaptability, we made certain design decisions on the isolation of 

problems. These features make the Protocol Engine (short PE) stand out from 

competing systems: 

• The disconnection between the protocols and the host system. 



 

80 
 

• Keeping bargaining tactics and customs apart. 

• The disassociation of the platform from any one SLA standard (s). 

The PE's internals are seen in Fig. 3.13. At the time of the initiate call, the Negotiation 

Manager looks for the appropriate protocol in the SLA template parameter and then 

requests that the State Manager component create a negotiation session in memory. 

 

Figure 3.8.: Design of Protocol Engine 

The State Manager uses a Drools rule engine instance, which loads the protocol file into 

memory for processing. This is how the associated state machines are started up. In the 

last section, we saw how the events sent from PE to the State Manager, which are then 

stored in Drools' working memory, are employed in the rule encoding scheme. These 

events correspond with messages sent and received. Forward-chaining is the method by 

which Drools executes all applicable rules once an event happens or an object is created 

or modified as a consequence of the execution of a rule. This platform improves Drools' 

already powerful rule management features. Due to the lack of tight coupling between 

the protocol and the platform, the protocol may exert sufficient control on negotiation 

to the point where specific fault causes are sent to the caller in the form of rules.[57] 

Also, for generic execution, a strict divide between protocol and strategy was required. 

Therefore, we do not overburden the regulations in order to process an offer and 



 

81 
 

generate a counter offer (s). The negotiating strategy is implemented by a Planning and 

Optimization (POC) subcomponent (see Fig. 3.13). In this manner, several 

combinations of protocols and tactics are feasible, allowing for the sale of services 

through various negotiation protocols and methods. 

We employ a SLA model to express SLA templates and SLA offers, as can be seen in 

our negotiation interface. However, it was crucial to retain the SLA Manager 

framework independent of any particular SLA standard. Through the use of a Syntax 

Convertor component, compatibility with existing or upcoming standards is supported. 

For example, the Syntax Convertor was able to communicate with WSAG-based clients 

by 1) implementing a web service endpoint for the WSAG interface, and 2) 

transforming calls and arguments from WSAG's XML format into our SLA model's 

Java format for transmission to the PE. 

The platform provides access to a set of control interfaces and a set of negotiation 

interfaces that may be used to set up business rules that stand in for institutional policy. 

Techniques such as these are included into the interface: 

 setPolicies: Create the set of guidelines for the policy. The rule set may be new 

or it may replace an existing one. 

 getPolicies: Get the policy rules list and send it back. 

Changes to business rules (like those shown in Fig. 3.11) that rank, whitelist, or 

blacklist clients may be made on the fly with access to the rule engine, negating the 

need to restart the negotiating platform or recompile the code. 

There was a comprehensive proposal for resolving the bargaining problem. It has been 

argued that Service Level Agreement (SLA) agreements provide a flexible and usable 

business model and that specific (variable) protocol serve as provider differentiators or 

a fertile ground for new markets centred on value-added service offerings. One of the 

contributions was a systematic method for constructing machine-executable negotiation 

protocols. Bilateral negotiating procedures were developed using the same method. In 

addition, a standardized  framework for expressing protocol rules was developed, and 

a common negotiation platform was developed to implement those rules. The protocol, 

strategy, and specific SLA standard worries are separated on the platform, making 



 

82 
 

localised adjustments possible. The protocol and platform have been implemented in a 

wide range of use cases by both the SLA@SOI and Contrail projects (of which the 

author was not a part of). This shows that the proposed solution can be used to many 

different situations. 

The proposed approach was argued to provide a protocol-generic foundation in a 

market structure where SLA agreements are used to acquire cloud-based resources or 

services. Although single-staged negotiations (albeit with numerous rounds) were 

addressed, future possibilities include multi-staged protocols that may be used to 

develop packaged IaaS, PaaS, and SaaS service offerings based on required or non-

mandatory stages of negotiations.[58] 

3.2 Management Of Resource In Cloud Computing Of Sla-Aware 

 

This section offers SLA-aware resource management in cloud computing as a solution 

to the issue. 

The increasingly common Platform as a Service (PaaS) cloud service delivery paradigm 

is especially taken into account in this study. PaaS increases the level of abstraction on 

infrastructure resources to provide software platforms as a service. This is 

accomplished by offering an ecosystem for software services that enable the cloud and 

govern their lifespan using runtime controls. By using sophisticated automation, PaaS 

conceals for the user the management difficulties of the underlying IaaS, hastening the 

creation of cloud-based apps. The PaaS is gaining commercial momentum as a result 

of its enormous potential. However, the IaaS model's effective management of virtual 

machines has received a lot of attention in studies to date. Operating system (OS) level 

containers are the foundation of the PaaS deployment architecture. By safely hosting 

various modules of numerous program on a common OS, this raises usage. Micro-

services, a novel approach to software development made possible by PaaS, enable 

fine-grained administration of service components as portable and light-weight virtual 

containers. Contrary to virtual machines (VMs), containers may be efficiently scaled, 

relocated, or positioned next to other services or data sources depending on SLA needs. 

SLA proposals with additional value can take advantage of this. 



 

83 
 

However, the author's PaaS study found that on-demand procurement, unexpected 

workloads, and auto-scaling lead to rapid increases and decreases in the number of 

automatically provisioned containers and the unintentional usage of the underlying 

machines. This is a major problem on a global scale. For instance, Google recently said 

that it operates all of its services, including email and search, in containers and that it 

deploys over 2 billion containers every week across its international data centre. 

OpenShift Online, a public PaaS from RedHat built on Amazon EC2, now hosts more 

than 2.5 million applications. Therefore, the primary challenge for a PaaS provider is 

to regularly plan and optimize the placement of containers on computers in order to 

meet SLA commitments, optimum resource utilization, and use the fewest amount of 

machines feasible. 

On the other hand, allocations fulfilling merely resource capacity needs are impractical 

due to service-driven restrictions regarding containers and geographical limits 

regarding machines. This relatively new "Service Consolidation" problem is NP-hard 

since it is a variation of variable-sized multi-dimensional bin-packing. Additionally, it 

is important to consider other criteria, such as estimated SLA violations, energy 

consumption, migrations, resource contention, utilization, total machines used, and 

resource contention when evaluating feasible solutions. The latter creates significant 

economic and environmental issues, with data centre accounting for 1.1% to 1.5% of 

worldwide energy consumption in 2010. For the best trade-offs, clearly defined 

measurements for these criteria must be routinely evaluated.[59] 

Consequently, the following tangible contributions are made in this chapter: 

1. Machine usage, energy consumption, and service level agreement infractions 

are established or reused as formal models. 

2. By building off of and expanding upon the Machine Reassignment model 

offered by Google for the EURO/ROADEF competition, we provide a tangible 

formulation of the Service Consolidation issue for a real-world cloud stack. 

3. By simulating clouds of varying sizes, shapes, and workloads, a practical 

consolidation approach for SLA compliance is shown. By taking into account 

service and machine level limitations, meta heuristic search is used to uncover 

(re)allocation plans (solutions) that transition the cloud from a decentralized to 



 

84 
 

centralized state. 

4. Analysis of the effectiveness of the solutions found using Tabu Search, 

Simulated Annealing, Late Acceptance, and Late Simulated Annealing when 

the problem's attributes shift across datasets. 

5. Alternatives are ranked in accordance with different company principles using 

a utility function. 

3.2.1 System Context 

 

The SLA@SOI project's Generic SLA management framework (GSLAM) was 

outlined. To implement SLA management on cloud stacks, this may be created. 

OpenShift-based SLAM's condensed architecture is shown in Fig. The diagram 

displays significant interaction patterns:  

1) The Protocol Engine is used to negotiate a Service Level Agreement (SLA) that 

specifies agreed-upon Quality of Service (QoS) values. When an offer is 

received, the POC module is used to analyze the data and come up with a 

counteroffer. 

2) The POC initiates provisioning using the Provisioning and Adjustment 

subcomponent after a SLA has been satisfactorily agreed upon. 

3) OpenShift's broker is called upon by provisioning to distribute resources. 

4) Monitoring The administration initiates a system based on OpenTSDB to track 

resource use vs SLA. 

5) If underutilization is detected over time, the monitoring system will submit a 

request for Service Consolidation to the POC. 

6) To generate a migration strategy, POC optimizes the model of how allocated 

containers and machines are used. 

7) The migration strategy is implemented through provisioning at non-busy hours. 



 

85 
 

 

Figure 3.9: OpenShift SLAM, OpenShift Cloud and Legend 

(elaborating container placement) (E.Yaqub et. al,2014) 

The OpenShift cloud consists of one or more brokers that take API requests to manage 

services and cloud machines. Districts are collections of machines that may come from 

many IaaS suppliers. A zone is assigned to an IaaS site. There are several zones within 

an area. OpenShift cloud may span various domain infrastructures (zones) across 

different continents to increase resilience and permit compliance with local data 

protection requirements (regions). Custom algorithms for container placement can be 

included into its plugin-in interface. The POC of our SLAM may be added to this.[60] 

 

3.2.2. Model and Definition of the Issue 

 

The Machine Reassignment problem, which Google submitted for the 

ROADEF/EURO Challenge 2012, is what inspired this study because of how well it 

applies to PaaS. The datasets offered by Google are common ground for future 

exploitation and pose actual problems. Therefore, we essentially follow the 



 

86 
 

specification, but we also take OpenShift into account for altering various restrictions 

and for dataset characterizations because without them, the problem would mostly stay 

theoretical. This strategy offers generally recognized definitions while avoiding 

workload bias. 

The main goal of the issue is to increase machine usage given a set of services. A service 

consists of a collection of tasks that are given to machines and use their resources. 

Because a container is the smallest deployment unit in PaaS, we refer to processes as 

containers. To increase utilization, containers can be moved across computers; however 

transfers are restricted by both hard and soft limitations. Both concepts of machine 

apply since OpenShift PaaS may be constructed on physical or virtual computers. We 

then officially outline the issue and the models. 

3.2.2.1. Notations 

 

Consider In this notation, M represents a collection of machines, V represents a 

collection of virtual containers, and R represents a collection of shared resources 

accessible by all machines. An S is both a collection of services and an individual 

service s ∈ S is a set of containers ⊂ V. Services are disjoint. M(v) = m is an assignment 

of a container v ∈ V to a machine m ∈ M where v is the first container to be assigned 

the value Mo(v). Container v has a need for Resource R, therefore R(v, r) is the sum of 

the capacity of Resource r R for Machine m and the need for Resource r by Container 

v. The safety capacity of resource r for device m is denoted by the formula SC(m, r).[61] 

Let T = {small, medium, large} include a collection of container sizes, with the little 

ones being supported such that < medium < large along all resource dimensions. Let D 

represent a collection of regions, whereby each region (d) ∈ D represents a collection 

of machines. Municipalities are examples of sets that are not connected. In this notation, 

a machine's district is denoted by d(m), a container's type is denoted by t(v) T, and the 

container type of the district to which a machine belongs is denoted by t(d(m)). For 

instance, a district of type large can host large, medium, and small containers, a district 

of type medium can host medium and small containers, but a district of type small can 

only host small containers. Let there be a set Z of disconnected regions, where each 

region z ∈ Z is a collection of machines in the same general area. An IaaS availability 



 

87 
 

zone is denoted by a zone. In this work, zone is equated to the neighborhood (of 

Machine Reassignment problem).  

3.2.2.2. Hard Constraints  

 

To illustrate the inflexibility of hard limitations, consider the following example. One 

definition of a workable solution is one that fulfils all inflexible requirements. 

Definition 1 : Capacity Constraint 

The utilization (U) of a machine (m) with respect to a given resource (r) is defined as: 

 ⋃(𝑚, 𝑟) =  𝑅(𝓋, 𝑟)

𝓋∈𝒱,ெ(జ)ୀ

 

Only if there is enough of each resource on the host computer is it possible to execute 

a container. When the capacity limitation is met, the assignment is considered 

practical.[62] 

∀𝑚 ∈ ℳ, 𝑟 ∈  ℛ, ⋃(𝑚, 𝑟) ≤ 𝐶(𝑚, 𝑟) 

Definition 2 : Type Constraint  

An appropriate container is then installed on a machine in a region where it may be 

used: 

∀v ∈ V, M(v) = m, t(v) ≤ t(d(m)) 

This permits scaling upwards, but not downwards, since it would be a breach of the 

SLA's resource capacity promise. 

Definition 3 : Conflict Constraint  

Each computer hosting a container for a service s ∈ S must be completely separate from 

any others. 

∀𝑠 ∈ 𝑆, ൫𝑣  𝑣  ൯ ∈ 𝑠ଶ, 𝑣 ≠ 𝑣  ⟹ 𝑀(𝑣 ) ≠ 𝑀(𝑣)   

Definition 4: Transient Usage Constraint  



 

88 
 

Some resources, like as disc space or RAM, are used twice when a container is moved 

from one host computer to another. As a result, the migration requires sufficient 

resources on both machines m and m'.Let T R ⊆ R are scarce resources subject to 

temporary use restrictions, then: 

∀𝑚 ∈  𝑀, 𝑟 ∈ 𝒯 ℛ,  ℛ(𝑣, 𝑟)  ≤ 𝐶(𝑚, 𝑟)
௩ ∈𝒱,௦௨௧௧

ெబ(௩)ୀ ⋁ ெ(௩)ୀ

 

Due to incompatibility with our Type constraint, we disregard the Spread restriction. 

3.2.2.3. Soft Constraints  

 

The costs of resource contention, collocation needs, and migrations are modelled as soft 

restrictions. Original data sets often include a definition of costs. The extent to which 

soft restrictions are met indicates the quality of a possible solution.[63] 

Definition 5 : Load Cost  

Let SC(m, r) be the safety capacity of a resource r ∈ R on a machine m ∈ M. The load 

cost is defined per resource and refers to the capacity used above SC. 

𝑙𝑜𝑎𝑑𝐶𝑜𝑠𝑡(𝑟) =   max (0, 𝑈(𝑚, 𝑟) −

∈ெ

 𝑆𝐶(𝑚, 𝑟)) 

Definition 6: Dependency Cost  

Earlier in this article, I said that there may be connections between various services. 

There should be consideration for how dependencies could affect the availability and 

performance of a service when allocating resources. To elaborate a little, a service sa 

dependent on service sb necessitates that each s a container run in the vicinity of at least 

one sb container. Lack of fulfillment causes dependence to grow. Cost varying. 

∀𝑣𝑠, ∃𝑣  ∈ 𝑠𝑠. 𝑡. 𝑀(𝑣) ∈ 𝑧1 𝑎𝑛𝑑 𝑚(𝑣) ∈ 𝑧2  𝑎𝑛𝑑 𝑧1 = 𝑧2           

 𝑖𝑓(𝑧1 ≠ 𝑧2) ↣ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝐶𝑜𝑠𝑡 + + 



 

89 
 

Technically speaking, the OpenShift Application Programming Interface (API) enables 

service migration to a different zone (or region). Using its software-based networking 

instructions, communication between containers may be built up after migration. 

Definition 7: Balance Cost 

The presence of one resource may be meaningless in the absence of another. An 

availability ratio between two resources is targeted for assignment after a container 

migration. One way to express this is using a group of triples that are in balance, denoted 

by the set B N X R2 . For a triple b =< r1, r2, target >∈ B, the balanceCost is: 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡 =  ∑
max൫0, 𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝐴(𝑚, 𝑟1) − 𝐴(𝑚, 𝑟2)൯ 𝑤ℎ𝑒𝑟𝑒 

𝐴(𝑚, 𝑟) = 𝐶(𝑚, 𝑟) − 𝑈(𝑚, 𝑟)
∈ெ   

Definition 8: Container Move Cost 

This expense represents the challenges associated with moving certain containers, such 

as those with heavy dependencies, excessive size, a lack of replicas/clones, or 

administrative constraints. The total cost of moving containers is calculated as the sum 

of each individual container's migration costs, denoted by CMC(v). 

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑀𝑜𝑣𝑒𝐶𝑜𝑠𝑡 =   𝐶𝑀𝐶(𝑣)
௩∈ 𝒱 ௦௨௧௧ 

ெ(௩)ஷெ(௩)

 

Definition 9: Service Move Cost  

The maximum allowable number of containers to be moved is determined by the cost 

of the service relocation. This maintains a steady equilibrium between the various 

service migrations. 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑀𝑜𝑣𝑒𝐶𝑜𝑠𝑡 = max
ୱ∈𝒮

( |{𝑣 ∈ 𝑆|𝑚(𝑣) ≠ 𝑀 (𝑣)}|)   

Definition 10: Machine Move Cost  

Let MMC (msource, mdestination) be the total amount of money it would cost to move 

container v from machine msource to machine mdestination. This fee simulates the 

difficulty introduced by factors such as physical distance, network topology, individual 

machines, and other technological factors, and is thus unique to each machine 



 

90 
 

combination. The total cost of a machine relocation is determined by adding the MMCs 

that apply.[64] 

𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑀𝑜𝑣𝑒𝐶𝑜𝑠𝑡 =  𝑀 𝑀𝐶(𝑀(𝑣), 𝑀(𝑣))
௩∈ ௦௨௧௧ 

ெ(௩)ஷெబ(௩)

 

Definition 11: Objective Function  

An objective function is defined as the sum of all costs, using weights from the original 

datasets, for each soft constraint. 

𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 =   𝑤𝑒𝑖𝑔ℎ𝑡ௗ௦௧() ∗

∈ℛ

 𝑙𝑜𝑎𝑑𝐶𝑜𝑠𝑡(𝑟) + 

 𝑤𝑒𝑖𝑔ℎ𝑡ௗ௦௧() ∗  

∈

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡(𝑏) +   

𝑤𝑒𝑖𝑔ℎ𝑡௧ெ௩௦௧ ∗ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑀𝑜𝑣𝑒𝐶𝑜𝑠𝑡 + 

𝑤𝑒𝑖𝑔ℎ𝑡௦௩ெ௩௦௧ ∗ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑀𝑜𝑣𝑒𝐶𝑜𝑠𝑡 +  

𝑤𝑒𝑖𝑔ℎ𝑡ெ௩௦    ∗ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑀𝑜𝑣𝑒𝐶𝑜𝑠𝑡 + 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝐶𝑜𝑠𝑡 

To reduce this number, we need to look for assignments that are both practical and fair 

in terms of resource contention among the computers that are being utilized. In contrast, 

unhappiness with constraints is quantified as a negative number (called a score) that 

increases when better solutions are found. 

3.3. OpenShift Characterization 

 

The OpenShift (version 2.0) paradigm is used to place the ROADEF data sets p ∈ P 

given in the datasets was characterized as a container v ∈ V of type t ∈ T. Figure 1 

depicts the system used for categorization. R(p, r) represents the need for resource r by 

process p, whereas minR(P, r) and maxR(P, r) represent the least and maximum needs 

for resource r across all processes. When a process's utilization of a given resource is 

compared to the global usage of that resource, the s, m, and l flags are incremented 

accordingly (lines 7-15). A big container is one in which a process consumes a lot of a 



 

91 
 

given resource, whereas a medium container consumes a little less, and a tiny container 

consumes very little. 

Next, each group of machines called location l ∈ L was characterized as OpenShift 

district d ∈ D which hosts containers of subsuming types. The classification method is 

shown in Fig. Here, dominance count, which is calculated for all resources of all 

computers belonging to each location, demonstrates how one site dominates another 

over a resource. Using these characteristics, we classify the most dominant areas as 

major districts, followed by medium and minor districts, in that order.  

class CharacterizedProcessAsContainer 

method Classify(P,R) 

1:  for each resource r  ∈ R do 

2:  minr ← minR(P,r); maxr  ← maxR(P,r) 

3:  portionr ← (maxr – minr ) / 3 

4:  end for 

5:  for each p ∈ P do 

6:  usagep = (s, m,l) ∈ Z3 

7:  for each resource r ∈ 𝑅 𝒅𝒐 

8:  if  R(p,r) ≤ (minr +  portionr )  

9:   usagep.s++ 

10:  else if  R(p,r) ≤ (minr + 2* portionr ) then 

11:  usagep.m++ 

12:  else if R(p,r) ≤  maxr  then 

13:  usagep.l++ 

14:  end if 

15:  end for 

16:  if usagep.s ≥ 1 and usagep.m = 0 and usagep.l = 0 then 

17:  p.containerType ← small 

18:  else if usagep.m ≥ 1 and usagep.l = 0 then 

19:  p.containerType ← medium 

20:  else if  usagep.l ≥ 1 then 

21:  p.containerType ← large 

22:  end if 



 

92 
 

23:  end for 

Container Characterizer 

The fraction of big, medium, and small containers in the dataset that are characterized 

is given. 

3.3.1. Utilization and Power Model  

 

The ability to increase machine usage is still a benefit and a difficulty for cloud 

providers. Data centre often only use 10–20% of their server capacity, according to 

reports. Consolidating workloads lowers the peak-to-average utilization ratio by 

running more workload on fewer computers, which increases utilization. By switching 

idle machines into low-power mode or shutting them off, consolidation can lower 

energy expenses and the accompanying cooling costs because most machines use up to 

70% of their peak utilization energy even when they are not in use. 

The consumption of one or two resources, particularly the CPU, has been used to 

represent power usage. However, recent developments in processor technology have 

led to CPUs that consume less energy, but memory, disc, and network components are 

now a larger portion of the overall amount of power consumed.[65] 

 

class characterizeLocationAsDistrict 

     Let  vs ⊂ 𝒱 : t(𝓋s) = small and vm ⊂ 𝒱 : t(𝓋m) = medium and vl ⊂ 𝒱 : t(𝓋l) = large 

method classify (ℒ , M , R,V) 

1:  smallDistrictCount  = ←  min(1,L(| ℒ | / | 𝜈 |)*| vs|L) 

2:  mediumDistrictCount =← (l,L( | / | v |) * | vm |L) 

3:  largeDistrictCount ← min(1,L(| ℒ | / | 𝜈 |)*| vl|L) 

4:  Map<resource,capacity > resources   

5:  Map <location,resources>locationCapacity 

6:   for each location l  ∈ ℒ do 

7:   for each machine m ∈  :M l(m) = l do 

8:   for each resource r ∈  R do  

 9:    resources[r].addOrUpdate(getResourceCapacity(m,r))  

10:  end for 



 

93 
 

11:  end for 

12:  locationCapacity[l] ← resources; resources.reset() 

13:  end for 

14:  for each location lout ∈ ℒ do 

15: for each location lin ∈  ℒ ∶ 𝑙in    ≠  lout  do 

16: for each resource r ∈ R do 

17:  rout  ← locationCapacity[lout].resources[r].capacity 

18:  rin  ← locationCapacity[lin].resources[r].capacity 

19:  if  rout > rin  then 

20:  lout.dominanceCount++ 

21:  end if 

22:  end for 

23:  end for 

24:  end for 

25:  locationsList ← locations.sortOnDominanceCountDescending() 

26:  largeCounter =0 ,mediumCounter =0, small.Counter =0 

27:  for each location l ∈  locationsList do 

28:   if largeCounter < largeDistrictCount then 

29:  largeCounter++;l.districtType ← large 

30:  else if mediumCounter < mediumDistrictCount then 

31:  mediumCounter++;l.districtType ← medium 

32:  else if smallCounter < smallDistrictCount then 

33:  smallCounter++;l.districtType ←  small 

34:  end if 

35:  end for 

                                           District Characterizer 

According to research, the CPU used less than 30% of the power consumed by Google 

servers in 2007. Our datasets resemble point-in-time system snapshots rather than 

timeseries data, so we aggregate resource utilization to model machine utilization 

analytically: 

𝓊 = ( 
𝑈(𝑚, 𝑟)

𝐶
(𝑚, 𝑟)) / 

∈ℛ

| ℛ | 



 

94 
 

where M is the overall capacity of the machine and R is the total capacity of resource 

r. The power model requires the usage of u. 

𝑃(𝑢)  =  𝑘 ∗  𝑃௫  +  (1 −  𝑘)  ∗  𝑃௫  ∗  𝑢 

where k represents the proportion of energy spent by the machine while it is not 

operating, and Pmax represents the highest amount of energy required when the 

machine is operating at full capacity. Our assumptions are that you're using a 

contemporary computer with a power consumption of 250 watts (Pmax) and a constant 

power input of k=0.7. The energy efficiency e of a cloud may be roughly calculated 

using the mean utilization umean of all the computers in use: 

𝑒 =  𝑢/𝑃(𝑢)  ∗  100 

3.3.2. SLA Violation Model  

 

Enhancing usage to reduce power costs runs the risk of over provisioning, which has a 

detrimental impact on performance. Controlling SLA breaches translates into this 

power-performance trade-goal off's of preserving earnings and reputation. We model 

SLA violations (SLAV) as upper bound estimates for the performance degradation 

caused by migration (PDM) and the performance degradation caused by contention for 

the machine's resources, while keeping in mind the state of the art. PDM is the period 

during which migrations cause containers to operate poorly or become unavailable. We 

assume that migrations are carried out in a serial fashion in order to assess the upper 

bound. Parallel migration undoubtedly lowers this number. As determined by PDM: 

𝑃𝐷𝑀 = 𝑡௦  ∗ | 𝑣௦| + 𝑡  ∗ |𝑣 | + 𝑡 ∗ |𝑣 |  

where vs, vm, and vl⊂ V are sets of small, medium, and big containers that might be 

migrated, and ts, tm, and tl are the maximum timeframes required to migrate a small, 

medium, or large container. Our studies use the following time constants: ts = 10s, tm 

= 20s, and tl = 40s. 

When a resource is used beyond its safe capacity, the excess demand is recorded as load 

(r). Tertile 1 represents little disagreement, tertile 2 represents medium contention, and 

tertile 3 represents strong contention when measuring potential for dispute resolution 



 

95 
 

(PDC). A service level agreement (SLA) is broken only when resource utilization is 

more than 100% of total capacity and low contention (loadCost) is sought. The 

likelihood of service level agreement (SLA) breaches may be estimated using the 

tertiles to determine whether contention needs can be lowered by increasing safety 

capacity to tertiles 1, 2, or 3. This may increase utilization and reduce the MTTF of a 

machine at the cost of some extra electricity based on PDC's findings. [66] 

𝐶𝑜𝑛𝑡∈ோ  =  𝐶(𝑚, 𝑟)  −  𝑆𝐶(𝑚, 𝑟) 

𝑃𝐷𝐶 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑖𝑓 𝑙𝑜𝑎𝑑(𝑟)  ≤

1

3
(𝐶𝑜𝑛𝑡  )  ↦ 𝑡𝑒𝑟𝑡𝑖𝑙𝑒1 + + 

𝑒𝑙𝑠𝑒 𝑖𝑓 

𝑙𝑜𝑎𝑑(𝑟) ≤
2

3
 (𝐶𝑜𝑛𝑡 ) ⟼ 𝑡𝑒𝑟𝑡𝑖𝑙𝑒2 + +

𝑒𝑙𝑠𝑒 𝑖𝑓

𝑙𝑜𝑎𝑑(𝑟)  >
2

3
(𝐶𝑜𝑛𝑡)  ⟼ 𝑡𝑒𝑟𝑡𝑖𝑙𝑒3 + +

  

Machines' PDC tertiles are increased by one each time a new dataset is added. Finally, 

we define SLAV as the result of PDM and PDC, as follows: 

𝑆𝐿𝐴𝑉 =  𝑃𝐷𝑀 ∗  𝑚𝑎𝑥(1, 𝑃𝐷𝐶) 

In this context, PDC may be either (i) the total of all tertiles, (ii) the total of tertiles 2 

and 3, or (iii) only tertile 3. This results in a range of SLAV values for the solved 

datasets of up to 3. 

 

 

 

 

3.3.3 Results of Experiment 

 

3.3.3.1. Workflow 

 

Fig. depicts the steps that make up the experiment workflow. The problem and datasets 

are first placed within the context of the OpenShift PaaS cloud model. Next, a solver's 



 

96 
 

algorithms are configured and the problem constraints and score calculation are 

implemented. The next step was to conduct a controlled search to identify the first 

workable solution. This suggested redundancy among larger containers because scaling 

down is not possible while scaling up is. As a result, the number of randomly chosen 

large containers—the majority of which are independent—was decreased. Due to the 

fact that OpenShift-based refinements make the search more difficult than the 

underlying issue, this helped introduce some slack. 

 

Figure 3.10: Workflow of Experiment 

The base definition does not limit machines to hosting containers of a specific size or 

categorize processes according to their resource needs, such as small, medium, or large. 

When tackling the issue of service consolidation from a real-world cloud perspective, 

bin packing becomes a formidable challenge. The next step is to initiate a search, giving 

each algorithm 5 minutes to complete its task. Ultimately, each method yields a unified 

(reallocation) answer. Utilization, resource contention, migrations, service level 

agreement breaches, machine use, and energy consumption are now among the 

additional assessment criteria assessed from proposed solutions. As a consequence, the 

optimal solution is identified and implemented via policy-led ranking of the available 

options. To improve performance, OpenShift's API allows containers to be moved 

around and their capacities increased during runtime.[67] 



 

97 
 

3.3.3.2. Datasets  

 

Through the use of simulations, we were able to reliably assess the performance of 

various approaches on the data sets presented. Table 3.3 provides a description of the 

individual datasets that do not form a unified whole. In order to use it later for spotting 

purposes, we archive the dataset. A dataset is a representation of a workload and 

associated cloud configurations. Datasets A.2.2 and A.2.5, which both represent small 

clouds, have 100 and 50 machines, respectively, hosting 170 and 153 services. Dataset 

B.1 shows a cloud of a medium scale, with 100 machines running 15 times more 

services than smaller datasets like this one. Dataset B.4 is an example of a very big 

cloud, consisting of 500 individual computers, with more containers than in Dataset B.1 

but fewer services. 

A theoretical upper limit was determined for the state space by supposing that any 

container of any size may be placed on any machine in any district. More possible 

permutations exist since container sizes may be increased. The diagrams represent a 

subset of the whole state space called the base state space. The purpose of this exercise 

is to highlight the vastness of possible permutations as a yardstick by which to evaluate 

dissimilar data sets. The purpose of search algorithms is to find a subset of the whole 

state space that is manageable, which is much smaller yet cannot be practically 

established due to the combinatorial explosion. 

3.4. Algorithms 

 

The needed variety to mimic real-world dynamics is provided by machine heterogeneity 

and various resource usages. Meta-heuristic search methods are strongly motivated to 

be used for solving because of the huge state spaces, high dimensionality caused by 

various resources, and numerous restrictions. Additionally, meta-heuristics avoid the 

pitfall of becoming trapped in local optima. This study made use of the open-source 

OptaPlanner solver, which supports several Meta-heuristics.  All algorithms were a 

mixture of change and swap moves. One entry in a tabu list of size 7 that was utilized 

for tabu search (TS) indicates a workable assignment for a single container. A portion 

of the many viable motions that TS generates is assessed in each stage. This evaluation 

size was established in 2000 for TS. A beginning temperature value is necessary for 



 

98 
 

Simulated Annealing (SA) to factor score difference. This was set to 0 for strict 

limitations and 400 for flexible ones. The algorithm first permits certain changes that 

are not improving, but as time progresses, it becomes more exclusive. The assessment 

size for SA was set at 3. Like SA, Late Acceptance (LA) requires fewer actions while 

outperforming some late phases. The assessment size for LA was set to 500 and the late 

size to 2000. In Late Simulated Annealing (LSA), which combines SA and LA, the 

score can be improved while still experiencing controlled random decrement. The 

evaluation size was set to 5 and the late size to 100 for LSA.                 



 

99 
 

                                                                                      Table 3.3.: Cloud  Dataset Details 

 

 

 

 

 

 

 

 

   Table 3.3.: Cloud Dataset Details 
Name Resources Districts 

S,M,L 
Zones Machines 

S,M,L 
S32ervices Containers          

S,M,L 
State 
Space 

Utilization/ 
Machine 

Consumed 
Power(kWh) 

Energy  
Efficiency 

Initial 
Solution 

A.2.2 12 15,8,2 5 60,32,8 170 434,222,48 101148 35% 19.32 43.25% -18312546 

A.2.5 12 15,8,2 5 30,16,4 153 455,245,63 101004 37% 10.151 43.50% -185103629 

B.1 12 6,3,1 5 60,30,10 2512 25,721,272,147 106598 48% 21.122 56.75% -945528368 

B.4 6 35,13,2 5 350,130,20 1732 109,643,955,543 1036959 37% 101.199 45% -18475614730 



 

100 
 

 

 

Table 3.4.: Consolidation using Tabu Search (TS), Simulated Annealing (SA), Late Acceptance (LA) and Late Simulated Annealing 

(LSA) 

Dataset       
(Algorithm) 

Solved 
SolutionScore 

MachinesUsed 
S+M+L 

Utilization/ 
Machine 

Consumed 
Power(kWh) 

PDCTertiles(1,2,3) ReducedLoad 
onResources 

Energy 
 Efficiency 

Migrations PDM 
(min) 

Container 
Scaleup 

      A.2.2(TS) -17742166 95 35%   19.141 (1,1,1) 50% 43.43% 206 66 85% 
      A.2.2(SA)   -15012210 95 35% 19.126 (0,0,1) 83% 43.46% 220 69 80% 
     A.2.2(LA)   -17741965 95 35% 19.144 (1,1,1) 50% 43.42% 205 66 85% 

A.2.2(LSA)   -15023979 95 35% 19.092 (0,0,1) 83% 43.54% 369 95 40% 
     A.2.5(TS) -50622223 47 40% 9.618 (17,4,4) 58% 48.87% 345 119 34% 
     A.2.5(SA) -28774923 46 41% 9.454 (3,6,8) 71% 49.87% 351 119 30% 
    A.2.5(LA) -47511660 47 40% 9.621 (22,3,4) 51% 48.85% 352 120 34% 

A.2.5(LSA) -45311736 47 40% 9.619 (20,2,4) 56% 48.86% 461 136 21% 
B.1(TS) -642113741 99 49% 20.951 (77,10,6) 12% 57.89% 2237 531 9% 
B.1(SA) -751389259 98 49% 20.766 (64,14,4) 23% 57.81% 2362 551 10.50% 
B.1 (LA) -544596716 99 49% 20.948 (72,14,4) 15% 57.89% 2237 532 9% 
B.1(LSA) -691537717 99 49% 20.947 (73,15,6) 11%     57.90% 2935 647 7% 
B.4(TS) -17116530373 500 36% 101.122 (0,0,0) 100%     44.50% 14883 3384 17% 
B.4(SA) -17136833433 500 36% 101.173 (18,4,2) 93% 44.48% 15176 3433 14% 
B.4 (LA) -17116172349 500 36% 101.153 (0,0,0) 100% 44.49% 14598 3333 17% 
B.4(LSA) -17136527221 500 37% 101.21 (17,3,4) 93%     43.70% 15207 3437 14% 

 



 

99 
 

3.4.1.Performance Results and Discussion 

 

Table 3.4 lists the outcomes of the condensed solutions. The search pattern for score 

improvement is shown in Figs. 3.18(a-d). This makes it easier to assess how quickly a 

certain algorithm finds the best solution. 

 

(a) 

 

(b) 



 
 
 
 
 

100 
 

 

(c) Dataset B.1 

 

(d) Dataset B.4 

Figure 3.11.: Score Improvement Pattern of Algorithms(E.Yaqub et 

al.,2014)  

The best score in (a) is found by SA in under 15 seconds, with LSA close behind. After 

20 seconds in (b), SA shines brighter than LSA, which comes in second. Note that after 

just 50 seconds, the curve flattens out for SA, indicating that search has been exhausted 



 
 
 
 
 

101 
 

and presumably the best solution has been located. As of yet, there hasn't been much 

work done to boost scores in other algorithms. When looking at criterion (c), it's clear 

that the pattern of score improvement is very irregular for LA and LSA, but not as 

irregular for TS and SA. After 175 seconds, LA has a commanding advantage against 

TS. However, no method exhibits a flattening of the curve, suggesting that the score 

might be improved even more in this dataset with further searching. Curves tend to 

flatten down in (d), revealing an intriguing pattern. However, for LA and TS, this 

flattening occurs quite quickly. After 100 seconds, LA is in the lead, and there is very 

little fight from TS after that. 

Solved solution scores reveal that SA excels in the case of small state spaces, LA in the 

case of medium state spaces (B.1), and LA slightly outperforms TS in the case of large 

state spaces (B.4). Consolidation leads to a marked improvement in scores (as shown 

in Fig. 3.19). In a meta-analysis of all datasets, SA was found to have the highest score 

improvement (32.65%), followed by LSA (32.04%), LA (31.79%), and TS 

(28.19%).[68] 

 

Figure 3.12.: Score improvement over initial solution 

The number of container migrations (and associated PDM) suggested by the top method 

are shown in Figs. 3.20(a) through (d). SA, whose solution score was the highest, has a 

little disadvantage in plot (a) compared to TS and LA. Although TS once more suggests 

0

10

20

30

40

50

60

70

80

90

A.2.2 A.2.5 B.1 B.4

Sc
or

e 
Im

pr
ov

em
en

t(
%

)

Datasets

Tabu Search

Simulated Annealing

Late Acceptance

Late Simulated Annealing



 
 
 
 
 

102 
 

the fewest migrations in (b), the margin with SA is relatively small. SA is a definite 

winner given its large lead in solution score. In (c), LA and TS both offer the same 

number of migrations, but LA should be chosen since it outperforms TS in terms of 

solution score by a significant margin. In (d), LA suggests the fewest migrations and 

sets itself out from TS. The LSA makes the highest migration suggestions and is a 

blatant outlier. LSA is not a suitable option if tight minimization of migrations is 

desired. 

 

(a) 

 

(b) 

69
66

95

65

70

75

80

85

90

95

100

200 250 300 350 400

PD
M

(m
in

ut
es

)

Number of Migrations

Tabu Search

Simulated Annealing

Late Acceptance

Late Simulated
Annealing

119

136

110

115

120

125

130

135

140

300 350 400 450 500

PD
M

(m
in

ut
es

)

Number of Migrations

Tabu Search

Simulated Annealing

Late Acceptance

Late Simulated
Annealing



 
 
 
 
 

103 
 

 

 

(c) 

 

(d) 

Figure 3.13.: Number of Migrations and PDM 

Figs. SLA violations (SLAV) are displayed in 3.21(a–d) with lax PDC tertile values. 

Three distinct regions are plotted against the three PDC values in plot (a). As the 

strictest evaluation criterion, least contention (PDC=sum of all tertiles), SA and LSA 

both meet the cut in (a), but SA suggests a low SLAV because of its low PDM. In (b), 

551

532

647

530

550

570

590

610

630

650

2200 2400 2600 2800 3000

PD
M

(m
in

ut
es

)

Number of Migrations

Tabu Search

Simulated Annealing

Late Acceptance

Late Simulated
Annealing

3384

3433

3333

3437

3320

3340

3360

3380

3400

3420

3440

3460

14500 14700 14900 15100 15300 15500

PD
M

(m
in

ut
es

)

Number of Migrations

Tabu Search

Simulated Annealing

Late Acceptance

Late Simulated
Annealing



 
 
 
 
 

104 
 

SA defeats TS despite having a low SLAV because their PDMs are equal. In (c), LA 

comes in second place to SA and again produces low contention and, consequently, low 

SLAV. Amazingly, LA and TS eliminate all contention on 500 machines in (d). 

LA gives least SLAV due to lower PDM than TS 

 



 
 
 
 
 

105 
 

 



 
 
 
 
 

106 
 

 

Figure 3.14.: Drop in SLA Violations with relaxing PDC as: i) sum of all Tertiles 

(north-east region), ii) sum of Tertile 2 and 3 (mid-region), iii) Tertile 3 (south-

west region) (E.Yaqub et al.,2014) 

When comparing the consolidated and unconsolidated system states using the same 

assessment criteria, Fig. 3.22 shows a dramatic drop in SLA breaches. The LSA is the 

lone outlier; it raised the SLAV in dataset B.1 by 0.02% when the PDC criteria were 

applied. However, when relaxed criteria are used, it excels. By averaging the findings 

from Fig. 3.22 over all datasets, we can evaluate the effectiveness of each approach in 

reducing SLA breaches. SA has the most decrease in SLA breaches, with a maximum 

of 70.38%; TS comes in second with 60.1%; LA and LSA tie for third with 59.43%; 

and LSA comes in last with 58.38%. 



 
 
 
 
 

107 
 

 

Figure 3.15.: Decrease in SLA Violations over initial solution 

Overall, consolidation improved mean utilization of machines while using fewer 

machinery and, in most circumstances, less energy. A2.2 reduces resource burden by 

up to 83%, uses 1% less energy overall, keeps utilization same, but uses 5% fewer 

machines. A2.5 reduces resource load by up to 71%, saves energy by 7%, increases 

utilization by up to 3%, and employs 8% fewer machines. B.1 reduces resource burden 

by up to 23%, uses 2% less energy, increases utilization by 1%, and employs 2% fewer 

machines. The use of the same number of computers and a reduction in resource use of 

up to 100% in B.4 suggest that a lengthier search may be attempted on a wider scale. 

The energy consumption is regarded as the average figure for consumption per hour. 

Be aware that the 1-7% energy savings recorded here add up to respectable monthly 

savings, as illustrated in Fig. With monthly savings of 229.14kWh, SA is our most 

environmentally friendly option, followed by TS with 172.8kWh, LA with 166.68kWh, 

and LSA with 166.32kWh, according to the mean value across all datasets. 

These findings support the idea that lower energy costs and fewer SLA breaches are the 

main benefits of service consolidation. This is accomplished by executing migrations 

that evenly distribute the workload among the computers, greatly reducing the load Cost 

therefore. Energy-efficiency and container scaleup numbers are also included in Table 

3.4. The energy-efficiency of the utilized machinery must be taken into account. Values 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

A.2.2 A.2.5 B.1 B.4

SL
AV

 R
ed

uc
tio

n(
%

)

Datasets

Tabu Search

Simulated Annealing

Late Acceptance

Late Simulated Annealing



 
 
 
 
 

108 
 

have been standardized as a result to get the highest energy efficiency with the 

employed machines.[69] 

3.4.2. Policy-led Ranking of Solutions 

 

Decision-making challenges for cloud service providers are analyzed and discussed. 

The author argues that the supplied metrics should be used and negotiated in line with 

an overarching policy. To this end, solutions are scored by average their usefulness 

across all metrics, with weights set according to the present policy's emphasis on 

various commercial considerations. The following utility function enables this: 

𝑈(𝑠𝑜𝑙) =   𝓌𝓊(𝓍)

ே

ୀଵ

 

  Here, U represents the value of a given solution sol, ui(xi) represents the value of 

metric xi as a real number between 0 and 1, and wi represents the weight placed on 

ui(xi). And  ∑ 𝓌  = 1ே   
ୀଵ  . This policy-led, utility-oriented scheme allows to obscure 

the complexity of individual metrics and decide for the most preferred solution. 

Nine factors were standardized  for use in assessing value to individuals. The solution 

score was normalised by the biggest difference between the original and solved scores. 

Equipment utilized and energy used were also comparable before and after 

consolidation. As the average utilization and load reduction numbers have already been 

normalized, they were used without further modification. There is evidence in some of 

the metrics of bad behavior. These consist of migration frequency, migration count, 

PDM scaleups, and the sum of PDC tertiles. To determine their positive utility, the 

discrepancies in their values were first normalized, and then they were subtracted from 

1. Since energy-efficiency interpretation is prone to negative effects, it was not 

considered. Then, for every dataset, five different business policies are provided to rate 

algorithms and, by extension, solutions. The High Score Policy favours solutions with 

a high score and assigns it a weight of 0.5, while the other metrics are each assigned a 

weight of 0.0623. Those findings are shown in Table 3.5.        

                



 
 
 
 
 

109 
 

                   Table 3.5.: Algorithms Ranked on High Score Policy 

Datasets 

Rank A.2.2 A.2.5 B.1 B.4 

1 SA SA LA TS 

2 LSA TS TS LA 

3 TS LSA SA SA 

4 LA LA LSA LSA 

 

Low Migration Policy: The PDM and the number of migrations are each given a weight 

of 0.25 under this policy, which supports modest migration rates. The remaining metrics 

are each given a weight of 0.071428571. Table 3.6 displays the outcomes. 

           Table 3.6.: Algorithms Ranked on Low Migration Policy 

Datasets 

Rank A.2.2 A.2.5 B.1 B.4 

1 SA SA SA TS 

2 TS TS LA LA 

3 LA LA TS SA 

4 LSA LSA LSA LSA 

 

Weighing the PDC and decreased demand on resources at 0.25 each, this policy 

prioritises minimal resource contention. All other indicators are weighted equally at 

0.071428571. The results are shown in Table 3.7. 

            

 

 

         Table 3.7.: Algorithms Ranked on Low Contention Policy 



 
 
 
 
 

110 
 

Datasets 

Rank A.2.2 A.2.5 B.1 B.4 

1 SA SA SA TS 

2 LSA TS LA LA 

3 TS LSA TS SA 

4 LA LA LSA LSA 

 

Assigning a weight of 0.25 to both PDM and PDC, the Low SLA Violations Policy 

encourages few service level agreement infractions. All other metrics each get a weight 

of 0.071428571. Table 3.8 displays the findings. 

Table 3.8.: Algorithms Ranked on Low SLA Violations Policy 

Datasets 

Rank A.2.2 A.2.5 B.1 B.4 

1 SA SA SA TS 

2 LSA TS LA LA 

3 TS LA TS SA 

4 LA LSA LSA LSA 

 

This environmentally friendly strategy priorities conserving energy by giving a weight 

of 0.5 to energy savings and a weight of 0.071428571 to all other measures. Table 3.9 

displays the findings. 

Table 3.9.: Algorithms Ranked on Low Energy Policy 

Datasets 

Rank A.2.2 A.2.5 B.1 B.4 

1 LSA SA SA TS 

2 SA TS LA LA 

3 TS LA TS SA 

4 LA LSA LSA LSA 



 
 
 
 
 

111 
 

After a coarse-grained analysis, it was shown that, across all five strategies, Simulated 

Annealing triumphed 13 times on small and medium-sized datasets (A2.2, A2.5, B.1). 

On the most competitive dataset (B.4), Tabu Search outperformed all other policies and 

finished on top with five victories. On the medium dataset (B.1), late acceptance rated 

highest solely for the high score policy, whereas on the small dataset (A2.2), late 

simulated annealing ranked best for the low energy policy. According to the available 

literature, simulated annealing is the best algorithm for enacting the vast majority of 

policies and increasing ROI (ROI). 

In this chapter, we solved the problem of SLA-aware resource management in the cloud 

that service consolidation poses for OpenShift PaaS. According to the author's 

understanding, this is one of the first publications on the topic to employ several 

Metaheuristic algorithms and assess their effectiveness using formally specified models 

for several different features. Extending assessments to new metrics, limitations, and 

datasets is a possibility in the future. The work that has been presented makes a stronger 

argument for SLA management on contemporary cloud infrastructures.[70] 

 

 

 

 

 

 

 

 

 



 
 
 
 
 

112 
 

CHAPTER 4 

4.0. Enforcement of SLA for Security of Cloud Network 

 

4.1 System and Fault Models 

 

Defects (inadequacies in the physical infrastructure), faults (inadequacies in certain 

functions), mistakes (incorrect system behavior), and failures (incorrect system 

performance) may all be assessed with the use of system and fault modeling (deviation 

of a specified behavior). By comparing the details of a system model with those of its 

flaws, we can more accurately estimate the severity of each flaw and determine the best 

way to address it [71] A system model in a testing scenario could have all the working 

parts and basic setups for the implementation in their optimal state. The fault model, on 

the other hand, finds potential failure sites throughout the whole process, from start to 

finish, revealing possible misbehaviors of a single node or a distributed computing 

cluster. This is the process of tracing a series of occurrences back to their originating 

causes, which is known as fault identification at the system level. By addressing our 

recommended system model, fault model scenarios covering both of our proposed 

architectures for enforcing cloud SLAs, and, by extension, it constructs a full security 

posture to correlate enforcement facets, this chapter gives some food for thought. This 

research takes it a step further by dissecting each main component of such systems and 

proposing fixes for the flaws and restrictions that were identified. We anticipate seeing 

these models introduced in the paper's subsequent chapter. 

4.1.1.When Participants are Loss Averse 

 

Our first proposed architecture is discussed below; it's intended for use in the scenario 

where all involved parties are loss-averse and are communicating in real-time. 

 

 

 

4.1.1.1. System Model 



 
 
 
 
 

113 
 

 

A system model in distributed computing is the sum of the interactions between all the 

nodes, processors, processes, and their related components across all the different OS. 

Together, their communication paves the way for the completion of an undertaking, 

such as fulfilling a service request made by a client and started by a processor from 

either a trustworthy or an untrusted network. The system model also depicts several 

algorithms or protocols under which at least two interacting players agree on their 

interaction cycle, outlining the specifics of how their communication will be 

established, begun, task performance, and terminated after all tasks have been 

accomplished. The service reference design also addresses problems with fault 

tolerance and conflict resolution. Regardless of the distance between the nodes in 

question, this method makes it easier to examine the messages being sent and received 

and the predicted communication pattern and temporal model that arises whenever the 

nodes in question interact. 

The system model also examines the proper operation of each component and their 

required actions in a perfect setting. When determining how long a process will take to 

execute and finish a job, it is important to consider whether the system is configured to 

do those activities using an asynchronous or synchronous communication paradigm. 

Additionally, the subsequent interactions will be evaluated using the same 

presumptions because the communication paradigm we have selected is synchronous. 

Real-time is necessary for synchronous systems to exchange data with the appropriate 

processors. 

We consider a scenario in which three entities—the cloud service subscriber (CSS), the 

cloud service provider (CSP), and the end users—are involved.[72] 

 CSS 

A subscriber to a cloud service is a person or organization that uses the service to access 

computing resources like memory and hard drive space. CSS resource needs are tied to 

the anticipated application burden that would be necessary to meet CSS business goals. 

The CSS will offer something like digital payment in exchange for these computing 

resources (and other related services, such disaster recovery). An individual CSS's 



 
 
 
 
 

114 
 

computational resource needs are set by the CSS's intended use or by the needs of the 

enterprise using the CSS. A is the collection of (business or application) parameters 

with desirable values that must be satisfied in order to implement a particular CSS. 

These criteria include, but are not limited to, availability and response times. We 

presume that a CSP will be able to map A onto a relevant R, the application's resource 

requirements. The CSS is assumed to have a function E that, given a collection of 

metrics (or sensors) S from the CSP, returns true if and only if E(S) satisfies A. The 

object assigned a CSS value is sometimes referred to as an International Classification 

of Standardization (ICSS) item. We make the assumption that there is a verification 

technique VICSS that can vouch for whether or not the item ICSS fulfils the 

specification ICSS. 

 

Figure 4.1: A basic Web Service Operating state 

 CSP 

At its most fundamental level, the CSP is responsible for supplying computing power 

to one or more CSSs. The CSP uses several different processes, including VM 

migration, scheduling, and elastic resource provisioning, to meet the demands of any 



 
 
 
 
 

115 
 

CSS that uses its services. Accurately estimating CSP adoption is outside the scope of 

this study. (For instance, given a CSS and an application requirement (A), a CSP must 

evaluate its available resources and any supplemental techniques to decide whether or 

not R resources may be devoted to A. (e.g., see). Let's say the CSS relies on the CSP to 

keep an eye on a set of signals (or sensors) S that, when taken together, reveal how 

successful the CSP has been in attaining A.A CSP may not be able to provide that all 

CSS criteria will be satisfied at all times because of the inevitable conflicts that will 

arise when serving several CSSs with different priorities. This is reflected in the 

service-level agreement (SLA) between the CSP and the CSS, which specifies the 

performance guarantees offered by the CSP. Each A application parameter will have an 

accompanying clause announced in the SLA. Each ensuing phrase is a (parameter) 

predicate. If E determines that any such criterion has been breached, the SLA stipulates 

that the CSS may escalate corrective action to the CSP. The CSP is assumed to 

periodically notify the CSS of S's value for assessment. 

4.2.Message Security: Arrangements & Schemes: 

In addition to examining the system model, it is recommended that the enabling 

technologies that protect (e.g., data security and privacy) message exchange channels 

and serve as required security implementations be assessed and studied. This 

underscores the need of parties assessing the security measures and procedures their 

service providers have in place to ensure the safe delivery of services to their customers' 

platforms. 

4.2.1.Cryptographic Primitives: 

 When sending or receiving sensitive information through an untrusted channel, 

cryptography is a crucial component. Data security and privacy can never be ensured 

without the use of cryptographic techniques. In addition, security features like privacy, 

authentication, and credibility cannot be denied because of the use of these methods. 

Since we have used this approach in our work, it is necessary to explain how various 

cryptographic algorithms encrypt and decode messages in the thesis while assuming 

message exchange or exchanges between parties. Encryption occurs when a rendering 

process is applied to some intended data, rendering the data useless (i.e., illegible to 



 
 
 
 
 

116 
 

anybody other than the intended users/recipients). These methods make it such that no 

one but the intended recipient may read any transmitted or received data (data at rest, 

data in transit). While an adversary can have access to encrypted material, they will not 

be able to read it without the correct cryptographic keys. Until an attacker can reverse-

engineer the encryption rules and cryptosystems, the communication undergoes a 

transformation from plaintext to cipher text, in which the order of the message bits is 

jumbled. We'll have a look at a few methods for learning about the communication 

protocol and security assumption that's made while moving forward with the inter-

communications arrangements of the participants. In Table 4.1, we can see several 

different schemes, each with its own set of characteristics and goals.[73] 

Table 4.1: Cryptographic Schemes used in message exchange 

Cryptographic Schemes 

Encryption 

Scheme Objective Input Output 

Symmetric 

Cryptography Confidentiality Plaintext(any length) 

Cipher text(same 

length) 

Asymmetric Authentication Plaintext(any length) Fixed length signature 

Asymmetric Key agreement 

Counterparty 

information A session Key 

Hash Fingerprint Plaintext(any length) 

Fixed length message 

dependent fingerprint 

pseudo-random 

number 

generators(PRNG) Randomsness Various Hard to predict bits 

 

4.2.2. Symmetric Encryption:  

Secret key encryption, also known as symmetric key encryption, involves both the 

sender and the recipient keeping the same secret key in order to encrypt and decode the 

communication. Because the key is needed for both encryption and decryption, it is 

essential that both the sender and the recipient have a copy of the key. The message's 



 
 
 
 
 

117 
 

privacy and integrity may be compromised if the secret key, which must be shared with 

the receiving person, were to fall into the wrong hands. 

Symmetric users will be acquainted with a wide variety of encryption methods, 

including the Tiny Encryption Algorithm (TEA), Data Encryption Standard (DES), 

International Data Encryption Algorithm (IDEA), RC4, and Advance Encryption 

Standard (AES). 

4.2.3. Asymmetric Cryptographic Algorithms: 

In this method, also known as public key encryption, a user (A) encrypts a message (B) 

for another user (B), using B's public key (which may be known to others, such as 

unauthorized users), and then sends the encrypted message (B) to B for decryption. If 

the communication is intercepted by a third party, that third party will not be able to 

read it since they do not have access to User B's private key (which is only known to 

User B and no one else).Because of the nature of the mathematical process used as the 

foundation for one-way functionality, it is impossible to recover the original input 

values once they have been used to calculate a value. Everyone in this household is 

familiar with the cryptographic algorithms Diffie-Hellman and RSA. 

Our study will be focused on the RSA method since it has been shown to be the most 

suited algorithm for usage in cloud computing environments and because it has been 

the focus of several studies and researchers. 

4.2.4.Hybrid cryptographic Methods:  

To guarantee the participants' integrity, confidentiality, and authenticity during their 

online interactions, a new trend involves the use of Hybrid Cryptographic Algorithms. 

This comprises the development of a hybrid cryptography combo with two distinct 

symmetric algorithms using simple integer variables and extended linear block cipher, 

and the creation of a combination of a symmetric key method of AES and the 

asymmetric key algorithm.[74] 

 

4.2.4.1.Digital Signatures:  



 
 
 
 
 

118 
 

A digital signature guarantees the authenticity of a message by using a hash value that 

has been signed by the sender using their private key. Security-focused digital 

signatures have been widely adopted by businesses for use on a range of digital 

products. Digitally signing important documents or transactions conducted online 

increases confidence that the sender and recipient will be able to rely on the authenticity 

and integrity of the message. As messages travel back and forth over potentially 

unsecure channels, the use of digital signatures becomes increasingly important in 

establishing the reliability of the data being transferred. However, even if an attacker 

were to try to make some arbitrary changes to the data, such as by double spending, the 

digital signature would make that extremely difficult. 

4.2.4.2. Non-cryptographic Methods:  

In addition to cryptographic algorithms, other significant security measures are 

implemented to ensure channel security, such as traffic padding, routing control, 

passwords, smart cards, protected channels, and then other obvious security 

arrangements, such as a firewall. 

4.2.4.3. Nonce:  

In order to prove that the message being sent is not a repeating one, a "once" or "once-

only" integer value is added in the message sequence. With nonce, an attacker cannot 

reuse a previously authenticated communication in a replay attack. 

4.2.4.4. Digest Functions:  

often denoted by the letter H, are safe hash functions. When going back over a 

conversation where messages were exchanged, it's important to note that H(M)=H(M') 

and that the messages should be viewed as having been modified as a result. 

 RSA 

RSA (Rivest, Shamir, and Adleman) has without a doubt established itself as the 

standard cryptographic method for creating public-key (asymmetric) encryption in 

recent years. It not only satisfies the protocol's authentication needs, but also executes 



 
 
 
 
 

119 
 

its essential encryption features. The procedures involved in generating a key, 

encrypting the data at hand, and then decrypting it are outlined below: 

1. To send a message to recipient B, sender A first produces the public-private key 

pair KpubA and KprivA. KpubA, the public key, is disseminated to an optimally 

safe place. 

2. Here, A uses an authorized secure hash function to generate a message digest, 

H(M), and then encrypts the digest with his private key, KprivA, to generate a 

message signature, S=H(M)KprivA. 

3. The sender (A) uses unreliable channels to send the intended encrypted message 

([M]K=M, S) to the recipient (B). 

4. If (B) decrypts S using KpubA and calculates the message digest of M, H(M), 

and they are the same, then (A)'s signature is valid. 

Although RSA has been around for a while and has a good reputation as an encryption 

algorithm, it does have a few security flaws, the most serious of which is the possibility 

that an attacker with access to the private key could decrypt the entire data set. Only 

algorithms like Diffe-Hellman Encryption (DHE) that have the forward secrecy feature 

can protect against this danger, but DHE has its flaws, including a lack of speed. 

Ephemeral Elliptic Curve DHE (ECDHE-RSA) is a strong and quick asymmetric 

encryption method found in asymmetric encryption catalog. 

4.2.5. Digital Certificates & Certificate Authorities (CAs) 

 

With digital certificates, you know you're talking to the real deal while exchanging 

information with another party. If a distant user's digital certificate contains their public 

key and verifies that they've adhered to specific best practices or worldwide standards, 

it will deter attackers and unauthorized users from posing as that user. Certificates 

issued according to the X.509 (International Telecommunications Union) standard can 

contain information such as a serial number, issuer's name, validity term, subject's 

name, and public key, all of which verify the identity of the subject. Certificate authority 

are responsible for issuing certificates (CA). To ensure that only trusted CAs issue 



 
 
 
 
 

120 
 

digital certificates, these companies provide digital notary services to anyone who are 

interested.[75] 

4.2.5.1. Fault Model 

 

In order to avoid a situation in which many nodes, processors, processes, connections, 

or service components of a system fail for various reasons, fault models must be created. 

Inaccurate processing times, (system, process, verification) values, and fabricated 

specifications can all be calculated and presented as a result of such mistakes. In 

addition to causing service interruptions, errors of this nature might compromise the 

security of the system as a whole, allowing unauthorized users access to the system or 

demonstrating that one of the serving nodes is acting arbitrarily. Omission 

(process/communication channel) failures, random byzantine failures, and timing 

failures, in addition to those categorized as benign, intermittent, and transitory faults, 

are all fully described in further study. 

 

Figure 4.2: Potential attackers could cause failure to a web service operation  



 
 
 
 
 

121 
 

Web service security measures are implemented with a focus on the underlying web 

technologies via which web services are published, accessed, and even attacked: 

a) Message Security 

b) Infrastructure Security 

c) Correct Response Generation 

d) Authentic Recipient Only 

e) Interaction Complies the SLA 

f) Repel Attackers (internal/external) 

If a CSP's supplied service element fails in an IaaS, PaaS, or SaaS environment, a SLA 

violation alert will be generated. 

Our study focuses on faults that cause E(S) to violate A, therefore when we talk about 

a fault model, we're referring to those that prevent a CSP from meeting its SLA on the 

CSS. This might be the result of a malicious assault (i.e., external abuse) such as a 

distributed denial of service (DDoS) attack, a failure of the CSP's supporting procedures 

(i.e., design faults), or incorrect resource provisioning (i.e., component faults). The 

symptoms, in the form of Service Level Agreement (SLA) infractions, are of particular 

importance here. 

In addition, we make the assumption that both the CSS and CSP are risk averse. A loss-

averse participant (CSS or CSP) (i) will not attempt to sabotage the protocol's 

execution, (ii) will always accurately assess E(S), i.e., will not falsely accuse the CSP 

of breaking the SLA, and (iii) will always agree to the corrective action indicated in the 

SLA. This is because (i) for a CSP, a bad reputation may have a significant influence 

on the company's business strategy, and (ii) for a CSS, false accusations could result in 

lower availability while the violation is investigated and addressed, both of which are 

problems for a loss-averse player.[76] 

When Participants are Malicious 

While our system and fault model in the aforementioned examples only included three 

parties—the CSS, the CSP, and the end user—the number of parties involved in this 

interaction is growing as we expand our protocol's operational assumptions. Now we 



 
 
 
 
 

122 
 

look at the other players; some of them are well-connected since they interact directly 

with one another, while others play a supporting role for primary players like CSPs and 

CSSs. Trusted Third Parties (TTPs) and Trusted Organizations (TOs) are examples of 

these broader players (TAs). For the organizations that have contracted with them, these 

reliable third parties serve as guarantors. When TACSS or TACSP receive an inquiry 

or request to provide materials committed by CSS or CSP, they are obligated and given 

a particular mandate to communicate with TTP. Since we want to account for these new 

players in our system model and fault model, we will need to make some adjustments 

to their dimensions and the scope of the models. While it's possible that many of the 

aforementioned operational limitations will remain the same, the scope of the fault 

model will inevitably be expanded to account for evident changes to our architecture 

and other related circumstances. 

4.2.5.2. Threat Landscape:  

When a web service in production falls victim to a cyber attack, it is a breach of the 

service level agreement (SLA). It might be an internal or external attacker, or something 

(such a changed procedure or a security breach) that puts the whole service at risk, or 

just a part of it. Errors within the scope of our study can happen anywhere between the 

CSP's trust boundary and the CSS's trust boundary, or on any of the communication 

channels between the two. 

4.2.5.3.Cloud Attack Vectors:  

There has been a dramatic increase in the adoption of cloud computing across all 

industries and regions of the world. In the wake of the current pandemic, cloud-based 

technologies have emerged as the frontrunners, giving decision-makers a low-

maintenance service platform that nonetheless excels in reliability, safety, and 

regulation compliance. Since entering the office has become more difficult, businesses 

around the world have turned to cloud computing for all of their supply chain 

management needs. This includes businesses in the fields of international trade, 

education, shipping, healthcare, financial technologies (fin. tech.), food processing, 

retail, and wholesale. Revenues from cloud data centers, which store data and 

applications for businesses, are projected to surge to $304.9 billion by 2021, as demand 



 
 
 
 
 

123 
 

for such services continues to rise across industries. The majority of these businesses 

will likely provide SaaS-based services. 

This illustrates the increasing reliance of businesses throughout the world on cloud 

computing, a trend that, regrettably, also draws malicious actors. By utilizing a wide 

variety of attack vectors and tools, their end goal is the same: to shut down the affected 

cloud services. Secure, private, and readily accessible Critical data (wired or residual), 

edge computing infrastructure (physical or virtual), and endpoints are all targets 

of attack vectors. This poses a persistent threat to the safety of all parties involved in 

the cloud security industry, including service providers and their customers. If one of a 

company's vital services is hacked, the resulting lack of confidence in the security of 

the rest of the firm might be fatal. The attack vectors show their powers to the point 

where they may, in the worst case, disrupt cloud services. When unidentified assailants 

target vital services like healthcare or air travel, innocent people might lose their lives. 

When service outages are fought with these tactics, the subscriber suffers twice as much 

since they cannot substantiate their claims and must comply with SLAs or do additional 

service monitoring tasks.[77] 

 

Web assaults, application attacks, and infrastructure attacks are only some of the targets 

of hostile actors' efforts. Attacks against SaaS clouds, PaaS clouds, and IaaS platforms 

may all be distinguished from one another, as can attacks on other service models. 

When deploying a cloud service, it's important to think about how to secure the data 

services and who is responsible for them. Before agreeing to the SLA, further potential 

entry points for threats would be investigated as needed. Client and endpoint security, 

service access restrictions, hosting platform security, and identifying and confirming 

responsibility allocation are all part of this. Here are a few examples of those assaults: 

a) Denial of Service (DoS) Attacks 

b) Distributed Denial of Service (DDoS) Attacks 

c) Cloud Malware-Injection Attacks 

d) Cloud Side Channel Attacks 

e) Authentication Attacks 



 
 
 
 
 

124 
 

f) Man-in-the-Middle Attacks 

g) Trust & Reputation System At- tack 

h) Cloud Service Containers (DDoS) Attack 

i) Metadata Spoofing Attacks (WSDL service modification) 

j) Server-side Request Forgery 

k) Credential Stuffing Attack 

l) Fake Cloud Services 

Different service aspects, such as those in the technical, operational, or security spheres, 

are discussed here, along with their respective models and fault models. In addition to 

outlining these risks, the chapter discusses some methods for minimizing them during 

service exchange involving several parties. We foresaw how these business people's 

loss aversion would complicate matters when dealing with disputes. This chapter also 

covers situations when one or both participants could be up to no good, employing a 

wide variety of cloud-based assaults. Our following chapter details the operation of our 

suggested conceptual paradigm, including how it begins communication in the presence 

of reliable outsiders. 

From the very first communication sent to the very last one received, this chapter covers 

it all. It describes the mechanics of implementing fully automated SLA 

enforcement.[78] 

4.3. SLA Enforcement with Loss Averse Participants 

 

The economic behavior known as "loss aversion" occurs when a company would rather 

operate at a loss than risk earning money that may be used to settle a lawsuit or repair 

its reputation if it were to go public. Their worry about financial loss is more important 

to them than the possibility of future financial gain. This business strategy tempts a 

company into momentarily deciding in favour of prospective unfavourable results over 

positive ones. Similarly, we see a first case where both of our primary business partners 

are averse to financial loss. Those involved in the sale of digital products for use in 

cloud settings, whether that be the service provider or a potential consumer, would do 

well to avoid any appearance of dishonesty. In addition, the cloud service provider will 

always be trustworthy when providing cloud services to the cloud service subscriber, 



 
 
 
 
 

125 
 

and will never do anything to deceive the CSS, including tampering with the CSS's data 

security or privacy. At the other end, CSS would not exhibit any behavior indicative of 

malice, such as failing to pay the service provider or tampering with any product or 

service security measures. 

This study first identifies the issue and the current limitations in cloud service delivery. 

In the first part of the paper, we covered the settings in which system models function, 

how they react when possible faults are injected, and the related system and fault 

models. That's why the study came up with a solution to the problem: a new kind of 

architecture. We posited that this is an issue with SLA enforcement, which is prevalent 

in the fair exchange. In the past, much of the effort went into tracking service level 

agreement (SLA) infractions. When it comes to monitoring, detecting, and enforcing 

cloud SLAs automatically, we know that an intelligent solution is a vital business 

necessity. To the best of our knowledge, no one has thought to use the fair exchange 

protocol in this way before. The theoretical implications of the suggested architecture 

were explained, and a micro-level implementation based on concurrent cloud 

technologies was supplied so that the design could be tested and findings could be 

gleaned from the experiment.[79] 

4.3.1.Proposed Methodology 

 

A rising number of cloud service providers (CSPs) are delivering a vast array of cloud-

enabled services as the economic and technical advantages of shifting to a cloud-based 

computing paradigm become more evident. More and more CSSs are turning to CSPs 

for service guarantees regarding the quality of service (QoS) they can rely on to 

reinforce their business cases, drawn by capabilities like disaster recovery and variable 

resource availability. 

A service level agreement (SLA) is a common tool for gauging a provider's quality of 

service (QoS) (SLA). Guaranteeing the CC and providing a guide for maintenance were 

its first roles. Different provisions in these SLAs address issues such as: I data 

ownership (e.g., Access to the data - data retrievable from CSP in readable format), (ii) 

the specific parameters and minimum service (e.g., Availability (e.g., 99.99% (peak), 

99.9% for (off-peak) times or Performance (e.g., maximum response times), and (iii) 



 
 
 
 
 

126 
 

system architecture and security levels or standards (e.g., Security). So, the SLA 

documents the CSP's guarantees to the CSS, who are leasing the services for payment. 

Yet the system architecture that underpins these CC services is vulnerable to I failures, 

such as nodes crashing or being taken down or (ii) problems owing to targeted cyber 

assaults. The monetary cost to enterprises can be substantial under these conditions, and 

the CSP typically fails to meet its SLA obligations. When a SLA violation occurs, the 

clause dealing with such a situation kicks in. At some point, the CSS, as the harmed 

party, may try to get its money back using the SLA's provisions for business 

reimbursements. The time it takes to settle a disagreement through mediation is 

uncertain if it will be conducted manually. Strangely, despite being unable to provide 

proof due to lack of access to the CSP's computer estate, a CSS can be held accountable 

for a failed cloud service. The CSS must eventually follow a set of clearly established 

protocols, such as meticulously keeping track of all pertinent data and checking that it 

is both admissible and completely undamaged (digital forensics sound). 

Moving toward automating the dispute resolution process will relieve the CSP of the 

burden of proof (with all the processes that must be adhered to). This third party 

monitors the situation to make sure neither party is treated unjustly. In this study, we 

present a cutting-edge approach based on the principle of equitable trade.[80] 

4.3.1.1.Architecture Objective 

 

In this part, we provide a high-level description of the issue we're trying to solve and 

then list the characteristics that any proposed solution must have. 

Most of the components of the cloud service fabric adhere to the CSP-defined service-

oriented architecture. As a rule, the CSS will occasionally pay the CSP for the services 

they have received. The next step is to create a SLA that spells out the conditions that 

both the CSP and the CSS must meet at all times or face the possibility of disciplinary 

action. Only the SLA, which details the whole service plan, service scope, scalability, 

outages, and incident response mechanism, is legally enforceable between the CSP and 

the CSS. A service variation (such as under-provisioned services) in terms of the agreed 

upon number of processors, memory, storage, bandwidth allocation, and service uptime 



 
 
 
 
 

127 
 

assurances might be harmful to the CSS if the CSP provides unfair or degraded services 

to consumers utilizing the CSS's application.[97] Let's pretend for a moment that the 

CSP has a sensor network up and running to keep tabs on the various SLA assurances. 

For their effort if the SLA is breached, the CSS may want compensation. 

As a quick recap, here's what's happened: The time frame is divided into "windows," 

or periods of the same duration (i.e., to capture the notion of the period). Afterward, the 

CSP communicates round c's worth of sensor data to the CSS towards the round's 

ending. The sensor data collects all the information on the SLA's numerous properties. 

The CSS makes an advance payment for cycle c + 1 if the SLA is met. However, the 

CSS has the right to seek compensation from the CSP in the event of a SLA violation 

in round c (for example, by appropriately decreasing its pre-payment for cycle c + 1 

services). A CSP is expected to pay a CSS for its losses if it is provided with sufficient 

evidence of the CSP's SLA breaches. 

Therefore, the CSS has the onus of evidence, in the form of demonstrating a SLA 

breach. Since the CSS could not provide all the necessary details, proving such claims 

might be extremely difficult. Even if proof is located, the procedure is laborious and 

time-consuming, which hurts the CSS. Therefore, the CSS would benefit from 

automating this SLA enforcement procedure. In particular, automating the process of 

collecting and presenting evidence would be useful for everybody involved. Since a 

loss-averse CSS will only pay a CSP in advance for cycle c + 1 services if the CSP has 

met the agreed-upon SLA for cycle c, SLA enforcement is presented as a fair 

transaction in which both parties benefit. The reasonable exchange also includes a 

mechanism for resolving disputes, so long as both parties agree that SLA breaches 

happened during period c, they will each receive a token of resolution that confirms the 

occurrence of those violations. 

Thus, we define SLA Enforcement as the problem we address in the study as follows: 

Definition 1:Putting Service Level Agreements into Effect. Incorporating the following 

into a single SLA S 

 A collection of CSP sensors, abbreviated ICSP, 

 An ICSS-denoted line item for "paying" the CSP, 



 
 
 
 
 

128 
 

 A standard called "ΣCSP" that defines the valid sensor readings for each ICSP 

sensor and their associated error bars. 

 A ΣCSS guideline outlining the acceptable range of values for ICSS, 

 A check mechanism called VICSP, which ensures that each sensor's reading is 

in accordance with the ΣCSP standard. 

 VICSS, a mechanism for checking whether ICSS is consistent with ΣCSS; 

 A time window TE that represents the temporal range during which sensor 

readings may be relied upon, 

If protocol A satisfies the following requirements, then A may be used to enforce 

service level agreements. 

 Fairness: When A terminates, then either (i) CSP receives ICSS and VCSS(ICSS) 

and CSS receives ICSP and VCSP (ICSP) or (ii) if ¬VCSP (ICSP) then CSP does 

not receive ICSS but both CSP and CSS receive a resolution token that also 

contains the SLA contract S between CSS and CSP. 

 Timeliness: It is guaranteed that A will end before TE. 

 Non-repudiation: When A ends in (i), both CSP and CSS are able to 

independently prove that CSP is the origin of ICSS and ICSP is the origin of CSS. 

If A leads to (ii), then both CSP and CSS have independent proofs of where 

their resolution token came from and what it contains. 

4.3.2. Proposed Architecture 

 

The picture describes a conceptual model that was developed after researchers learned 

about the SLA enforcement challenge and its accompanying gaps in an abstract. This 

theoretical framework is predicated firstly on a customer-service specialist (CSS) and 

a service provider (CSP). These two parties make up a two-party service exchange 

paradigm, with the service orientation set up to communicate synchronously with a 

third, crucial party—the trusted third party (TTP) who oversees and mediates the 

transaction. In synchronous communication, each event has a time limit, so if a response 

isn't received within that time, an alert will be triggered. Our algorithm also details how 

this design manages SLA enforcement by reducing the risks, vulnerabilities, and unfair 



 
 
 
 
 

129 
 

exchange events that would otherwise arise. Detailed descriptions and demonstrations 

of the functions and interactions of several serving components, including SLA(E) and 

FE, are provided. 

The next critical step was to determine how this theoretical framework might be put to 

practical use in a controlled experiment. We are integrating it with Microsoft Azure and 

other cloud platforms to monitor and track the actions of all involved parties. When we 

deploy CSS, CSP, and the TTP as virtual entities, we can study and verify how their 

constituent parts interact based on how those parts are configured in response to system 

specifications, operating environments, and other limitations. In the following, we 

discuss and quantify the ways in which our fair exchange-based in-line TTP 

implementation manages the service exchange to provide dependable and resilient 

automatic SLA enforcement.[81] 

 

Figure 4.3: Proposed Architecture (I) (when participants are loss averse) 

In Figure 4.3, a fair exchange component (i.e., a solution to the fair exchange issue) 

aids a SLA enforcement component. The idea behind this is that the SLA enforcement 

module will provide values or parameters to the fair exchange module. When the fair 

exchange components have the right information, they'll notify the TTP, CSP, or CSS 

to begin implementing the respective sub protocol (normal, resolve, or abort). The fair 



 
 
 
 
 

130 
 

exchange subsystem of either the CSP or the CSS must confirm the swap has taken 

place. While the SLA enforcement module of CSS verifies that sensor values (reported 

by the fair exchange component) are within the SLA, the fair exchange component 

ensures that the agreed set of sensors (i.e., ICSP) is delivered. 

However, it's difficult to enforce SLAs since the CSS often has to "pay" before the CSP 

begins providing services to the CSS. In the event of a disagreement, the CSS is 

responsible for persuading the CSP that a SLA violation has occurred. In such instances, 

the CSP and the CSS may still have disagreements for many reasons, such as the CSP 

disputing the evidence's origins (i.e., sensors). The extra work required of the CSS is 

the issue in this scenario. Additionally, in a typical fair exchange solution, both parties 

initiate the protocol simultaneously by exchanging messages directly with each other; 

the TTP is not involved in either the successful exchange or the usual termination of 

these communications. However, the SLA issue is asymmetric since the CSS must pay 

in advance for future services while the CSP may return sensor results only towards the 

end of the time window for continuous service supply.[82] 

4.3.2.1. Architectural Components 

 

Our suggested architecture includes three actors—the CSP, its users, and the sensors it 

employs—all of whom are external to the SLP enforcement problem but who are 

nonetheless updated by our proposal. (i) CSP, (ii) CSS, and (iii) TTP are the three 

players. 

 

 

 

Table 4.2: Fair exchange protocol with post-exchange dispute resolution 

Step Protocol Messages from /to PA Message from/to PB 

1 Setup Φ(A)= eKA(IA) Φ (B)=eKB(IB) 

2 E MA = eKB(L,A,H(N), ΦA);PA→  PB 

MB = eKA(L,B,H(N),Φ 

B);PB→  PA 



 
 
 
 
 

131 
 

3 E 

 AckA(B) =(L,A,H(N),H(MB) my ack 

) : PA → PB 

 AckB(A) 

=(L,B,H(N),H(MA) my 

ack ) : PB → PA 

4 R 

 ResA =(L,A,H(N),MA,MB Resolve 

Req ): PA → TTP 

 ResB=(L,B,H(N),MB,MA 

Resolve Req) : PB → TTP 

5 A 

 ReqA =(L,A,H(N),MA Abort Req) : 

PA → TTP 

 ReqB=(L,B,H(N),MB 

Abort Req) : PB → TTP 

6 R 

 MTTP(A) =(L,TTP,H(N),MB myack): 

TTP → PA 

 MTTP(B) 

=(L,TTP,H(N),MA my 

ack): TTP → PB 

7 A 

 Abort TTP(A) =(L,TTP,H(N),Abort 

granted A ): TTP → PA 

 Abort TTP(B) 

=(L,TTP,H(N),Abort 

granted B ): TTP → PB 

 

 CSS and CSP 

Both of these parties need to have the SLA strictly enforced. Therefore, these two 

locations have two crucial features: Both a Service Level Agreement Enforcement 

(SLA-E) and Fair Exchange (FE) feature are included. With regards to the fair exchange 

problem, it is the FE component that is in charge of execution, and it is the SLA-E 

component that either sends or receives data in regards to SLAs. Our SLA enforcement 

procedure will be shown in two forms, all of which are modeled after the methodology 

in Table 4.2. I data exchanged between the SLA-E and FE, and (ii) communications 

between individual FEs. 

 

 

Table 4.3: SLA Initialization 

     Step Message from SLA-E to FE Message from FE to SLA-E 

1 ΨCSS =SigCSS(S,VCSS)                    L 

2 ΨCSP = SigCSP(S,VCSP)                    L 

 



 
 
 
 
 

132 
 

Table 4.4: SLA Enforcement setup phase - Fair Exchange Component 

Step Protocol Messages from /to CSS Message from/to CSP 

2 Setup 

 MSLA = (CSS,CSP, ΨCSS) : CSS 

→TTP 

 MSLA = (CSP,CSS, ΨCSP) 

: CSP →TTP 

3  Setup 

    

 SigTTP= (CSS,CSP,H(N),L,TE) : TTP 

→CSS 

 SigTTP= 

(CSP,CSS,H(N),L,TE) : TTP 

→CSP 

 

 TTP 

Since the TTP's only function is to enforce the fair exchange issue, it does not include 

a SLA-E component. Therefore, the TTP's message exchanges are the responsibility of 

the FE part. 

4.3.3. SLA Enforcement Protocol 

 

We outline the procedure for SLA enforcement below. 

 Initialization and Setup 

The startup procedure is now being detailed. 

SLA-E, FE at CSS and CSP: The SLA contract S agreed upon by the CSP and CSS 

must initially be sent to the TTP, who may then retain it in storage until the outcome of 

any potential disputes. In order to accomplish this, the CSS (or CSP) SLA enforcement 

section feeds the following information to the fair exchange section: To wit: I S and (ii) 

VCSS (resp. VCSP). Table 4.3 details the values that are signed off by the SLA 

enforcement section and forwarded to the fair exchange section. Upon receiving these 

parameters, the fair exchange component will proceed with the initialization procedure 

outlined in Table 4.4. The message carries a nonce that identifies the current "round" 

of an exchange by itself. The SLA enforcement module is informed of the value L (step 

1), which is a label that ties to the SLA S at the TTP, from the fair exchange component 

at the conclusion of the execution. 



 
 
 
 
 

133 
 

FE at TTP: After receiving signals from CSS and CSP, the FE component TTP verifies 

that the SLAs are consistent. If they do, it gives the CSP and CSS an identifying label 

for the SLA, denoted by the letter L. The TTP must use the label L to refer to the SLA 

in all subsequent communications. 

Table 4.5: Message Exchange between SLA-E and FE during Normal Exchange 

     Step Message from SLA-E to FE Message from FE to SLA-E 

4 

at CSS -(L,TTP, ΦCSS =SigCSS(ICSS))                                   

at CSP  - (L,CSS,Type equation here.Φ 

CSP =SigCSP(ICSP)) (L , ΦCSP)   (L ,ΦCSS) 

5 

at CSS - (L,TTP,CSP ,my ack)                        

at CSP  - (L,CSS,CSS,my ack) (L , CSP ,TE , my ack) 

 

Table 4.6: Fair exchange protocol during normal exchange  

Step Messages from /to CSS Message from/to CSP 

6 

 MCSS = e K T T P(L,CSS,H(N),  

ΦCSS ) : CSS →TTP 

  MCSP = e K T T P(L,CSP,H(N),  

ΦCSP ) : CSP → CSS 

7 

AckCSS(TTP)= (L,CSS,H(N),H(MCSP) 

,my ack) : CSS TTP 

AckTTP(CSP)= (L,CSP,H(N), ΦCSS  , 

my ack) : CSS TTP 

8   

 AckCSP ( CSS) = (L,CSP, TE ,H(N), 

H(ΦCSS) my ack) : CSP → CSS 

 

Both the CSS and the CSP's FE components, upon receiving the message from the TTP, 

forward the label L to the receiving party, as this is the only piece of information related 

to the SLA, while holding on to TE, which is the time interval within which the 

exchange must be completed. 

 Successful Items Exchange 

Table 4.7: Message Exchange between SLA-E and FE during Dispute Resolution 



 
 
 
 
 

134 
 

   Step Message from SLA-E to FE Message from FE to SLA-E 

9 at CSS - (L,TTP,CSP, Ψ CSS) (L,CSP,H(N),S) 

10 at CSP - (L,CSS,H(N),S) at CSP - (L,TTP,H(N), Ψ CSP) 

 

After everything has been set up, there follows a round of item trading. We are not 

concerned with the precise value of TE in this study; nonetheless, it is possible that TE 

is a month, given that the CSS renews its CSP membership every month. Once startup 

is complete, CSS will be unable to use CSP facilities without first making a "deposit," 

or submitting his item through the ICSS system. However, as was previously 

established, the approach is unfair to the CSS. Instead of sending ICSS to CSP, he 

contacts the TTP. Then, before to TE, CSS will send a request to the CSP to retrieve 

the sensor values in order to determine if the SLA has been met. When the SLA is met, 

CSS notifies TTP that the SLA has been agreed upon, and TTP releases the "payment" 

to the CSP. 

Table 4.8:  Fair Exchange Protocol during Dispute Resolution 

Step Message from/to CSS Message from/to CSP 

11 

ResCSS(TTP)=(L,CSS,H(N),MCSS,MCSP,Resolve 

Req) : CSS → TTP 

ResTTP (CSP) = (L,TTP,H(N), 

ΨCSP, Resolve Req) : TTP →CSS 

12   

ResCSP (CSS) = (L,CSP,H(N), 

ΨCSP, Resolve Req) : CSP →CSS 

 

SLA-E, FE at  CSS and  CSP: In this case, the CSS's SLA-E subcomponent transfers 

a legally binding "payment" to its fair exchange subcomponent in the form of a signed 

letter of agreement (see Table 4.5, step 4). After receiving accurate sensor data from 

CSP, the FE of CSS will trade this item for it. The SLA-E at CSS provides the FE 

component with I a signed item, (ii) the label L that may be used to identify the SLA, 

and (iii) the address of the recipient (in this example, the TTP). When complete, the FE 

will relay this information to the TTP.  



 
 
 
 
 

135 
 

Ahead of the TE period's end, the SLA-E at CSP will send the signed sensor values (as 

per the SLA) to its FE component, along with the recipient's id (in this case, CSS). The 

FE section of the protocol makes the appropriate changes to the state variables, such as 

the round identifying label L and the nonce N for the sought-after SLA. This is then 

sent to the FE subsystem of the CSS, where a preliminary sensor validation is conducted 

(i.e., if the correct set has been delivered). If so, the CSS's SLA-E component receives 

the signed sensor values CSP and label L from the FE component and determines 

whether or not a SLA violation has occurred. Importantly, in the event of a SLA breach, 

any potential dispute settlement might take up to ∆ time units to settle. Therefore, prior 

to TE - ∆, the CSP must send the sensor values it has collected to the CSS.[83] 

The SLA-E subsystem at the CSS will send an acknowledgement to the FE subsystem 

once the SLA has been met. After this is complete, the FE component sends a 

notification to the TTP and includes a hashed replica of the sensor readings. Once this 

is accomplished, the TTP will send an acknowledgement message to the CSP's FE 

component, including the CSS's signed "payment". The CSP FE component then acks 

its CSS counterpart, and the payment is passed to the SLA-E component. The SLA-E 

component then acks the CSP FE component.  

FE at TTP: By (i) getting the signed "payment" from the CSS (Table 4.6, step 6), (ii) 

receiving a confirmation from the CSS to proceed to pay the CSP for successful 

execution, and (iii) making the payment to the CSP on behalf of CSS, the FE component 

of the TTP plays a role in the successful exchange. 

 

4.3.4. SLA Violation and Dispute Resolution 

 

When a SLA violation has occurred the CSS will send a separate message than when 

there has been no violation. 

SLA-E, FE at CSS and CSP: When an issue occurs, the CSS SLA-E team will transmit 

a copy of the original SLA contract to the SLA FE team as notification. The TTP then 

communicates this to the CSP, as indicated in step 11 of Table 4.8, and the FE of the 

CSP communicates the Resolve Req of the CSS to the SLA-E of the CSP, as shown in 



 
 
 
 
 

136 
 

step 10 of Table 4.7. At last, the CSP's SLA-E component reports the violation to the 

CSP's FE component, and the FE component reports it to the CSS. 

FE at TTP:TTP is involved in the SLA violation and dispute resolution process in two 

ways: (i) when it receives a message from the CSS informing it of a SLA violation, (ii) 

when it verifies the validity of the CSS's complaint and, if valid, notifies the CSP by 

sending a copy of the contract, rather than the "payment." 

4.3.4.1. Correctness 

 

We provide evidence supporting the validity of the currently-accepted procedure for 

SLA enforcement. All three of these conditions must be met for the SLA enforcement 

issue to be considered solved. (i) fairness, (ii) termination, and (iii) non-repudiation. 

4.3.4.1.1. Fairness 

 

This evidence has two parts: (i) when the protocol ends without a disagreement 

resolution, and (ii) when a dispute resolution occurs. 

No dispute Resolution: 

 Because each participant's SLA- E is already in place when the exchange procedure 

begins P ∈ {CSS, CSP} sends an IP for a signed item to its corresponding FE part; this 

ensures fairness at the SLA-E level because fair exchange satisfies fairness. 

 

Dispute Resolution: 

For a disagreement to enter into dispute resolution at the CSS, VCSP (ICSP) status must 

first be achieved. After then, according the protocol, the CSS's SLA-E must inform its 

FE subcomponent of the violation by sending along a signed copy of the contract (Table 

4.7, step 9). When TTP receives this message from the CSS, it does not relay ICSS to 

CSP, but it does inform ψCSP, detailing the outcome of the disagreement. We assume 

a loss-averse user so the CSP will know if there has been a SLA breach. 

4.3.4.1.2. Termination 



 
 
 
 
 

137 
 

 

All four steps of a typical or successful exchange occur when CSS gets ICSP from CSP 

including sensor readings, sends ack to TTP, TTP forwards ICSS and ack to CSP, and 

CSS receives ack from CSP. Assuming the restriction on (synchronous) communication 

delays is D, the usual exchange may finish in 4D time after CSP has commenced 

delivering ICSP (after accounting for time required for local computations). Be aware 

that the CSP can continue providing cycle c + 1 services to the CSS in tandem with the 

final communication step. 

Within 4D time, the CSP commences the transmission of the ICSP, the CSS sends back 

a Resolve Req to the TTP, the TTP resolves the request and alerts the CSP, and the CSP 

informs the CSS of a "adjusted payment" for cycle c + 1 services owing to SLA 

violations in cycle c. Thus, ∆ = 4D. 

After a dispute is resolved, the CSS may resume execution of the fair exchange with 

updated payment conditions. Upon receipt of the amended payment from CSS (Step 6 

of Table 4.6), TTP will send its ack to CSP (Step 7 of Table 4.6), and CSP will resume 

delivering services for cycle c + 1. (in Step 8 of Table 4.6). To guarantee that payment 

from CSS, notwithstanding any SLA breaches, reaches CSP by TE, CSP shall 

commence transmission of ICSP for cycle c no later than TE 6D, assuming that the 

preceding two phases would end within D time. 

 

4.3.4.1.3. Non-repudiation 

 

The concept of non-repudiation describes the impossibility of the CSP or CSS to back 

out of a promise or obligation. For instance, the CSP has no legal standing to assert that 

the sensor values are not its work. For this application, we must demonstrate that the 

CSP can verify that the sensor data provided by the ICSP come directly from the CSP. 

Fourth in Table 4.5, the SLA-E signs ICSS before sending it to the CSP's FE 

subcomponent. Non-repudiation is guaranteed since the signed item is sent by each 

participant's (CSS and CSP) FE to their corresponding SLA-E component. 



 
 
 
 
 

138 
 

In this paper, we demonstrate that the SLA-E protocol, when used in conjunction with 

the FE module, satisfies all of the SLA specifications.[84] 

4.3.5. Protocol Implementation 

 

The word "protocol" is used in the field of distributed computing to refer to a predefined 

set of rules and formats for exchanging information across different parts of a system. 

The exchange of messages and the data format, together with their mutually agreed 

upon specifications, are crucial building blocks of every protocol. Whereas, "a 

mechanism by which two computers coordinate their communications" OR "an 

established set of norms by which two computers or communication devices 

authenticate the structure and substance of the messages transmitted" best describes a 

communication protocol. This subsection provides a more in-depth analysis of our 

suggested approach. The architecture, range, constraints, attributes, method, and flow 

control paradigms of our FEP fair exchange protocol-based solution will be revealed. 

In addition, we will discuss the testing environment, the potential connections between 

the dots, the design's components, and the difficulties encountered in a variety of 

computer settings. 

To ensure that our protocol works as intended, we have installed several modules that 

mimic the behavior of software, networks, and traffic in order to test its ability to 

enforce SLAs automatically in the cloud. This implementation also shows how the 

several processes and procedures are bound in a systematic way to manage the three 

main stages of a transaction, including the message exchange, message abort, and 

dispute resolution. 

This study's primary goal was to take our previously suggested conceptual model and 

turn it into a working prototype, complete with a detailed yet easy-to-understand 

explanation of how each component works. Our notion was conceptualised as a high-

level illustration of the protocol's operational structure and the predicted behaviour of 

its associated system. In practice, however, implementation often includes the physical, 

logical, and service regimes of the protocol in order to accommodate several different 

users, such as the CSP, the CSS, and the TTP. 



 
 
 
 
 

139 
 

4.3.5.1. Physical Regimes 

 

Virtualization has significantly altered the IT services industry. Proponents' claims that 

cloud computing is superior than on-premises infrastructure in terms of provisioning, 

deployment, maintenance, on-demand serviceability, affordability, and other criteria 

are hard to refute. From the perspective of cloud computing, the "physical computing 

entities" are the virtualized computing resources given to a service subscriber, for 

example IaaS. Cloud users that pay for a premium IaaS service have direct access to 

the CSS data centres, where they may use a variety of resources, including storage, 

networking, computation, load balancing, and security-related technologies. 

4.3.5.2. Regimes 

 

When it comes to business needs, a logical regime in the client/server architecture 

encompasses a wide range of operations, specialized applications, and unique pieces of 

software. These responsibilities may involve modifying data in many ways, such as 

transmitting and receiving data, processing, and calculating it, storing it, or even 

rerouting it from one or more clients to the appropriate serving nodes in a distributed 

system environment (such as the cloud). 

Such rationally conceived platforms can integrate the anticipated interactions between 

various data/security controllers and business processes, allowing them to carry out 

tasks in parallel. Some cases include gaining entry to data, transferring data, processing 

data in batches, creating intercommunication, integrating networks, and even ending 

services entirely. These technologies also make it easy to save certain details for later 

use as a point of reference when referring to a different gadget or service module. 

4.3.5.3. Services Regimes 

 

The service scope defines the parameters within which the service must be provided by 

all partners for the company to generate a sufficient return on investment. Limitations 

and possibilities in terms of deployment scope, operational controls, service 

dimensions, and optics When a business decides to outsource its services to a CSP or a 

cloud service consumer, the CSP or the consumer may choose taxonomy, service 



 
 
 
 
 

140 
 

monitoring, and service reporting (CSS). Definition, ownership, fault-tolerance, 

rectification, and, in the worst event, termination of service pertaining to defects are 

also covered. Scope of services is as important as price in determining other factors 

such as possible conflicts of interest, length of contract, frequency of renewals, method 

of dispute resolution, and policy for escalation.[85] 

4.3.5.4. Participants 

 

An overview of the connections between our four business participants to provide and 

deliver cloud-based services is shown in Figure 2. This new architectural perspective 

improves the ability to learn about the operational scope of the participants' computing 

estates. It also sheds light on the provisioning of certain fundamental modules, like an 

end-user estate simulator built with Apache JMeter. CSP, CSS, and the TTP all benefit 

from the FEP controller's incorporation. These parties, excluding end-users who have 

no use for this component, have access to the Master SLA repository for the purpose of 

cross-referencing. Since TTP isn't necessary, the SLA-E module would only be 

incorporated into the CSP and CSS. 

 

Figure 4.4: Architecture’s Operational Interaction - Preview 

4.3.6. Protocol Mechanisms 



 
 
 
 
 

141 
 

 

This section elucidates the fundamental capabilities of our protocol and how they work 

together. All necessary operational conditions (such as SLOs, dispute resolution, 

service termination, etc.) must be defined and met before the protocol initializes core 

components like message exchange. How are different parts of the service, such the 

protocol's execution order, to be tracked? What factors into the decision to trade 

messages when transaction parties such as CSP, CSS, and TTP are exchanging digital 

services against agreed upon financial obligations? Another noteworthy phenomena is 

the establishment of defined anomaly detection techniques. Latency, poor performance, 

and a lack of auditing are just a few of the service overheads that may be avoided with 

proper attention to the protocol's flow and error management, which otherwise could 

lead to inconsistent and unpredictable SLA breaches. 

 Protocol’s Sequence Control 

The order of steps in a protocol is crucial. This correlates with the established logical 

sequence of how communications (to/from) are delivered and received. To avoid any 

potential for misinterpretation while sending messages or processing requests from 

clients, this system uses an algorithm to generate a one-of-a-kind reference number, or 

unique message identification number (UMIN), for each message. In addition, these 

protocols provide a one-of-a-kind message exchange signature for precise, exact, and 

exhaustive digital forensics tracking. UMIN methods for recognizing authentication, 

reconciliation transaction completeness, and audit ability (missing/disputed 

transactions) prior to message tagging are widely agreed upon by service providers and 

their clients to guarantee correct accounting. 

Priority classification of messages, as decided upon by some or all of the participants, 

may also be established with the use of this exercise. In our test implementation, where 

user assets are modeled as (U), Apache JMeter generates a unique identifier (e.g., a 

thread reference number or an e-Tag) for every message sent and received. Thus, a 

UMIN may be defined. It's an MF that logs incoming and outgoing messages with 

timestamps and a RI/RO. Eventually; it transmits each message to the server hosting 

the relevant online service. It then gets the reply from the CSP's web service, and 

follows the same procedure as previously, recording the RI and RO, before sending the 



 
 
 
 
 

142 
 

reply to the message's originator, the U. If a dispute resolution situation occurs, the 

whole sequence of data can be saved so that its provenance can be investigated from 

the time it was communicated across various entities. 

4.3.6.1. Protocol‘s Flow Control 

 

This function controls the status of being choked off when an excessive influx of data 

from one computer to another (the Client) causes severe bottlenecks in service. To 

prevent this situation from occurring when request handling and processing capabilities 

become stuck, the responding node must implement flow controls. To prevent a denial-

of-service attack, traffic must be carefully monitored and measured, process, query, and 

compute handlers must be outsourced, and dedicated resources must be established 

ahead of time. Flow control sensors are primarily responsible for gathering 5-tuple data, 

including source IP, source port, destination IP, and destination port, as well as layer 4 

protocol information. Depending on the availability of resources, the needs of the 

company, and the goals of the service deployment, blocking and non-blocking criteria 

for message transmission may be used to govern the flow. Some of the states that help 

to clarify message flow management are as follows: - [86] 

Time Oriented Flow Control:  

The CSP and CSS have agreed on a certain window of time for this regulation to take 

effect. SLAs, for instance, do reveal what kinds of computer work may be done during 

peak and off-peak hours. These metered services are meant to facilitate easy traffic 

flows to and from CSP data centers.[130] There should be as little disparity as possible 

between subscribers' access to services and resources by enforcing these time limits on 

customers. If a CSP's flow control monitoring sensors detect an anomaly, the CSP may 

reset, release, or terminate the service connection at any moment. What sort of financial 

promises are being made by the CSP and the CSS also has an impact on the flow control. 

The time orientation is also used to monitor SLA provisioning for cloud services like 

AWS Amazon. 

Performance Oriented Flow Control:  



 
 
 
 
 

143 
 

The efficiency with which a cloud service performs is essential. For example, while 

evaluating a service's effectiveness, several factors, including bandwidth, response 

time, latency, and availability, are considered. 

Security Oriented Flow Control:  

This part of the protocol flow control is in charge of protecting the underlying system. 

From a service security perspective, traffic audits are extremely thorough. 

Communication is dependent on the flow and behavior of traffic. Data centre traffic is 

monitored and analyzed on a regular basis using a signatures repository. For instance, 

Amazon Web Services (AWS) and other cloud service providers include a monitoring 

feature that allows for the capture and monitoring of traffic flow logs within a virtual 

private cloud (VPC). Any abnormal traffic patterns, such as those caused by outages, 

security breaches, or even a downgrade in service, can be detected and investigated 

with the help of this feature. 

 

4.3.6.2. Protocol’s Error Control 

 

Error detection in digital communication refers to the process through which a protocol 

identifies and depend on other features that ensure the message's integrity intrinsically. 

It determines whether a message exchange between two parties is secure on unreliable 

networks like the internet by checking the authenticity, validation, and verification 

elements of the sender and the receiver. Since error handling has the potential to turn a 

service's success into failure, it is expected to receive higher priority. Task failure, 

communication breakdown, processing timeouts, and unauthorized changes to the 

system can all cause disruptions in service and constitute a breach of the SLA. Messages 

can be checked in an instant for errors, integrity, accidentally injected faults, and other 

irregularities using a number of different schemes, including checksums, parity checks, 

and cyclic redundancy checks (CRC) -enabled appliances and devices. In the world of 

distributed systems, a communication protocol needs to have several safeguards in 

place in case of an error. The first attempt to send a message fails before it even reaches 

the end user's system. The second transmission leaves the domain of the end user but is 



 
 
 
 
 

144 
 

never received by the domain of the CSP. In the end, there's a situation where the CSP 

handles the requests, but those requests for whatever reason never leave the CSP's 

network and instead reach the end user. 

Let's take a quick look at how AWS deals with errors. They have classified the mistakes 

primarily into two groups. The first set of errors is Client-side errors (error codes 4**), 

which occur when AWS APIs refuse to process a request from the client. The 

credentials, parameters, and agreed-upon configurations could be authenticated, 

verified, or validated. Error codes 5** are associated with problems in AWS's service 

environment, such as its networks, compute, or storage, and indicate that the nodes 

responsible for fulfilling the client's request(s) either failed to do so or took an 

excessively long time to do so. When waiting for this excessive amount of time to 

process those requests, SLAs are broken. In the event of a disagreement over service 

delivery, the CSP should use the results of a forensics investigation to determine 

whether or not to issue service credits to the affected customers.The Amazon Client 

Exceptions and Amazon Service Exceptions in a cloud service like AWS may reveal 

the cause of a service failure.[87] 

4.3.7. The Architecture Scope 

 

The scope of architecture includes the most essential service and operational 

responsibilities. The purpose of this article is to shed light on a few operational 

expectations and the conditions under which our procedure might exhibit unexpected 

behavior. Although it is not necessary to detail how each individual component 

operates, we must describe some aspects of their scope. Perimeter-configurations at 

both the C and application-level settings at the U must be agreed upon by all parties 

involved in the protocol implementation. The proof of concept will show the protocol's 

operational and authoritative capabilities, such as monitoring, aborting, stopping, or 

even temporarily terminating transactions (in the case of unfair and uninvited service 

delivery).When a disagreement between a CSP and a CSS is designated as unresolved, 

the primary goal of resolving disputes becomes active. All parties are familiar with their 

assigned levels of trust, the services they provide, and their roles in the integration of 

the FEP modules. 



 
 
 
 
 

145 
 

Until the conclusion of the contract period, this architecture will treat as an auxiliary-

module any portion of any participant's environment that affects SLA enforcement or 

limits service monitoring. Assumptions will also be taken into account, including but 

not limited to the following: all participants have successfully implemented all sub-

protocols, processes, procedures, system configurations, and segregated service 

monitoring controls; and the master configuration has been successfully implemented. 

TTP's FEP master node accurately stores SLA data. By verifying, validating, and 

persuasively collaborating with SLA-E modules at C and S, the FEP module will be 

able to impose an automatic, perfect, and trustworthy dispute settlement. The ability to 

record service-level agreement measurements (such response time, bandwidth, latency, 

etc.) and store them locally is also important to the protocol's design. 

Referring to Figure 4.4, it should be clear that despite the fact that all parties involved 

(C.U.T.S.) are autonomous computing entities, they are nonetheless connected thanks 

to the FEP component, which synchronously analyses whether or not message 

exchanges comply with SLAs. CSPs usually do establish some joint accountability for 

maintaining, protecting, and operating the services they provide. Additional adversaries 

in SaaS, such as those related to the data in transit (insider/external cyber-attacks, 

malicious participants, intentional/accidental service compromises, service degrading, 

etc.), between the end user's estate and the trust boundaries of the service provider, are 

beyond the scope of this paper. There are many potential threats in global topologies 

like the internet, which use many third parties as intermediary hosting services (middle-

tier service carriers) to transport data but will be ignored for the time being. 

4.3.7.1. JM‘s Scope 

 

Since this article presents a prototype, we decided to utilize Apache's JMeter to emulate 

the user's environment. The test plan is set up to simulate minimal HTTP traffic going 

to a predetermined IP and port on a distant MF. Adjusting the settings of a JMeter test 

plan can demonstrate the diversity of users' actions. The primary goal of this 

implementation was to solicit comments from site visitors seeking to make use of a 

cloud service. JMeter's job is to move these messages through the MF protocol to their 

eventual destination (say, a cloud service) and back again. As part of its application-

level duties, JMeter may also be required to keep track of other crucial data. JMeter 



 
 
 
 
 

146 
 

would log HTTP status codes based on the status of the service provisioning 

agreements, availability, and uptime. It continues sending messages until either the 

client's allotted time has elapsed or a local termination signal is issued for the service. 

4.3.7.2. MF‘s Scope 

 

The primary function of the MF is to receive messages, append a timestamp to them, 

and then deliver them to the intended cloud service. The queries will be processed by 

the cloud service, and the MF will get the results. Timestamped responses are then sent 

back to the original senders by the MF. For the next term's upfront payment to the cloud 

service provider, MF first determines the response time and records the whole 

transmission. The CSP then regularly relays this information to the CSS so that SLA 

compliance transactions may be recorded. 

We also need a node that relays messages to their intended recipients, called a message 

forwarder (MF) (s). As we've seen, the FEP module serves as the brains behind the 

operation, calculating the quality of service with the idea of service level agreement 

enforcement at its core. This module is placed on the ends of the CSP, CSS, and TTP 

in such a way that their modules are interconnected and can initiate communication 

among the participants in the event of a violation or dispute enquiry. 

4.3.7.3. FEP‘s Scope 

 

The FEP module is the nerve center for SLA enforcement and quality of service 

evaluations. While CSP's response transmissions are taking place, it compares each 

message to the central configuration repository for SLA. The time, date, and status of 

sent and received messages along with their respective transaction identifiers and 

timestamps are the primary components of those statistics. CSP and CSS rely on MF to 

manage an assessment method that generates the ART. The FEP alerts the TTP using 

these ART. The FEP also covers communication channel operations including 

Exchange, Abort, Resume, and Terminate.[88] 

4.3.7.4. SLA(E)‘s Scope 

 



 
 
 
 
 

147 
 

SLA(E) not only collaborates with the FEP to reconcile the SLA, but also brings the 

SLA between the CSP and the CSS up-to-date with each new service negotiation. 

Master configuration file with SLA metrics has been reviewed and accepted by TTP 

(such as the agreed response time). 

4.3.8. The Protocol Limitation 

 

Certain restrictions and operational constraints must be taken into account throughout 

the design and implementation of a protocol. In a decentralized SOA design, these 

vulnerabilities might have a serious effect on service delivery. To diagnose the issue, 

one must be familiar with every aspect of the service, from the perspective of both the 

client and the service provider. An operating system process may encounter trouble if 

the allocation of computing resources is altered, the configuration of the system is 

changed, access to the system is restricted unnecessarily, or more security burdens are 

placed on the system. Here is a rundown of what may be the most detrimental of these 

restraints, should they be relaxed: 

o Assets Accessibility 

o Metadata (e.g. web service metrics) file format 

o Data Interporatability 

o Timely Negotiations (SLA & SLOs) 

o Conflicting Interfaceability 

o Unpredictable Faults at Operational Boundaries 

o Legal & Regulatory Constraints 

o Monetary Limitations 

o Clock Synchronization 

o Unidentified Attackers & service compromises 

o Involvement of another 3rd party/ service contractor 

Most cloud service providers are fairly strict in their requirements for monitoring and 

collecting metadata pertaining to provisioned services. Since they employ a number of 

throttling techniques to limit resource sharing, it appears that they do provide some 

level of security monitoring for their web services, albeit on a very limited scale. There 

are options for working together to monitor, such as Amazon's CloudWatch and other 



 
 
 
 
 

148 
 

third-party tools, but there are also limitations. How closely are things being watched? 

I would want to know what information is being gathered and how much. It is too unsafe 

for service subscribers to associate with 3rd parties, although certain SaaS systems 

enable integration with tools for precisely monitoring Application Performance 

Management (APM) such as AppNeta, Dynatrace, and DataDog through their APIs. 

Even though these organizations are able to monitor and gather data for their clients, 

they still can't promise that the subscriber's business needs for a certain service element 

will be satisfied. As a result, a service subscriber may wind up deploying too many 

tools to fulfill business needs, on top of the CSP's extra costs for monitoring and 

collecting these data. As some of the service pieces are created and controlled by the 

3rd parties when messages are delivered or received, our protocol does encounter some 

of these constraints at specific computation stages. To guarantee a successful 

connection is created with a minimum failure probability, numerous service 

performance, scalability, and reliability factors are assessed and applied. 

4.3.8.1.Architecture‘s On-premise Virtualized Deployment-SN1 

 

Testing an entire architecture on a single computer is infeasible because of the strain 

placed on the system by the simultaneous processing of various, resource-intensive 

tasks, such as the constant influx of messages. A single CPU could only perform a 

limited set of instructions at a time, but a distributed environment, such as 

virtualization, may provide the necessary computational power and service resilience 

for a project's successful completion. Our strategy for testing the FEP-based 

architecture in different environments is shown in the following figure. 

Cloud computing is highly dependent on virtualization, a core feature of many 

virtualization systems. By using these wonder frameworks, currently limited computing 

resources may be converted into multi-shared computing infrastructures for a wide 

range of commercial purposes and service providers. Between the software and the 

underlying computer hardware is an abstraction layer, which increases adaptability, 

reliability, and security while decreasing redundancy and cost. To make the most of the 

available features, we purchased many virtual machines. 



 
 
 
 
 

149 
 

By creating endpoint communication channels and assigning suitable privileges and 

settings, we permitted communication amongst our crucial transaction participants who 

each had their own isolated virtual machine. This configuration helps JM because it can 

send spoofed messages to a second virtual machine acting as a stand-in for an MF 

before redirecting the information to the target website. We've installed an application 

server on this web server (the CSP's node) to process requests from other clients and 

send their results back to the original client. All the nodes except from TTP have MF 

set up. Evaluating the necessary SLA metric ART was the primary function of the MF 

module on CSS. The selected CSS node would regularly provide SLA measurements 

as a (.csv file format) to the CSP for reconciliation and forensics, and each simulated 

HTTP request would be time stamped and recorded in a metadata repository. The reality 

of any SLA violations would be established by these periodic communications, 

allowing the afflicted party to be reimbursed via the fair exchange protocol. QoS also 

gets analyzed thus if the mentioned service is deemed SLA compliant then just the next 

service term will be agreed upon by paying the upfront costs, else, the service will be 

cancelled.[89] 

When this experience, which uses a small number of dedicated on-premise virtual 

machines, is being executed, a lag in the expected ART is seen since the system's 

resources are being used above their capacity, and this leads to ART anomaly alerts 

being sent. As a side effect of this test, we discovered that the response time is erratic 

and inconsistent, most likely as a result of the system being overworked. As more and 

more of a system's resources are used simultaneously, less and fewer are set aside for 

pending JVM threads. Even though we followed Apache's rules and other best practises 

when configuring the number of mock users on our JM test plan, the local machine's 

resource management seems to be a bottleneck for the VMs running the example web 

application's efficient response to messages. 

4.3.8.2. Architecture‘s Cloud Deployment-SN2 

 

Business as a whole has been profoundly impacted by cloud computing ever since it 

first became available to the public. Migrating data assets including infrastructure, 

development platforms, and web-based applications may be very beneficial for 



 
 
 
 
 

150 
 

businesses of all sizes. However, there are also considerable challenges associated with 

this course of action. 

 

Figure 4.5: Architecture’s Cloud Deployment on Azure 

Figure 5.6 below illustrates the architecture with respect to the specified procedures 

running on each node. The protocol may perform any number of technical procedures, 

depending on the current stage and health of the participants. The terms "Exchange," 

"Abort," and "Resolve" are all considered as possible intermediate steps. In order to 

ensure that processes run on time and that nodes communicate as intended, most 

operational conditions are specified during the setup/initialization phase of the service. 

Under this paradigm, all four participants in the protocol communicate with one 

another, with TTP serving as the service monitor and observer between CSS and 

CSP.TTP's SLA repository may also maintain SLAs for other clients, thus any 

unexpected behavior will trigger artefacts verification against the master SLA, as 

mentioned in the preceding interactions. Time-based synchronization limits the scope 



 
 
 
 
 

151 
 

of both service and process execution. Remaining primarily at the TTP, the FEP server 

rigorously performs reconciliation against the master Service Level Agreement (SLA), 

which has been communicated to and acknowledged by both the CSP and the CSS, and 

which tracks the evolution of service exchange processes throughout the service 

lifecycle. Thus, the end-to-end fairness is ensured by these interdependent and 

coordinated procedures. 

 

Figure 4.6:  Process Execution 

These problems may be broken down into three broad categories: technological, 

operational, and security. Interoperability across resources, granularity, service 

orientation, commercial concerns, security, performance, and service quality are just a 

few of the many areas where problems arise (QoS). We have spoken about cloud 

computing(CC) & SLA Implications and the important service pieces and 

characteristics that go along with it, as well as how they all come together in a mutually 

agreed upon service level agreement. Our final objective with this sandbox is to 

demonstrate that we can guarantee SLA compliance via a reasonable exchange 

mechanism. 

Although there are several cloud service providers, including Amazon Web Services 

(AWS), Google Cloud Platform (GCP), and Microsoft Azure itself, we chose Microsoft 



 
 
 
 
 

152 
 

Azure as our main test-bed. Elastic computing resources are Azure-hosted virtual 

machines. These tools include instant cloud provisioning, allowing clients total freedom 

of choice among several customer-focused cloud services and Cloud Application 

Programming Interfaces (CAPIs). On this context, "cloud infrastructure deployment" 

might refer to anything from a small-scale experiment in the cloud to a massive 

enterprise-level application or other strategic automation solution. Unlike traditional 

on-premises computer installations, most CSPs provide platforms with low setup, 

maximum scalability, rapid set-up time, security, and strong failure resilience. 

We assume a realistic cloud service scenario in which CSS A leases infrastructure from 

CSP (B) and, in return for payment and other commitments, provides a web service to 

its client base (D). We've learned in the past that the Service Level Agreement (SLA) 

contains the full breakdown of the service delivery plan, from deployment to Service 

Level Objectives (SLOs), Quality of Service (QoS), expected services, and 

compensation workouts in the event that the CSP doesn't meet the SLOs by a certain 

date or within a certain scale of available resources. 

Our top priority is always the reliability of our results, particularly when our protocol's 

administrative handlers—like an Exchange, Abort, or Resolve—are activated, 

recognized, and reported. This is why we extensively tested our protocol with several 

cloud deployment options. Supports the growth of our backend monitoring and 

response nodes like JMeter and MF. To fictionalize mutually trusted autonomous SLA 

enforcement, our architecture would need to have a system configuration, inter-

communication schemes, security composition, and fault tolerance that more closely 

resembles real-time SLA-based cloud service delivery with as few performance issues 

and other potential technical bottlenecks as possible. [89] 

4.3.8.3. CSS Environment 

 

In order to provide a realistic environment for our participants, we will need to start up 

four virtual machines: one for the client environment, one for the TCS, one for the TTP, 

and one for the content security service provider (CSP). This has been tested before on 

Amazon Web Services and other cloud resources, with the most current round of testing 

performed on the Microsoft Azure Cloud. See the part where we describe the 



 
 
 
 
 

153 
 

infrastructure instances and the associated logical and service orientations, capabilities, 

and functions for each instance for additional information on how our design is 

implemented. Due to Azure's extensive collection of OS images, we decided to run 

Ubuntu 18.04LTS on a virtual machine with 2 vCPUs, 8 GB of RAM, and 30 GB of 

standard SSD storage for the CSS node. We did not expect a huge demand for CPU, 

memory, or disc I/O operations per second (IOPS) from our experiment, thus we did 

not feel it necessary to provide these high-end resources at this time. An Azure VM 

instance may have its operation started, stopped, restarted, and even terminated at any 

moment. Inasmuch as the CSS instance represents a centralized hosting server on which 

a number of strategic programmes and monitoring sensors have been put up, it would 

be beneficial to initially address these components. 

First, I'd like to introduce you to our website, where you may learn more about our MF 

application that runs on the Java platform. In addition to mediating interactions between 

the CSP and the Client estate, it monitors key performance indicators including 

response times. All (incoming and outgoing) messages are also timestamped for later 

reconciliation purposes. To ensure appropriate service exchange, this protocol's 

principal administrative control will be based on the SLA. When a client sends an 

HTTP/HTTPS request to a server, the messages are sent in a synchronous system in a 

strictly chronological sequence. Most often, one of two models is used to organise the 

flow of messages: a synchronous, blocking model or an asynchronous, non-blocking 

model. Customers from Client Entity D using the CSP-provided web service should 

anticipate an HTTP status code of 2xx Success, 3xx Redirection, 4xx Client, or 5xx 

Server. We want the client to perform an availability check on the CSP service and get 

an HTTP status code of 200 when the service is initially made available as a proof of 

concept. Requests from clients to the hosting server and responses from the server back 

to the originating client are both common components of messages carrying metadata 

about HTTP/HTTPS requests; the relative proportions of these two types of requests, 

however, vary depending on the number of clients. The measurements are recorded in 

a.csv format in an Azure Storage Blob for future experimentation, and the same MF 

agent keeps track of them to acquire and test greater flexibility and resilience while 

testing our design. 



 
 
 
 
 

154 
 

For the time being, the focus of this work is on synchronous communication, so we are 

not utilizing any of the robust message queuing systems designed and well approved 

for message queuing based upon asynchronous communication, such as RabbitMQ or 

ActiveMQ. In the future, however, we hope to transition to an asynchronous 

communication model. Because of Pika's versatility, it may be utilized with either 

asynchronous or synchronous models. 

Microsoft Azure is the finest platform from which to construct this environment since 

it provides a comprehensive service catalogue from which to select a variety of elastic 

services. They make it easier to quickly deploy cloud-based systems that provide 

computing, storage, networking, and other mission-critical services for a business. In 

order to provide a realistic environment for our participants, we will need to start up 

four virtual machines: one for the client environment, one for the TCS, one for the TTP, 

and one for the content security service provider (CSP). Fig. 5.3 depicts the three-

pronged deployment of our architecture, which consists of the infrastructure estate, the 

actual virtual machine(s), and the multiple players in our architecture. The service 

fabric then shows how everything is connected once the logical deployment strategy 

has shown how everything talks to one another. 

Our choices for the (virtual) infrastructure of a cloud experiment have been limited 

down to using either an Azure compute instance or a hosting architecture that gives us 

full control over all sandbox nodes. Eventually, we want to use Azure's compute service 

catalogue to containerize these services using choices like Azure Kubernetes Service 

(AKS) and application service (App Ser- vice), but for now, we're simply using virtual 

machines (VMs) for each of our testers. From Azure's extensive library of OS images, 

we settled on an instance series, which is a typical Ubuntu 18.04LTS VM with 2vcpus, 

8GiB RAM, and 30GiB standard SSD, for the CSS node. It was unnecessary to provide 

premium resources such central processing unit (CPU), memory, and disc input/output 

operations per second (IOPS) at this time since neither the initial demand nor the 

predicted consumption of our experiment was expected to be very high. As a virtual 

machine, clients may deploy as many Azure VM instances as they need and manage 

them in the usual ways: starting, stopping, restarting, and even terminating. For our 

pilot project, we opted for Azure's free tier of instances, which is rife with restrictions 

on both functionality and maintenance. More free hours per instance per month may be 



 
 
 
 
 

155 
 

operated with no or limited assistance in the business editions, which are designed for 

heavy use and include more features and higher resource requirements including 24x7 

support, backup, monitoring, and other corporate maintenance rights. 

Extra features like virtual network creation, NIC settings, and a network security group 

(NSG) to define allowed and forbidden states for our network traffic are implemented 

according to the service provider's guidelines and best practices. 

SSH (Secure Shell) and RDP (Remote Desktop Protocol) allow for secure remote logins 

after an RSA public-private key combination and the IP address of the target node have 

been established (Remote Desktop). You may get remote access to the instance by 

downloading the necessary access keys, which works with the aforementioned 

protocols. Each VM instance is given both a public and private IP address for purposes 

of identifying and communicating with the instance. 

Ubuntu was the ideal option for Microsoft's Azure platform because of its widespread 

use, versatility, scalability, and smooth operation. In the realm of cloud-based 

development and innovation platforms like Azure, it comes as no surprise that Linux is 

the platform of choice. This prototype's central server is built using an Ubuntu server 

image since it is flexible and compatible with the protocol we're utilizing. Providing 

processing and monitoring for all of CSS's provided cloud services for all of CSS's 

client estates, this controller node is where it all happens. However, in order to test how 

well the CSP delivers on the quality of service promised in the SLA, we will be 

concentrating our attention on a single customer and their deployed cloud services. 

In this particular scenario, we are also making use of our Java-based MF module. This 

would eliminate the risk for delays and other network issues while decreasing the 

implementation cost. By picking up the data from the user's location, MF may forward 

it to the cloud. It's possible, as a bonus, that it will relay the user's signals back to the 

home where it was set up.[90] 

Application Deployment 

 Unbelievably, AEB offers highly elastic web applications and other cloud-based 

services that let us to broaden our application footprint. Due to the platform's 



 
 
 
 
 

156 
 

adaptability, enterprise-level applications built in languages such as Java, Python, Go, 

etc. may be readily deployed to a wide range of application server environments, such 

as Apache, IIS, Glassfish, etc. The AEB is capable of automating a wide range of 

operations, including but not limited to capacity provisioning, load balancing, multi-

featured health monitoring, and rapid alerts transmission to a wide variety of recipient 

platforms (email, SMS, etc.). In addition, applications may be set up with auto-scaling 

triggers, allowing them to adjust their resource use based on their budget. 

4.3.8.4. CSS Environment 

 

A replica of SLA and the FEP plugin are installed in the SCS environment. Signals 

from the user's environment "U" are portrayed bypassing the FEsP module displayed 

here on the way to the AWS EC2 instance; on the other hand, the CSS estate is fed by 

the FEP of the CSP. It is also possible to use this stream to set up an alert that will 

trigger the sending of a signal in the event of a service level agreement (SLA) violation. 

For this purpose, SLA monitoring metrics may be added to existing monitoring 

platforms like AWS CloudWatch, DataDog, and Dynatrace. You may use the data 

gathered to dig further into service level agreement (SLA) breaches and discover 

recurring themes. Monitoring systems can send emails or text messages to the right 

persons or devices if an emergency arises. These notifications may be sent to security 

incident and event management (SIEM) appliances like Splunk, ArcSight, and QRadar 

for analysis and further dissemination. Zabbix, RHQ, and fluentd also stand out because 

of their specialized capabilities for handling alerts from various services. 

4.3.8.4. TTP Environment 

When confusion or conflict arises over a service, it is the TTP environment (T) that 

handles the situation. Our deployment method counts on the TTP being installed on a 

cloud server that also has a FEP module. It also keeps the original signed SLA between 

the CSP and the CSS. Additionally, it offers a different method for checking and 

validating communications between these parties to stop attacks like Man-in-the-

Middle (MITM) and Man-in-the-Cloud (MITC). We suggest a cluster coordination 

service that can maintain the consistency of node configuration data as the primary way 

of establishing the presence of this thing. We see such a service acting as a central node 



 
 
 
 
 

157 
 

in a distributed environment, holding SLA and other system configuration information. 

In order to accomplish this, we may use services such as Apache Zookeeper, doozerd, 

etcd, consul, chef, or puppet to manage and disseminate system configuration and other 

SLO-related information across all nodes in a distributed system, while also 

transmitting a periodic yet synchronised convergence. 

4.3.8.5. End Users Environment 

 

The user's actual production setting, denoted by the letter U, plays a major part in our 

implementation strategy. This entity makes use of the cloud services and simulates a 

complete work environment in order to evaluate the cloud service's performance in light 

of the Service Level Agreement. In this case, Apache's load testing simulation solution, 

JMeter, is part of the user's environment, which may be modeled as either Ubuntu or 

Microsoft Windows. Though there are other systems that do similarly, such as Taurus, 

SIEGE, LOIC, and BURP, JMeter is useful for running a variety of pre-configured load 

testing plans and analytic patterns. Its minimal resource usage allows for accurate 

measurements of the performance and behavior of the intended system, exemplified by 

the use of a variety of communication protocols as HTTP, SOAP, LDAP, POP3, and 

SMTP. This study will use an example web application to evaluate AEB environment. 

Among other reasons, Jmeter's adaptability has made it the go-to tool for mimicking 

the user's actual surroundings. This open-source software supports graphical user 

interface (GUI) and non-GUI projects, runs on several platforms, and can do standalone 

and networked test runs. Our JMeter test plan contains all the details about the targeted 

server where the.jar file containing the example web application is located, which is 

required for the test to execute successfully. Of course, there are other viable options, 

like hosting the web app in question with an automated application deployment 

resource like AEB or a comparable SaaS, or deploying it on a standalone application 

server like Oracle, IBM, VM, Microsoft, or Apache. 

Jmeter collects several metrics, including the date, elapsed time, response code, thread 

name, latency, transaction success, and failure message, when an HTTP request sampler 

is formed. The RFC4180-specified.csv file extension denotes a comma-separated value. 



 
 
 
 
 

158 
 

4.3.9. FEP Implementation Requirements 

 

Certain conditions must first be met before the protocol may be implemented. These 

factors function independently, but their powerful interplay enables insightful 

conclusions about the effectiveness of automated SLA enforcement and dispute 

resolution. 

a) A valid SLA between CSP & CSS 

b) A User estate 

c) A CSP estate 

d) A CSS estate 

e) A TTP 

f) A Message Forwarding Module 

g) FE & SLA enforcement modules 

h) A safe place to exchange information where there are checks and balances in  

place to make sure everything checks out 

Log analysis and other discovery methods are beyond the focus of this study but may 

be desirable based on business requirements. 

4.3.9.1. Protocol’s SLA Negotiation 

 

Providers and customers of cloud services always sign enforceable service level 

agreements (SLAs). Quality of service (QoS) and related measuring capabilities and 

metrics, such as latency, for a cloud service must be mutually agreeable between the 

cloud service provider (CSP) and the cloud service user (CSS) (from high level e.g. 

availability, bandwidth, average transactions per second, latency to low-level e.g. CPU, 

memory, etc.). It defines the service's bounds, lays out the limits on its deployment, and 

describes the potential statuses for the service.  QoS monitoring also takes place during 



 
 
 
 
 

159 
 

"peak" service hours, which are defined as 8:30 am to 6:00 pm, Monday through Friday, 

with the remainder of the week, including weekends and holidays, being designated 

"off-peak." Given that the service provider has implemented these safeguards, it is 

reasonable to conclude that the cloud service is reliable and secure. 

                        Table 4.9: SLA Sample Metrics 

SLA Metrics Targeted Threshold (peak-time) 

Availability ≥100.00% 

Average Response Time ≤50 miliseconds 

 

What constitutes a service failure or SLA violation is determined by comparing the 

needs of the CSS with those of the CSP. 

Explain the meaning of SLA (SLA) In order to test whether or not QoS exceptions arise 

when these C.U.T.S. entities connect with one another in stateful and stateless, cloud-

based SOA systems, we will need a sample SLA to configure our monitors and other 

sensors. Service Level Agreements (SLAs)-based metrics evaluate both the client and 

server sides of a transaction to determine how well a service is provided (when start, 

where start, when end, where end). Despite the availability of several cloud measures, 

we settled on an ART for use in evaluating the SLA's effectiveness. We acknowledge 

that there is a basic flow control mechanism imposed on TCP-based traffic, and that 

other operational factors may have a substantial impact on achieving the desired SLOs 

in a distributed computing system, such as cloud computing. 

In service provisioning in practice, latency is the time it takes from when a client node 

sends a request until the serving node completes the request or the provided set of tasks. 

For the sake of this discussion, "service performance monitoring" means verifying that 

the service is up to par with the SLA. Possible factors affecting response time include 

low bandwidth, an overabundance of users, a longer processing time, and a more 

complicated request. As response times get longer, the possibility of breaking a SLA 

grows. Our Service Level Agreement (SLA) specifies a threshold of 50 ms 

(milliseconds) for a normal response time over the internet. An ART may be calculated 



 
 
 
 
 

160 
 

by dividing the total number of requests generated by JM by the sum of the timeouts 

that occurred while those requests were being processed.[91] 

ART = total violation / total requests x 100 

4.3.9.2. Protocol’s Exchange Signal 

 

The SLA of the theoretical framework is presumed to have been signed by CSP "C" 

and CSS "S." TTP has been furnished with a copy of the same SLA by each of these 

entities. TTP will retain a copy of this SLA for its own records and will use it as a 

reference in the case of a dispute over a violation of this agreement.Customers will still 

be using the cloud service, but the C will still regularly transmit an alert to the S, and 

the FEP module will evaluate SLA compliance by comparing the actual response time 

to the target response time specified in the SLA (ART). Additional information, such 

as VCSS (resp. VCSP), may be bundled with SLA S during transmission with the help 

of Jmeter. 

4.3.9.3. Protocol’s Dispute Signal 

 

After C, S, and T have sent some test transmissions and received acknowledgements in 

response, the protocol implementation is ready to begin the BAU exchange cycle. It is 

assumed here that S has already deposited its ICSS to the T as a token, to be redeemed 

upon C's successful and SLA-compliant service delivery. And so as to avoid massive 

data manipulation, we only use 15 minutes of samples from these BAU signal 

transmissions to portray the real environment. When determining whether or not a 

service has been delivered in accordance with the Service Level Agreement (SLA), we 

check for a status-code of 200, which indicates that a simple request has been successful 

within a qualifying period regardless of the method used, such as the GET method of 

HTTP (Hyper Text Transfer Protocol) executed via JMeter, by receiving our expected 

responses within the specified SLA time, for example 50 milliseconds. 

4.3.9.4. Protocol’s Abort Signal 

 

For the reasons stated above, JMeter will classify any occurrence in which the server 

returns an HTTP status-code of 4xx bad request, unauthorized, forbidden, or not found; 



 
 
 
 
 

161 
 

or 5xx server faults, service unavailable, gateway time out, etc. as a service failure or 

SLA violation. In such a case, the FEP module will evaluate the situation. As soon as 

S is able to, she will notify the TTP of the pregnancy termination. To further define the 

situation, we use Jmeter's duration assertion, the results of which may be either FALSE 

or TRUE. In this case, one of our shown triggers sent an abort to the entity T based on 

a periodic monitoring basis, after computing the ART of each unsuccessful thread. This 

demonstrates service delivery failure or non-compliance with SLAs due to excessively 

lengthy ART answers (50 ms). 

4.3.9.5. Protocol’s Resolve Signal 

 

When and how these parties resolve the dispute: suppose our FEP and security modules 

feed the TTP, who utilizes the actual SLA metrics and master copy of the SLA to decide 

on a fair settlement, taking into consideration the victimized business. This will be done 

after the end-of-term review and evaluation of service metrics. Because the dishonest 

party would be helpless to defend such a condition, the impartial party would be 

awarded the benefit of dispute resolution. 

A brief discussion of how the suggested protocol would launch the resolved signal and 

how it would configure the TTP and the participants to recognize it through a few 

repeats is adequate. Take a look at Table 4.2, Rows 4 and 6, and Table 4.8, Rows 11 

and 12. 

4.3.9..6. Post Reconciliation & Service Restoration 

 

The FEP modules and the SLE(E) would be put into service once all pending disputes 

have been resolved and all truthful participants have confirmed that they have received 

their full service credits or financial dues. We will take into account any possible 

adjustments to the SLA/SLOs to ensure that the SLA metrics are accurate. The service 

monitoring look-ups would be updated to incorporate any bad QoS statistics previously 

connected with the causation of any SLA breaches in order to avoid a repetition of the 

same SLA violations. The sensors keeping an eye out for these problems would be 

tweaked, and the relevant information would be cascaded to the concerned TAs and the 



 
 
 
 
 

162 
 

TTP, to prevent false positives that could lead to an abnormal service termination or 

unsolicited configuration mismatch at either the CSP or the CSS FEP modules. 

4.3.10. Results 

 

This section discusses the outcomes of implementing our approach. About six distinct 

strategies were evaluated, representing various real-world business situations. These 

strategies ranged from local host on-premise to distributed computing models like AWS 

Amazon. The primary goal of these optimization strategies was to investigate the 

performance of our proposed protocol (with respect to service automation and SLA 

enforcement) across a variety of computer environments. In order to measure and track 

different replies while keeping an eye on the QoS factor of our example web app, we 

choose to use ART as a representative SLO metric for Quality of Service. Knowing 

where to put monitoring sensors has always been a difficult problem, thus we kept our 

MF separate, outside the end user trust boundary, on a specialized appliance system. It 

would help to get better, more precise findings. Initially, an MF's sole responsibility 

was to reroute communications, but subsequently, their duties were expanded to include 

serving as a sensor for keeping an eye on various parameters. It records data about 

transactions and then delivers the information at the predetermined intervals. It 

generates a comma-separated values report once the monitoring is complete. csv file, 

which is widely used in many contexts. The definition of the SLO metric threshold is 

an important step in establishing a practical response time reference. To better match 

the consistency of the service and other QoS factors, a shorter response time would be 

preferable. These numbers represent the translation of a response pattern from a CSP 

to a service endpoint in a decentralized system. In light of our research on the average 

response time of different web services, we settled on 50 milliseconds as the minimum 

need for an ART to be SLA compliant. If the response time for any given message 

exchange is more than 50 milliseconds, the service level agreement (SLA) is considered 

to have been broken. In this short analysis, we will look at how the SLA measurements 

we have collected may be immediately applied to four distinct jobs serving as forms of 

varied reconciliation: [92] 

a) Periodic SLA violations 



 
 
 
 
 

163 
 

b) Response Time variation 

c) Net Message Exchanges 

d) TTP‘s Involvement 

4.3.10.1. Reviewing Periodic SLA Violations 

 

Having complete, unambiguous insight into the time and circumstances of any SLA 

breaches is the first and most important factor in drawing conclusions from the data. 

Here, we synthesize findings from several experiments run in the cloud to demonstrate 

the efficacy of our cloud-based solution, such as Azure. As shown in Fig. 5.3, we 

structured the deployment method in a way that allowed us to zero in on the 

benchmarking of individual service nodes during message exchange. Here, we'll be 

concentrating on one of our key SLO metrics: average response time (ART). Both an 

Ubuntu-based application server configured manually and an automated application 

deployment platform hosted on Microsoft Azure's Elastic Web Services were used in 

the deployment's testing. The aforementioned deployment underwent a number of tests 

before being probed against the real transactions over the course of three days, allowing 

for a more nuanced capture of these outcomes. By using this route, we were able to 

ensure the consistency, precision, and accurate capture of client/server answers during 

the testing regime's real-time phase. One other goal was to establish a standard for 

measuring SLOs that would be representative of actual business practice. One 

important point concerning the sensor's location is needed to be made now, since it 

affects the interpretation of these data. The MF node was set up as a separate cloud 

entity so that it could do many tasks at once, such as forwarding messages to and from 

other nodes and recording timestamps so that they may be used as evidence in the event 

of a legal hold.[93] 

             Table 4.10: CSP‘s Captured SLA Metrics 

SLA Metrics Average Response Time(ms) Agreed SLA(ms) 

SLA Metrics1 43.78 50 

SLA Metrics2 47.82 50 

SLA Metrics3 49.85 50 



 
 
 
 
 

164 
 

SLA Metrics4 34.53 50 

SLA Metrics5 38.24 50 

SLA Metrics6 39.94 50 

SLA Metrics7* 68.09 50 

SLA Metrics8 39.07 50 

SLA Metrics9* 67.29 50 

SLA Metrics10 47.35 50 

SLA Metrics11 47.58 50 

SLA Metrics12 48.06 50 

SLA Metrics13 48.43 50 

SLA Metrics14 48.19 50 

SLA Metrics15* 100.06 50 

SLA Metrics16 40.45 50 

SLA Metrics17 39.43 50 

SLA Metrics18 38.84 50 

SLA Metrics19 39.41 50 

SLA Metrics20 44.61 50 

 

The CSP and the TTP will eventually provide the CSS with these crucial business 

statistics on a regularly basis and as needed. The first column of Table 4.10 contains 

the collected SLA-Metrics for 20 example transactions. Each business's real ART for 

service delivery is determined at the conclusion of each transaction and displayed in the 

second column; the third column displays the SLA (50ms) threshold that will be 

monitored by each FEP module. This 50ms metric is applied to every single message 

sent between the end-user estate and the CSP. Prior to signing the SLA, it is 

recommended by to rigorously test monitoring an accepted service request SLO 

measure, such as response time, against the CSP's SLA claim. 

About 20 separate transactions were logged on the CSP infrastructure and are listed in 

this table. Both the service provider and the service subscriber agree to regularly 

exchange these samples on a monthly basis to check for SLA compliance, and these 

probes are limited to CSS metrics. In accordance with BAU Best Current Practice, the 

TTP, in its capacity as an approved monitoring body, would also get a copy of these 

documents. Before beginning the message exchange, all of these parties would 



 
 
 
 
 

165 
 

undertake a mutually agreed-upon verification and validation procedure. We 

hypothesised that the status quo (BAU) message exchange would persist for some time 

(e.g. monthly or a longer service contract term). The provided sample is only a small 

subset of the total message stream that was passed back and forth between the CSP and 

the CSS's client. The central decision was to create digital evidence that can be used in 

court and verified by a forensics expert to settle any potential disagreements between 

the parties. 

These totals would also be useful for the auditing and reconciliation tasks carried out 

by the automated FEP modules preconfigured at each node. While the service is being 

provided, this brief metric collection would be performed at random intervals only. If 

the CSP's supplied services are deemed to be malfunctioning or are undergoing an 

agreed/pre-scheduled maintenance outage, then the affected system states will be 

exempted. To keep things simple for our prototype, we just documented three days of 

the full-service month. Not only would daily exchange of these metrics be impractical 

(time/money), but it would also be seen as an unnecessary added burden. In addition, it 

would influence service delivery since it would place an unnecessary strain on both 

ends' computing equipment and human resources. Taking a look at Table 4.10, we see 

that there are only three red flags (service entries): sla-metric, sla-metrics, and sla-

metric15. Each of these records would be flagged as a potential SLA violation for that 

day/time/transaction cycle because the ART is greater than 50ms. Keep in mind that 

these 20 results only represent a sample of transactions over a period of 3 days, and that 

these transactions only capture periodic message exchange.[94] 

Similarly, the monitoring process is graphically represented in Figure 4.7, which 

corresponds to the information in the table above. The FEP module inside CSS 

monitoring was set to calculate the SLA, however the three entries showed above the 

SLA threshold line did not meet the SLA's requirements. The computed ART and 

related log files provide proof of SLA observance. 

4.3.10.2. Reviewing Response Time Variation 

 

Here, we'll investigate the potential causes of response-time fluctuations in the cloud. 

In computing, the time between when a job is sent to a serving node and when it is 



 
 
 
 
 

166 
 

completed is known as the net reaction time. In our experiment, we track this metric for 

each individual purchase, but SLA violations are evaluated based solely on the ART 

over the course of the entire time frame. 

Variation in response times is observed in Table 4.11, which is correlated with Figure 

4.8. To accommodate CSS's business needs, an increase in the number of users may 

cause the SLA response time to rise above the estimated value. Therefore, increasing 

the number of concurrent requests would lengthen the response time. As a result, unless 

the SLA is modified to account for the new circumstances, the assertion duration will 

not be met. 

 

Figure 4.7: SLA Violations & Average Response Times 

 

4.3.10.3.Reviewing Net Message Exchanges 

 

In Fig 5.8, we see a representation of the client's monitoring dashboard for one day of 

service delivery, complete with the total number of transactions regardless of their 

success or failure. On days when SLA violations were spotted, a reasonable number of 

total transactions were processed, but the resulting message exchanges failed to meet 

43.7847.8249.85

34.5338.2439.94

68.09

39.07

67.29

47.3547.5848.0648.4348.19

100.06

40.4539.4338.8439.41
44.61

0

20

40

60

80

100

120

Ag
re

ed
 S

LA
(m

s)

SLA Metric Periodic Transmission from CSP to CSS 

SLA Compliance Monthly Report

SLA Violation



 
 
 
 
 

167 
 

the business requirements of providing a timely and polite response. Most of these 

HTTP requests take longer than usual to respond to. This is a pretty bad Quality of 

Service sample, in my opinion. This reading follows a service scenario where poor 

service quality is present, without sacrificing transaction volume. While there is 

communication, the projected SLA is unacceptable due to financial commitments. 

Furthermore, we extrapolated from this transmission test a scenario in which we 

categorise events according to their relative timing. Our SLA monitoring was taken one 

step further with the introduction of Instance 5.6, which could now keep tabs on the 

times of day when the service provider saw the highest volume of requests.        

              

 

 

 

 

 

 

 

 

 

 

              Table 4.11: Response Time Variation 

SLA Metrics 

    SLA 

Violation 

Service 

Variation(ms) 

SLA Metrics1 N 6.22 

SLA Metrics2 N 2.18 



 
 
 
 
 

168 
 

SLA Metrics3 N 0.15 

SLA Metrics4 N 15.47 

SLA Metrics5 N 11.76 

SLA Metrics6 N 10.06 

SLA Metrics7* Y +18.09 ↑ 

SLA Metrics8 N 10.93 

SLA Metrics9* Y +17.29 ↑ 

SLA Metrics10 N 2.65 

SLA Metrics11 N 2.42 

SLA Metrics12 N 1.94 

SLA Metrics13 N 1.57 

SLA Metrics14 N 1.81 

SLA Metrics15* Y +50.06 ↑ 

SLA Metrics16 N 9.55 

SLA Metrics17 N 10.57 

SLA Metrics18 N 11.16 

SLA Metrics19 N 10.59 

SLA Metrics20 N 5.39 

 

 

4.3.10.4. Reviewing TTP‘s Involvement 

 

TTP involvement is strictly conditional on anomalous behavior being detected by 

operational FEP modules. At the outset, our proposed protocol requires businesses to 

submit to the TTP accurate service metrics that correlate with the actual SLA. This 

method will help participants make amends in the event of a service dispute in the 

future. 

Concerns raised by TTP during service delivery are investigated in this section of the 

monitoring process. As can be seen in Fig 5.9, the FEP module of the CSS detects three 

service anomalies, which are then reported to the FEP module of the TTP. When a 

dispute arises, TTP notifies the CSP's FEP module so that it can investigate the situation 

and issue a fair service credit or refund any overpayments. 



 
 
 
 
 

169 
 

In this way, the frequency of TTP involvement is shown in Fig 5.9. TTP is used about 

three times in our transmission tests. After vetting the signals for false positives, the 

FEP modules at TTP would receive these alerts from CSS and investigate the 

compromised services. The TTP is programmed to run the following code whenever it 

receives a signal indicating a violation of the SLA: 

 

 Figure 4.8:  Service Response Time Variations (Quazi F.,2020)   

x >= 50ms 

if x >= 50ms  then 

print "Warning!!!...SLA violation Detected"\\ or sends an alert via 

SIEM (SMS or email) else 

print "Transactions are SLA compliant" 

The above code, located in a module at TTP, would manage transactions in a systematic 

manner and regulate dispute resolution by labeling messages as either SLA 

COMPLIANT or NONCOMPLIANT. 

In this chapter, we laid out a plan for following through on service level agreements. 

To show how the prototype performs under these assumptions and with a variety of 

operating and configuration parameters, a limited implementation was carried out. As 

so, it demonstrates the success of our quite simple and limited implementation. The test 

bed also provides access to a number of promising new avenues that will be useful for 

broadening the implementation's initial scope by making use of flexible new operating 



 
 
 
 
 

170 
 

assumptions. Such adjustments will undoubtedly enhance the protocol's capabilities, 

allowing for better and more succinct results in achieving automated SLA enforcement. 

 

Figure 4.9: SLA Violations & Average Response Times (Quazi F.,2020) 

Understanding how to implement in a cloud environment and how to trust and connect 

underlying technologies is also explored, along with the importance of data security, 

privacy, and automation. This involves establishing links between various APIs and 

services to simulate the protocol's behavior. The extensive cloud deployment that is 

needed for this is, of course, put aside for the time being. Despite this, we have 

successfully deployed our setup using a few different cloud environments, yielding 

some very useful and encouraging results that show how our protocol governs service 

and SLA management through monitoring and detection, as well as enforcement. In the 

next chapter, we'll take a look at how other potential protocol variances can be evaluated 

and modeled when participants' bad intentions are already in play. What we proposed 

to do to counteract the ways in which their bad behavior might compromise equity once 

the service contract has expired.[95] 

  



 
 
 
 
 

171 
 

 

Figure 4.10: Total Exchanged Messages (Quazi F.,2020) 

 

Figure 4.11: TTP Intervention for Dispute Resolution  

4.11. Enforcement of SLA with Malicious Participants 

 

The world's tech industry is spending a lot of money to make sure that most businesses 

move to the cloud, which means that traditional on-site data centres will be phased out 

and replaced by a broader cloud computing infrastructure from which businesses and 

consumers can access a wide range of on-demand computing services. Still, a large 

majority of businesses, of all sizes and in all industries, are taking advantage of the 

many advantages offered by multi-tiered cloud services, which host everything from 

basic web apps to complex distributed networks that link businesses together using the 

latest and greatest in technology. With the advent of the global pandemic, 

telecommuting has become the norm. According to Gartner's trend, an increasing 

number of companies throughout the world are drawn to move their services to cloud 

environments since doing so eliminates the problems associated with remote labour 



 
 
 
 
 

172 
 

while dramatically lowering the companies' legal risks. As stated in the paper, by 2020, 

public cloud services are expected to have grown by 6.3%. SaaS, among other cloud 

services, is still in high demand since it helps businesses adopt online office automation 

software suits through the payment of online subscriptions, which reduces the need for 

software licences, maintenance costs, and security risks. 

The above computing developments are exciting, but they also present a number of new 

hurdles for the businesses that are signing up to take use of them in the cloud. The 

significance of SLAs was previously discussed in Chapter 2. Although SLAs, as the 

primary legal contract between a CSP and the CSS, do hold both parties accountable 

and give them some measure of protection, there are still many associated challenges 

and security issues that could be exploited if one party to the contract decided to behave 

badly or unfairly toward the other. Sometimes people act in such ways without 

intending to do harm to others. It might be the result of faulty equipment or a lapse in 

procedure. Rather than taking unresolved disagreements to court, parties should first 

seek out SLA bindings, which include information on SLA compliance, violation, 

accountability, dispute settlement, and claim lodging (service credits/financial 

reimbursements). 

In Chapter 5, we looked at a scenario in which loss-averse participants might benefit 

from an automated SLA enforcement procedure. Now the environment represented in 

Fig.6.3 might be applicable if another situation is addressed in which the entities 

involved display unusual behavior. For instance, the CSS may request a refund if it 

determines that the CSP is not providing the promised digital goods or services. The 

onus of proof for the accusations made by the CSSs has shifted since their arousal of 

the issue. In a similar vein, the CSP claims that CSS has not paid for the services it has 

received. This is one way in which any party to a service agreement might intentionally 

harm the other during the duration of service. Since the CSS won't be able to collect 

low-level service metrics from the CSP's surroundings, a mutual resolution is 

improbable. If the situation progresses to the judicial system, the complainant will 

likely be the one with the burden of evidence. In today's legal systems, parties are 

encouraged to explore all possible avenues for amicably resolving any outstanding 

service complaints before taking the matter to court. As was previously said, mediators 



 
 
 
 
 

173 
 

and arbitrators can help with compensation and renegotiation for any contested SLA 

infractions. 

Indeed, a complaint may have to invest a great deal of time and money into a legal 

proceeding. Trying out some automatic solutions to problems with SLAs is strongly 

recommended. Because of this, no one involved can possibly find fault with the method 

used to settle any disagreements. The prototype shown in Chapter 5 is vulnerable to 

being hacked by malevolent users. As In order to assist CSS balance their usage and, 

more crucially, determine if the SLA has been broken or not, CSP provides monthly 

SLA summary reports. Now, however, the question arises as to how to allay the concern 

that the CSP may alter the data in the file containing the summary of the SLA that is 

sent on a monthly basis to the CSS before sending it on. Their goal could be to trick the 

CSS into thinking the SLA is doing well while in reality it isn't. If you made changes 

like that, CSS wouldn't notice.[96] 

This digital service trade platform may become a hostile environment necessitating 

heightened security and privacy safeguards if other prospective dangers are allowed to 

compound the existing difficulties. Older designs can only function in an exchange 

setting if loss aversion is managed by an in-line TTP. If the operating environment were 

to shift, the protocol would need to be updated to deal with the newer and more 

dangerous threats and hostile actors. 

Based on what we learn about the protocol's features in Chapter 5, we may deduce that 

it will primarily focus on poor fairness. Due to the characteristics of weak fairness, such 

as the need to collect a sufficient piece of (forensically sound) evidence utilising various 

security apertures (such as secure coprocessors, completely homomorphic encryption 

modules, etc.), this is not always possible. An additional benefit of these kinds of 

agreements is that they may be used to gather indisputable evidence and provide a solid 

dispute resolution mechanism. The primary attributes that fulfil the CIA triangle of 

confidentiality, integrity, and availability are non-repudiation of origin and non-

repudiation of reception. 

 

 



 
 
 
 
 

174 
 

Architecture Threat Model 

In order to assess the vulnerabilities in the security of a system's architecture or a related 

process, threat modelling provides a systematic technique. It uncovers the weak points 

in a computer, service, or process that an attacker or bad business participant might 

exploit or misbehave to circumvent security and fairness measures. Since a threat is 

only a warning about an unprotected (system or design) flaw(s) with the potential to 

cause harm, threat modelling is the method used to map these hidden dangers so that 

appropriate preventative actions may be taken. When examining the security of a 

project's implementation, threat modelling may help teams account for unforeseen 

events that might disrupt services if a hostile actor (whether human or machine) 

intervened at any point in the process and used any available exploit. A potentially 

exploitable entity is one that provides a service, an object that provides a service, a 

transaction component, or even a supporting entity. In the long run, this might result in 

full control of the compromised system or service.[97] 

We previously introduced a unique prototype with a running environment that provides 

evidence of a service exchange amongst prime players who are notoriously risk-averse. 

Using a new operational dimension and a proactive strategy, we simulate potential 

hostile situations by "war gaming" the protocol. This will provide us the opportunity to 

talk about the ways in which a participant has been malevolent and how we could 

protect ourselves. We need to know what would happen if any participant in the 

protocol decided to behave maliciously while it was being performed, and how our 

protocol would react to that circumstance to determine who would assume control and 

make any necessary adjustments. As an example, please describe the outcomes that PA 

would attain following the conclusion of the agreed cycle. We may get a sense of the 

gravity of the problem if we suppose that the protocol will die in one of four possible 

futures, which we will refer to as S.T.E.P. 



 
 
 
 
 

175 
 

         

                  Figure 4.12: Cloud Service Exchange Basic Model 

 If St(1,1) has both MB and AckB, the exchange was successful (A). Possessing 

both KA and KB would also make it simpler to derive IB from MB. 

 If a node is in state SA(1,0), it has received MB but no AckB(A) and has 

requested that the TTP settle the exchange by sending message ResA containing 

both MA and MB, it is in state St(1,0). 

 St(0,0) indicates that no acknowledgments have been received, 

 St(0,1) indicates that just AckB(A) has been received. By sending the TTP the 

message ReqA with MA, PA asks to cancel the conversation. 

Basic Service Exchange Model - Potential Threats 

As shown in the illustration, a general cloud service exchange model involves the 

systematic interaction of six different transaction actors. When necessary or in response 

to instructions from TTP, both the CSP and the CSS will rely on trusted authorities 

(TAs) to verify and guarantee on their behalf.[98] 

 

 



 
 
 
 
 

176 
 

Table 4.12: Participants Interaction during Basic Service Exchange/round 

completion 

Steps 

Participant 

Sends 

Participants 

Receives 

Message 

Exchanged Fairness  

TTP 

Inc. 

TA 

Inc. 

1 A B Payment N N N 

2 B A Ack N N N 

3 A,B TTP Ack(TTP) N Y N 

4 TTP A,B Ack(SLA) N Y N 

5 B A CloudService N N N 

6 B A SLASummary N N N 

7 A B ServiceTerminates N N N 

8 B A ServiceTerminates N N N 

 

Covering CSPs as their TA is a certificate authority (CA), while a financial 

clearinghouse (such as a bank) stands in for CSS and provides payment guarantees on 

their behalf; TTP mediates any disagreements that may arise. From what can be gleaned 

from a careful examination of the service exchange model, there aren't that many threats 

on either side of the communication channels or inside the associated trust limits. Since 

both parties must perceive a conflict resolution procedure based on manually aided 

(using trusted persons) or completely automatic (using some smart secure technologies) 

structures, it is imperative to advocate for the best solutions that can reduce such 

hazards.[99] 

Comparative analysis execution time lock and unlock process CryptomatorTEA 

and AES application 

The findings of a time study on the procedure used to lock and unlock a vault Tables 

and charts contrasting the TEA implementation of Cryptomator with the AES 

implementation of Cryptomator are provided. Time spent doing comparisons is seen in 

Table 4.15. 



 
 
 
 
 

177 
 

               Table 4.13 Percentage of comparison Execution Time Lock 

File 
Type  

File 
Size 

Execution 
Time Lock 
TEA(ms) 

Execution 
Time Lock 
AES(ms) 

Percentage of 
Comparison 

.txt 1330 37.92 38.52 1.56 

.c 23900 39.87 44.64 10.68 

.java 18370 38.43 41.76 7.97 

.xlsx 56560 41.46 43.56 4.82 

.docx 1630000 158.86 171.18 7.19 

.pdf 2150000 254.16 303.25 6.188 

.pptx 2410000 215.81 403.87 46.56 
 

It can be seen from comparing the percentages of execution time and lock vault in the 

TEA Cryptomator and the AES Cryptomator applications that the range of execution 

time for the lock vault process varies from 1.56 percent to 46.56 percent. The 

comparison execution time graph is shown in Figure 4.13, the comparison execution 

time unlock procedure is shown in Table 4.16, and the comparison execution time 

unlock graph is shown in Figure 4.14. 

 

               Figure 4.13. Graph Comparison Execution Time 

 

0

50

100

150

200

250

300

350

400

450

.txt .c .java .xlsx .docx .pdf .pptx

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
d)

File Type

Execution Time process Lock Cryptomator  TEA 
and Cryptomator AES

Execution Time Lock TEA(ms) Execution Time Lock AES(ms)



 
 
 
 
 

178 
 

                    Table 4.14. Comparison Execution Time Unlock 

File 
Type  

File 
Size 

Execution Time 
Unlock 

TEA(ms) 

Execution Time 
Unlock 

AES(ms) 

Percentage of 
Comparision(%) 

.txt 1330 38.03 40.83 6.86 

.c 23900 44.02 49.14 10.42 

.java 18370 40.69 45.49 10.55 

.xlsx 56560 45.33 48.41 6.36 

.docx 1630000 235.98 255.65 7.69 

.pdf 2150000 388.17 480.95 19.29 

.pptx 2410000 330.75 639.68 48.29 
 

Figure 4.14. Graph Comparison Execution Time Proses Unlock 

 

The time it takes to lock and unlock a vault has certain characteristics, as seen in a graph 

comparing the two operations across seven standard file types. There is a clear 

correlation between file size and the amount of time required to analyze its properties. 

When comparing files of different sizes and data complexity, the execution time 

increase is negligible for tiny files like c, java, txt, or xlsx, but considerable for huge 

files like PDF, DOCX, and PPTX. 

 

0

100

200

300

400

500

600

700

.txt .c .java .xlsx .docx .pdf .pptx

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
d)

File Type

Execution Time Process Unlock Vault Cryptomator TES 
and Cryptomator AES

Execution Time Unlock TEA(ms) Execution Time Unlock AES(ms)



 
 
 
 
 

179 
 

Comparative analysis performance throughput lock and unlock process 

Cryptomator TEA and AES application 

Information gathered from monitoring the efficiency with which a safe is locked and 

unlocked the differences and similarities between the Cryptomator TEA program and 

AES Cryptomator are laid forth in the form of tables and graphs. Throughput 

comparisons between TEA and AES are provided in Table 4.15 for the locked state, 

and in Table 4.16 for the unlocked state. 

Table 4.15 Comparison Throughput Lock Cryptomator TEA and AES 

File 
Type  

File 
Size 

Throughput 
Lock TEA(b/s) 

Throughput 
Lock AES(b/s) 

Percentage 
of 
Comparison 

.txt 1330 35842.42 34827.81 2.91 

.c 23900 606423.53 540880.1 12.12 

.java 18370 484730.64 442640.3 9.51 

.xlsx 56560 1365319.55 1299422 5.07 

.docx 1630000 10295396.19 9548802 7.82 

.pdf 2150000 8472615.43 7102390 19.29 

.pptx 2410000 11189340.63 5987292 86.88 
 

Table 4.16 Comparison Throughput Unlock Cryptomator TEA and AES 

File 
Type  

File 
Size 

Throughput 
Unlock TEA(ms) 

Throughput 
Unlock AES(ms) 

Percentage 
of 

Comparison 
.txt 1330 35348.39 33192.11 6.191 

.c 23900 489683.34 490135.9 0.0837 

.java 18370 456396.54 405994.4 11.38 

.xlsx 56560 1257220.41 1180799 5.88 

.docx 1630000 6914168.56 6388047 5.51 

.pdf 2150000 5545276.15 4509357 14.58 

.pptx 2410000 7300700.72 3772457 58.93 
The theoretical study of the chosen algorithms was based on a literature survey by many 

scholars. When memory usages, output bytes, and battery life are critical concerns for 

communication security, encryption techniques play a crucial role. For this purpose, we 

employ DES, 3DES, AES, and Blowfish as our chosen algorithms. 

 



 
 
 
 
 

180 
 

Table 4.17 Comparative Analysis of Symmetric Encryption Algorithms 

Features DES 3DES AES Blowfish References 
Created By IBM in 

1975 
IBM in 1978 Joan 

Daeman, 
Vincet 

Rijmen in 
1998 

Bruce 
Schneier in 

1998 

Stallings[17], 
Forouzan[7] , 
Schneier[13] 

Algorithm 
Structure 

Feistel 
Network 

Feistel 
Network 

Substitution, 
Permutation 

Network 

Feistel 
Network 

Stallings[17],  
Schneier[13] 

Block Size 64 bit 64 bit 128 bit 64 bit Stallings[17], 
Forouzan[7] ,  

Rounds 16 48 10,12,14 16 Stallings[17],  
Schneier[13] 

Key Length  56 bits 112,168 bits 128,192 or 
256 bits 

32 bits to 448 
bits 

Stallings[17], 
Forouzan[7] , 

Agrawal et 
al.[2], 

technet[25] 
Computational 

Speed 
Fast Moderate Fast Very Fast Jeeva et al.[8] 

Agrawal et al.[2] 

Tunability No No No Yes Jeeva et al.[8] 

Encryption 
Throughput 

Medium Low High Very High Seth et al.[14], 
Alam et al.[9] 

Decryption 
Throughput 

Medium Low High Very High Seth et al.[14], 
Alam et al.[9] 

Power 
Consumption 

Low Highest Medium Lowest Marwaha et 
al.[10], Alam et 

al.[9] 

Memory 
Usage 

High Very High Medium Very Low Seth et al.[14], 
Mandal et al.[9] 

Security 
against 
attacks 

Brute 
force 

Brute 
force,Chosen 

plain 
text,known 
plain text 

Chosen 
plain 

text,known 
plain text 

Dicitonary 
Attacks 

Jeeva et al.[8] , 
Agrawal et al.[2] 

, Cornwell [5] 

Cofidentiality Low High High Very High Marwaha et 
al.[10], Cornwell 

[5] 

 



 
 
 
 
 

181 
 

Table 4.17 shows that the basic algorithmic structure of DES, 3DES, and Blowfish 

remains unchanged since the early 1970s when it was based on the Fiestel Network 

established by cryptographer Horst Feistel. But AES used a network based on 

permutations and substitutions. When encrypting or decrypting data, the smallest 

possible unit is the block size. For a particular algorithm, a larger Block size increases 

security but slows down encryption and decryption times. Increased safety is the result 

of more widespread implementation. A block size of 64 bits has been practically 

ubiquitous in block cipher construction because it is seen as a suitable compromise. The 

DES, 3DES, and Blowfish algorithms all require 64-bit blocks. However, AES has a 

block size of 128. It's safer to use a larger block size. However, the implementation 

costs (in terms of gates or low-level instructions) of a big block size are higher. The 

algorithm's number of rounds is a crucial measure of its safety. Having more than one 

round of defense is a good idea. The crux of the Feistel cipher is that its security is 

compromised after only one cycle. Both DES and Blowfish have 16 rounds. With 48 

rounds, 3DES is three times as secure as DES. However, AES varies depending on the 

key length; for a 16-byte key, there are 10 rounds, for a 24-byte key there are 12, and 

for a 32-byte key there are 14. Key management is the fundamental feature that reveals 

the inner workings of encryption and decryption algorithms. Key search attacks, often 

known as brute force attacks, may be used to break symmetric key encryption. In these 

assaults, the attacker systematically attempts every potential key to decode the message 

until they succeed. In most cases, the target is compromised before all viable keys have 

been tested. By expanding the potential number of permutations, longer key lengths 

reduce the likelihood of successful assaults. Key length is adaptable in symmetric 

algorithms like DES, 3DES, AES, and Blowfish. Blowfish excels because it has the 

largest key length. The time it takes for an encryption algorithm to transform plain text 

into encrypted text is referred to as the encryption time. The speed of an encryption 

system may be estimated by dividing the amount of plaintext in bytes encrypted by the 

time it took to encrypt the data. In terms of symmetric methods, the research reveals 

that the Blowfish algorithm requires the least amount of time to encrypt data, while 

3DES requires the most time. When compared to DES, AES takes longer to encrypt 

data. Based on the results of the Encryption Throughput test, it was determined that 

Blowfish is the most effective and efficient block cipher currently available, surpassing 

DES, 3DES, and AES. How long it takes for a decryption technique to turn plaintext 



 
 
 
 
 

182 
 

into ciphertext is what is known as the decryption time. The throughput of a decryption 

system may be computed by dividing the total number of bytes of ciphertext decrypted 

by the decryption time. In terms of symmetric algorithms, the research reveals that the 

Blowfish method requires the least amount of time to decode while the 3DES technique 

requires the most time. AES takes longer to decrypt than DES. Compared to DES, 

3DES, and AES, Blowfish was shown to have superior performance and efficiency in 

terms of decryption throughput. For portable, battery-operated devices, the encryption 

algorithm's power consumption is a crucial consideration. In comparison to DES and 

AES, 3DES is the most power-hungry symmetric-key method. However, compared to 

DES, 3DES, and AES, Blowfish has the lowest power requirements. We compared 

Blowfish's power use to that of AES and discovered that it used around 16% less 

energy. When compared to DES and AES, 3DES is the most memory-intensive 

symmetric key technique. When compared to DES and 3DES, AES uses less memory. 

Yet Blowfish makes the fewest memory-intensive requests. Security in cryptography 

refers to the resistance of an encryption system against brute force and other types of 

plaintext-cipher text attacks. According to the results, AES is safer than DES and 3DES, 

two other symmetric algorithms. While DES, 3DES, and AES are all effective block 

ciphers, Blowfish has a better reputation for security. There was no backdoor 

vulnerability found in Blowfish, and the key size could not be reduced, hence the 

conclusion was drawn that it provided long-term data security. DES's lackluster secrecy 

is a result of its short key length. We conclude that AES may be used in settings 

requiring stringent safety measures. Blowfish may be employed if high performance is 

required. When compared to the other algorithms discussed, Blowfish has the highest 

level of privacy. From Table 4.18, we may infer that Blowfish is more flexible and has 

a higher encryption/decryption throughput than DES, 3DES, and AES. Blowfish uses 

far less resources (both power and memory) than the DES, 3DES, and AES algorithms. 

 

 

 

Comparison With Other Algorithms 



 
 
 
 
 

183 
 

Table 4.18 Comparison between encryption algorithms 

S.N. Properties Enhanced 
Tiny 
Encryption 
Algorithm 

Data 
Encryption 
Standard 
(DES) 

Rivest -Shamir 
Adleman(RSA) 

Advanced 
Encryption 
Standard 
(AES) 

1 Key Size 128 bit Key 56 bit Key 1,024 to 4,096 
bit typical 

128,192 or 
256 bits 

2 No. of 
rounds 

64 (32 
Cycles) 

16 1 10,12 or 14 
(depending 
on key size) 

3 Block Size 64 bits 64 bits No Block 128 bits 

4 Structure Feistel 
network 

Balanced Feistel 
Network 

Structure less Substitution, 
Permutation 
Network 

5 Advantage Provides 
both 
encryption, 
embedding 
and secure 
data 
transmission. 

Hardware 
implementations 
of DES are very 
fast 

The biggest 
advantage of 
RSA is that it 
uses 
asymmetric 
keys 

Safe Brute 
Force(128 
bit=2128 
attempts) 
Unbreakable 
as for now. 

6 Disadvantage ETEA 
suffers from 
equivalent 
keys and can 
be broken 
using a 
related key 
attack 
requiring 
223 chosen 
plaintexts 
and a time 
complexity 
of 232 

DES is now 
considered 
insecure 
because a brute 
force attack is 
possible and  
DES was  
designed for 
software and 
hence runs 
slowly. 

The prime 
factors must be 
kept secret. 
Anyone can use 
the public key 
to encrypt a 
message, but 
with currently 
published 
methods, if the 
public key is 
large enough, 
only someone 
with  
knowledge of 
the prime 
factors can 
feasible decode 
the message 

AES-128, the 
key can be 
recovered 
with a 
computational 
complexity of 
2126.1 using 
bicliques 

 

 

 

 



 
 
 
 
 

184 
 

CHAPTER 5 

5. 0.Conclusion and Future Work 

5.1 Conclusion 

 

This study examined the cloud service fabric with a particular emphasis on SLA 

enforcement with reference to conceivable participant misconduct. The SLA, which 

serves as the main tool, is surrounded by other tools, approaches, and procedures for 

compliance. When it comes to SLA monitoring or detection, both open-source and 

proprietary solutions and frameworks put the most emphasis on the creation of 

centralized configuration management tools and their accompanying APIs. This is the 

responsibility of the cloud service provider, leaving the service subscriber with unclear 

and limited options for sharing true Quality of Service statistics that represent the 

fundamental parameters of the service being developed. Our proposed framework's 

architecture unquestionably offers an alternative approach by proposing a major change 

in cloud service governance and provisioning for both the CSP and the CSS, and by 

enforcing the SLAs in a truly impartial and fair-centric manner. 

During the deployment of cloud services, defining, executing, and upholding security-

balanced cloud SLAs is crucial for both CSP and CSS. From the beginning of the 

service term to the conclusion, SLA enforcement maintains the strategic fairness 

component. When a contract for one or both CSP and CSS expires, it is very uncommon 

for the parties to be left with just a few vague data and service reconciliations. Until 

low-level infrastructure investigations and permitted digital forensics methods are used 

to evaluate particular and targeted service aspects to verify whether or not service 

metrics are SLA compliant, a genuine return on investment (RoI) cannot be justified. 

[97]It is not practical, and the relevant CSP usually never gives their blessing to, the 

subcontracting of cloud-based services via a plethora of outsourced global brokerage 

service channels. In this research, we take on this uncertainty in SLA enforcement by 

framing it as a market efficiency issue. Because it establishes a transparent equilibrium 

from which SLA enforcement may benefit, the fair exchange protocol is the most 

reasonable and workable choice.[100] 



 
 
 
 
 

185 
 

Subcontracting cloud services and signing their respective SLAs may become 

problematic if end-to-end security and privacy protection aspects of an entity's data (at 

rest or in transit) are ignored. Substantial financial losses might occur at any point in 

the supply of a cloud service if a participant made a bad decision or if a hostile middle 

actor tried to sabotage service provisioning by breaching inadequate security standards. 

By incorporating this novel idea into the architectures we propose in this thesis, as well 

as the fair exchange protocols and their ancillary protocols, we are able to eliminate 

multiple opportunities for technical deception and add additional security layers to 

protect against a wide range of threats posed by unknown malicious attackers during 

the provisioning of a cloud service. If implemented, these strategies might attempt to 

steal anything of value from the victim during the transaction. Our framework's design 

ensures the confidentiality of user information and prevents unauthorized changes. A 

web service's technical or operational processes may be hindered by such actions. It 

may affect the intended behavior of services by modifying factors such as resource 

availability, response time, latency, issue detection, fault tolerance, and problem 

resolution ratios. In addition, the affected partner's image in the market, technical 

investments, and production capacity might be harmed by unforeseen service outages 

and other difficulties.[102] 

In contrast to previous methods, this study reaps the benefits of integrating trusted 

modules such as Secure Coprocessors, which protects data while it is at rest, Fully 

Homomorphic Encryption, which safeguards data while it is in transit, and other 

security modules to add an extra layer of defence, making it that much more difficult 

for an attacker or malicious participant to attempt a service stat, configuration changes, 

or any kind of data modifications. [97]There will always be security flaws that may be 

exploited by malicious actors; for example, it is possible for hackers to infiltrate a 

TMP's firmware utilizing sophisticated offensive tools and tactics and modern, 

untrusted communication channels to intercept and modify data in transit. The whole 

field of cyber security can attest to this fact. Since enforcing SLAs is notoriously 

difficult, ensuring adequate QoS and QoE requires automating SLA enforcement and 

ensuring that it is correctly implemented on all participating nodes. Distributed services 

and their constituent parts will be simpler to provide as a result. Our proposed 

architecture reduces the workload associated with SLA monitoring, detection, and 



 
 
 
 
 

186 
 

enforcement by centralizing these functions inside a single, dependable framework. 

Clear cloud service reconciliation metrics are created for forensically-oriented inquiries 

into any possible service disputes, and the value of each distributed element of the 

service is quantified. 

In light of the rapid growth of autonomous service control systems in the information 

technology industry. Significant technological changes are also occurring in the 

implementation of cloud services, with the shift from human-monitored cloud services 

like QoS controls to autonomous monitoring and control sensors. Although our 

suggested system is still in its infancy, it demonstrates its potential for SLA 

enforcement through heightened security layers and sophisticated controls. Future goals 

include investigating more possible hypotheses by switching time models, trying 

additional deception and attacking vectors and strategies, and violating SLA 

enforcement when many parties are employing fair exchange. The disclosure of new 

and difficult problems by fault models might provide service providers the authority to 

assert hitherto unheard-of service restrictions that would affect overall fairness. A 

participant with malicious intent might gain control by using infringement tactics that 

influence the sub-protocol modules and the protocol. The qualities of the protocol, 

particularly non-repudiation, speed, and fairness, should be carefully studied to see 

what technological, operational, regulatory, and legal requirements may be negated. 

SLA enforcement offers tremendous research opportunities to enhance and expand a 

variety of use cases that, in the long run, may provide every stakeholder with a degree 

of cloud service assurance. The deployment of an architecture across several cloud 

environments may reveal additional limitations relating to TTPs and CAs fault models, 

such as Byzantine failures.[103] 

By focusing on SLA agreements, this research has attempted to reframe the dynamic 

between service providers and their clients. As a result, the importance of negotiation 

protocols for both facilitating the sale of services and resolving dependencies 

throughout value chains has been highlighted. A generic method of creating executable 

negotiation protocols is considered as a valuable feature in such settings. Implementing 

protocols as declarative rules was the solution to combining corporate policies with 

negotiating encounters. This maintained the separation of labour and promoted 

reusability with little preparation time. The contributions herein differ from past works 



 
 
 
 
 

187 
 

in that they do not insist that service providers use a certain protocol; instead, they 

provide a methodical, guided approach that centers on the three core tenets of protocol 

design—modeling, verification, and implementation. However, the SBNP protocol is a 

real-world implementation of the approach that has the potential to replace the current, 

more limited take-it-or-leave-it offerings. 

The EU project SLA@SOI had at least four industrial use cases that have proved the 

protocol and the negotiation platform. Chained negotiation situations in numerous 

service industries were among them. The work was also used in the EU project Contrail, 

albeit for a different negotiation and supply situation. This adoption demonstrates the 

solution's wider usefulness, including for cloud brokerage and other intermediate 

services. This work's adoption across projects is a reliable sign that the European 

Commission's investment in SLA management efforts is paying off. 

The study of negotiation tactics has made the intricate dynamics that lie at the root of 

the SLA gap between consumers and suppliers visible. These factors contribute to the 

reluctance of parties to implement SLA negotiations for automated service 

procurement. [147]Two methods that are suited for small to large SLA contract spaces 

are among the contributions made in this field. These advance the practise of tit-for-tat 

tactics. However, how well their behavioral factors are adjusted determines how well 

they perform. This study improves the relationship between business utility and cloud-

relevant SLA templates as well as the usefulness of existing SLA from the standpoints 

of customers and providers.[104] 

In the tournament-based assessments, preference conflicts were considered in 

negotiation domains intended to simulate mission-critical, fault-tolerant, retail services 

or commodities. State-of-the-art methodologies were utilized in these evaluations. The 

suggested approach algorithms display levels of stability that are considered acceptable. 

However, the results demonstrate that no one method is the most promising in all 

negotiation areas, when competing with various utility ideas and opponent techniques. 

These findings still contribute to the understanding of a challenging field that is actively 

being researched. 



 
 
 
 
 

188 
 

Keeping the approaches general while establishing their actual relevance was a 

challenge. It became clear, for instance, that a generic protocol development technique 

cannot be unduly designed and finished as a collection of libraries. As a result, an 

approach was developed that effectively combined model checking with declarative 

rules to create negotiation protocols that function as communicating finite state 

machines. However, a reasonable grasp is required in these areas in order to benefit 

from the suggested strategy. Using key points and a specific methodology that may be 

used as an example, the thesis work has attempted to make this process simpler. 

Multiple quality elements were addressed by the work on SLA-aware cloud resource 

management, whose models were officially established or recycled from earlier works. 

Some of these models may be the subject of different perspectives from other 

researchers. Although domain-specific application of the provided models can still be 

further qualified, this does not restrict the validity of this work.[106] Given that service 

consolidation is a combinatorial optimization issue, one of the advantages of the 

suggested strategy is the deployment of meta-heuristic algorithms. However, defining 

the issue necessitates some familiarity with constraint-based search and multi-criteria 

optimization. One can consider the diversity of programming paradigms or 

technologies employed to be a constraint. However, the author is of the opinion that 

even if the suggested procedures fall under specialist areas, they may be successfully 

learned with appropriate consideration. The utilization of open source, tried-and-true, 

cost-free, and, whenever possible, industrial-strength tools may make adoption easier. 

[105] 

5.2 Suggestions for Further Work 

 

Our general idea is centered on two scenarios: loss-averse players and malevolent 

participants that communicate synchronously with one other through outsourced 

entities like TTP and TAs. Future research will also look at ways to swap these service 

arrangements using an asynchronous communication model and quantify threat 

modeling in order to achieve more fair exchange features. The use of cross-platform 

cloud service functions and associated QoS requirements to enforce SLAs in a more 

robust manner through enhanced module configuration would fall under this category. 



 
 
 
 
 

189 
 

Investigative options may be improved by real-time service negotiations and dispute 

resolution in a multi-tenancy cloud environment. There is a sincere desire to engage 

with various service deployments utilizing alternative frameworks in order to 

understand the limitations of our architectural design. Extending our study into the 

enforcement of SLAs would also foresee several natural concerns that may propose 

protocol optimization in the future, empowering justice, privacy, security, autonomy, 

and trustworthiness. Our protocol may potentially be used with SOA frameworks like 

ITSM or other standards that provide assurance. 

Additionally, it would be crucial and inevitable to modify our proposed architecture in 

the future to conform to and incorporate cutting-edge security frameworks like COBIT, 

NIST, Security Orchestration Automation, and Response (SOAR), Cloud Controls 

Matrix, best practices, Blockchain, and AI-centric platforms. Such clauses will 

undoubtedly improve small and medium-sized enterprises' ability to gather and share 

trustworthy SLA metrics for the soundness of their forensics. They can also be easily 

incorporated into well-known forensics frameworks for the purpose of looking into 

potential cloud-based unresolved disputes in the event that participants do not agree to 

such automated arbitrations.[106] 

As part of the research into SLA-aware resource management in clouds, Metaheuristics 

may be contrasted with global search algorithms like Genetic algorithms. This may be 

used to examine how well algorithms scale in terms of time and memory as the number 

of decision variables and the size of the state space increase. Another aspect of 

automated SLA management is SLA implementation. By understanding resource 

utilization trends and making proactive adjustments to lessen the need for frequent 

consolidation, this enables the prevention of SLA breaches. Corrective measures are 

offered through root cause analysis (RCA) methodologies in the event of 

noncompliance.[107] 

 

 

 



 
 
 
 
 

190 
 

References: - 

 

[1] A. Fernandes, L. F. Soares, J. a. V. Gomes, M. M. Freire, and P. R. Inácio, 

“Security issues in cloud environments: A survey,” Int. J. Inf. Secur., vol. 13, 

no. 2, pp. 113–170, Apr. 2014. [Online]. Available: 

http://dx.doi.org/10.1007/s10207-013-0208-7. 

[2] A. Jansen, “Cloud hooks: Security and privacy issues in cloud computing,” in 

44th Hawaii International Conference on System Sciences (HICSS). IEEE, 

2011, pp. 1–10.  

[3] A. Silva, A. S. Ferreira, and P. L. Geus, “A methodology for management of 

cloud computing using security criteria,” in 1st Latin American Conference on 

Cloud Computing and Communications (LatinCloud). Porto Alegre, Brasil: 

IEEE, ”November” 2012, pp. 49–54. 

[4] A. Silva, A. S. Ferreira, and P. L. Geus, “A methodology for management of 

cloud computing using security criteria,” in 1st Latin American Conference on 

Cloud Computing and Communications (LatinCloud). Porto Alegre, Brasil: 

IEEE, ”November” 2012, pp. 49–54. 

[5] Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling Smart Cloud 

Services Through Remote Sensing: An Internet of Everything Enabler,” Internet 

of Things Journal, vol. 1, no. 3, pp. 276–288, 2014.  

[6] Adriana L´opez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly 

multiparty computation on the cloud via multikey fully homomorphic 

encryption. IACR Cryptology ePrint Archive, 2013:94, 2012.  

[7] Afshari, M. Mojahed, and R. M. Yusuff, ‘‘Simple additive weighting approach 

to personnel selection problem,’’ Int. J. Innov., Manage. Technol., vol. 1, no. 5, 

pp. 511–515, 2010.  

[8] Ahmed, L. Liu, B. Yuan, M. Trovati, and J. Hardy, ‘‘Context-aware service 

discovery and selection in decentralized environments,’’ in Proc. IEEE Int. 



 
 
 
 
 

191 
 

Conf. Comput. Inf. Technol., Ubiquitous Comput. Commun., Dependable, 

Autonomic Secure Comput., Pervasive Intell. Comput., Oct. 2015, pp. 2224–

2231 

[9] Ajay D Kshemkalyani and Mukesh Singhal. Distributed computing: principles, 

algorithms, and systems. Cambridge University Press, 2011.  

[10] Al-Aqrabi, ‘‘Cloud BI: A multi-party authentication framework for securing 

business intelligence on the cloud,’’ Ph.D. dissertation, 2016 

[11] Alhamad, M., Dillon, T., & Chang, E. (2010, September). Sla-based trust model 

for cloud computing. In 2010 13th international conference on network-based 

information systems (pp. 321-324). IEEE. 

[12] Al-hamideh, Wijdan. (2022). Evaluation of SLA Quality of Service in Cloud 

Computing Environment. 

[13] Andrzejak, A., Kondo, D., & Yi, S. (2010, August). Decision model for cloud 

computing under SLA constraints. In 2010 IEEE International Symposium on 

Modeling, Analysis and Simulation of Computer and Telecommunication 

Systems (pp. 257-266). IEEE. 

[14] Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer 

networks, vol. 54, no. 15, pp. 2787–2805, 2010.  

[15] Awad, S. Kadry, B. Lee, and S. Zhang, ‘‘Property based attestation for a secure 

cloud monitoring system,’’ in Proc. EEE/ACM 7th Int. Conf. Utility Cloud 

Comput., Dec. 2014, pp. 934–940 

[16] Baarslag, K. Fujita, E. H. Gerding, K. Hindriks, T. Ito, N. R. Jennings, C. 

Jonker, S. Kraus, R. Lin, V. Robu, and C. R. Williams. Evaluating practical 

negotiating agents: Results and analysis of the 2011 international competition. 

Artificial Intelligence, vol. 198, pp. 73-103, May 2013.  

[17] Bacon, D. Eyers, T. Pasquier, J. Singh, I. Papagiannis, and P. Pietzuch, 

“Information Flow Control for Secure Cloud Computing,” IEEE TNSM SI 

Cloud Service Management, vol. 11, no. 1, pp. 76–89, 2014.  



 
 
 
 
 

192 
 

[18] Bacon, J. Singh, D. Trossen, D.Pavel, A. B. N.Vastardis, K. Yang, S. 

Pennington, S. Clarke, and G.Jones, “Personal and social communication 

services for health and lifestyle monitoring,” in Proc. 1st International 

Conference on Global Health Challenges (Global Health 2012), with IARIA 

DataSys 2012, Venice, Italy, 2012 

[19] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, 

R., Pratt, I., and Warfield, A. (2003). Xen and the Art of Virtualization. 

Technical Report, University of Cambridge. Available online at: 

www.cl.cam.ac.uk/research/srg/netos/papers/2003-xensosp.pdf  

[20] Baset, Salman. (2012). Cloud SLAs: present and future. Operating Systems 

Review - SIGOPS. 46. 10.1145/2331576.2331586. 

[21] Bhattacherjee, B., Abe, N., Goldman, K., Zadrozny, B., Chillakuru, V. R., Del 

Caprio, M., and Apte, C. (2006). Using Secure Coprocessors for Privacy 

Preserving Collaborative Data Mining and Analysis. In 

[22] Binu, V. & Gangadhar, Nandyala. (2014). A Cloud Computing Service Level 

Agreement Framework with Negotiation and Secure Monitoring. 2014 IEEE 

International Conference on Cloud Computing in Emerging Markets, CCEM 

2014. 10.1109/CCEM.2014.7015474. 

[23] Blasi, Lorenzo &Brataas, Gunnar & Boniface, Michael & Butler, Joe 

&D’Andria, Francesco & Drescher, Michel & Jimenez, Ricardo &Krogmann, 

Klaus &Kousiouris, George & Koller, Bastian &Landi, Giada & Matera, 

Francesco &Menychtas, Andreas &Oberle, Karsten& Phillips, Stephen & Rea, 

Luca & Romano, Paolo & Symonds, Michael & Ziegler, Wolfgang. (2013). 

Cloud Computing Service Level Agreements -- Exploitation of Research 

Results. 

[24] Boneh, D., and Waters, B. (2007). Conjunctive, Subset, and Range Queries on 

Encrypted Data. In Proceedings of the 4th Conference on Theory of 

Cryptography (TCC’07), pp. 53-534.  



 
 
 
 
 

193 
 

[25] Botta, W. De Donato, V. Persico, and A. Pescapé, ‘‘On the integration of cloud 

computing and Internet of Things,’’ in Proc. Int. Conf. Future Internet Things 

Cloud (FiCloud), Aug. 2014, pp. 23–30 

[26] Brandic, I., Music, D., Leitner, P., Dustdar, S. (2009). VieSLAF Framework: 

Enabling Adaptive and Versatile SLA-Management. In Proceedings of the 6th 

International Workshop on Grid Economics and Business Models 

(GECON’09), pp. 60-73, August 25-28, 2009, Delft, The Netherlands.  

[27] Bresson, O. Chevassut, D. Pointcheval, and J. J. Quisquater, ‘‘Provably 

authenticated group Diffie-Hellman key exchange,’’ in Proc. 8th ACM Conf. 

Comput. Commun. Secur., Nov. 2001, pp. 255–264.  

[28] Buyya, C. S. Yeo, and S. Venugopal, ‘‘Market-oriented cloud computing: 

Vision, hype, and reality for delivering it services as computing utilities,’’ in 

Proc. 10th IEEE Int. Conf. High Perform. Comput. Commun., Vancouver, BC, 

Canada, Sep. 2008, p. 1.  

[29] Buyya, R., Garg, S. K., & Calheiros, R. N. (2011, December). SLA-oriented 

resource provisioning for cloud computing: Challenges, architecture, and 

solutions. In 2011 international conference on cloud and service computing (pp. 

1-10). IEEE. 

[30] Carlos Muller, Marc Oriol, Xavier Franch, Jordi Marco, Manuel Resinas, 

Antonio Ruiz-Cortes, and Marc Rodriguez. Comprehensive explanation of sla 

violations at runtime. IEEE Transactions on Services Computing, 7(2): 168–

183, 2014. URL http://idus.us.es/xmlui/bitstream/handle/ 

11441/24591/file_1.pdf?sequence=1&isAllowed=y 

[31] Cavalcante et al., ‘‘On the interplay of Internet of Things and cloud computing: 

A systematic mapping study,’’ Comput. Commun., vols. 89–90, pp. 17–33, Sep. 

2016.  

[32] Cavoukian, A. (2008). Privacy in the Clouds: A White Paper on Privacy and 

Digital Identity: Implications for the Internet. Available online at: 

http://www.ipc.on.ca/images/resources/privacyintheclouds.pdf.  



 
 
 
 
 

194 
 

[33] Celesti, F. Tusa, M. Villari, and A. Puliafito, ‘‘How to enhance cloud 

architectures to enable cross-federation,’’ in Proc. IEEE 3rd Int. Conf. Cloud 

Comput., Jul. 2010, pp. 337–345.  

[34] Celesti, F. Tusa, M. Villari, and A. Puliafito, ‘‘Security and cloud computing: 

Intercloud identity management infrastructure,’’ in Proc. 19th IEEE Int. 

Workshops Enabling Technol., Infrastruct. Collaborative Enterprises 

(WETICE), Jun. 2010, pp. 263–265.  

[35] Celesti, F. Tusa, M. Villari, and A. Puliafito, ‘‘Three-phase cross-cloud 

federation model: The cloud SSO authentication,’’ in Proc. 2nd Int. Conf. Adv. 

Future Internet (AFIN), Jul. 2010, pp. 94–101 

[36] Celesti, M. Fazio, M. Giacobbe, A. Puliafito, and M. Villari, ‘‘Characterizing 

cloud federation in IoT,’’ in Proc. 30th Int. Conf. Adv. Inf. Netw. Appl. 

Workshops (WAINA), Mar. 2016, pp. 93–98.  

[37] Chappel, D. (2008). Introducing the Azure Services Platform. Available online 

at: http://download.microsoft.com 

[38] Charlotte Kotas, Thomas Naughton, and Neena Imam. A comparison of amazon 

web services and microsoft azure cloud platforms for high performance 

computing. In 2018 IEEE International Conference on Consumer Electronics 

(ICCE), pages 1–4. IEEE, 2018.  

[39] Chong, F., Carraro, G., and Wolter, R. (2006). Multi-Tenant Data Architecture. 

Available online at: http://msdn.microsoft.com/en-us/library/aa479086.aspx.  

[40] Cloud Computing Security: Making Virtual Machines Cloud Ready. Available 

online at: http://www.techrepublic.com/whitepapers/cloud-computing-

security-making-virtual-machines-cloudready/1728295 

[41] Conte de Leon, Daniel & Bhandari, Venkata &Jillepalli, Ananth & Sheldon, 

F.T.. (2016). Using a Knowledge-based Security Orchestration Tool to Reduce 

the Risk of Browser Compromise. 10.1109/SSCI.2016.7849910. 



 
 
 
 
 

195 
 

[42] Creeger, M. (2009). Cloud Computing: An Overview. ACM Queue- Distributed 

Computing, Vol 7, Issue 5, p. 2, June 2009. New York: ACM Press.  

[43] Csaplar, “Who is adopting the public cloud faster ? north america or europe ?” 

Aberdeen Group,Tech.Rep.,July 2013. [Online].       

Available:http://www.aberdeen.com/AberdeenLibrary/8565/AI-public-

cloudadoption. 

[44] D. Petcu, ‘‘Multi-Cloud: Expectations and current approaches,’’ in Proc. Int. 

Workshop Multi-Cloud Appl. Federated Clouds, Apr. 2013, pp. 1–6. 

[45] Dadhich, Manish & Rao, Shalendra&Sethy, Surendra & Sharma, Renu. (2021). 

Determining the Factors Influencing Cloud Computing Implementation in 

Library Management System (LMS): A High Order PLS-ANN Approach. 

Library Philosophy and Practice. 2021. 

[46] De Marco, Lucia &Ferrucci, Filomena &Kechadi, Tahar. (2015). SLAFM: A 

Service Level Agreement Formal Model for Cloud Computing. 

10.5220/0005451805210528. 

[47] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., 

Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. (2007). Dynamo: 

Amazon’s Highly Available Key-Value Store. In Proceedings of the 21st ACM 

SIGOPS Symposium on Operating Systems Principles (SOSP’07), pp. 205- 

220, Stevenson, WA, USA, October 2007.  

[48] Desisto, R. P., Plummer, D. C., and Smith, D. M. (2008). Tutorial for 

Understanding the Relationship between Cloud Computing and SaaS. Stamford, 

CT: Gartner, April 2008.  

[49] Dhanjani, “Hacking Lightbulbs: Security Evaluation of the Philips hue Personal 

Wireless Lighting System,” 2013, accessed: 28th July 2015. [Online]. 

Available: http://www.dhanjani.com/docs/ 

Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf  



 
 
 
 
 

196 
 

[50] E. D. Nitto, M. D. Penta, A. Gambi, G. Ripa, and M. L. Villani. Negotiation of 

service level agreements: An architecture and a search-based approach. 

Springer Berlin Heidelberg, pp. 295-306, 2007 

[51] E. P. Leverett, “Quantitatively Assessing and Visualising Industrial System 

Attack Surfaces,” University of Cambridge, MPhil., 2011 

[52] Emeakaroha, V. C., Brandic, I., Maurer, M., & Dustdar, S. (2013). Cloud 

resource provisioning and SLA enforcement via LoM2HiS 

framework. Concurrency and Computation: Practice and Experience, 25(10), 

1462-1481. 

[53]  Emeakaroha, V., Calheiros, R. N., Netto, M. A. S., Brandic, I., & De Rose, C. 

A. F. (2010). DeSVi: an architecture for detecting SLA violations in cloud 

computing infrastructures. In Proceedings of the 2nd International ICST 

Conference on Cloud Computing (CloudComp 2010), 2010, Espanha.. 

[54] Emig, C., Brandt, F., Kreuzer, S., and Abeck, S. (2007). Identity as a Service- 

Towards a ServiceOriented Identity Management Architecture. In Proceedings 

of the 13th Open European Summer School and IFIP TC6.6 Conference on 

Dependable and Adaptable Network and Services (EUNICE’07), pp. 1-8, July 

2007, Twente, The Netherlands.  

[55] Everett, C. (2009). Cloud Computing- A Question of Trust. Computer Fraud & 

Security, Vol 2009, Issue 6, pp. 5-7 June 2010. 

[56] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier, ‘‘A federated 

multi-cloud PaaS infrastructure,’’ in Proc. IEEE 5th Int. Conf. Cloud Comput., 

Jun. 2012, pp. 392–399 

[57] García, A. G., Espert, I. B., & García, V. H. (2014). SLA-driven dynamic cloud 

resource management. Future Generation Computer Systems, 31, 1-11. 

[58] Garg, Radhika & Stiller, Burkhard. (2015). Factors Affecting Cloud Adoption 

and Their Interrelations. 10.5220/0005412300870094. 



 
 
 
 
 

197 
 

[59] Gellman, R. (2009). Privacy in the Clouds: Risks to Privacy and Confidentiality 

from Cloud Computing. World Privacy Forum (WPF) REPORT, February 23, 

2009. Available online at: 

http://www.worldprivacyforum.org/cloudprivacy.html (Accessed on: January 

23, 2013).  

[60] Golden, B. (2009). Capex vs. Opex: Most People Miss the Point about Cloud 

Economics.URL:http://www.cio.com/article/484429/Capex_vs._Opex_Most_

People_Miss_the_point_About_Cloud_Econ omic.  

[61] H. Zulkernine and P. Martin. An adaptive and intelligent SLA negotiation 

system for web services. IEEE Transactions on Services Computing, vol. 4, pp. 

31-43, January 2011.  

[62] Hassan, Wajid & Chou, Te-Shun & Li, Xiaoming& Appiah-Kubi, Patrick & 

Omar, Tamer. (2019). Latest trends, challenges and Solutions in Security in the 

era of Cloud Computing and Software Defined Networks. International Journal 

of Informatics and Communication Technology (IJ-ICT). 8. 162-183. 

10.11591/ijict.v8i3.pp162-183. 

[63] Heritage, T. (2009). Hosted Informatics: Bringing Cloud Computing Down to 

Earth with Bottom-Line Benefits for Pharma. Next Generation Pharmaceutical, 

Issue 17, October 2009.  

[64] Huang, A. Ganjali, B. H. Kim, S. Oh, and D. Lie, “The state of public 

infrastructure-as-a-service cloud security,” ACM Comput. Surv., vol. 47, no. 4, 

pp. 68:1–68:31, Jun. 2015. [Online]. Available: 

http://doi.acm.org/10.1145/2767181. 

[65] Islam, Chadni& Ali Babar, Muhammad & Nepal, Surya. (2019). A Multi-Vocal 

Review of Security Orchestration. ACM Computing Surveys. 52. 1-45. 

10.1145/3305268. 

[66] Islam, Chadni& Ali Babar, Muhammad & Nepal, Surya. (2020). Architecture-

centric Support for Integrating Security Tools in a Security Orchestration 

Platform. 



 
 
 
 
 

198 
 

[67] Islam, Chadni. (2020). A Multi-Vocal Review of Security Orchestration. 

10.1145/3305268". 

[68] Itani, W., Kayssi, A., and Chehab, A. (2009). Privacy as a Service: Privacy-

Aware Data Storage and Processing in Cloud Computing Architectures. In 

Proceedings of the 8th IEEE International Conference on Dependable, 

Automatic and Secure Computing (DASC’09), pp. 711-716, Chengdu, China, 

December 2009. 

[69] J. Anderson, Security Engineering: A Guide to Building Dependable 

Distributed Systems, 2nd ed. Wiley Publishing, 2008.  

[70] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things (IoT): 

A vision, architectural elements, and future directions,’’ Future Gener. Comput. 

Syst., vol. 29, no. 7, pp. 1645–1660, 2013.  

[71] J. L. Garcia, H. Ghani, D. Germanus, and N. Suri, “A security metrics 

framework for the cloud.” in SECRYPT, J. Lopez and P. Samarati, 

Eds.SciTePress, 2011, pp. 245–250. [Online]. Available: 

http://dblp.unitrier.de/db/conf/secrypt/secrypt2011.html#LunaGGS11 

[72] J. Luna, H. Ghani, T. Vateva, and N. Suri, “Quantitative assessment of cloud 

security level agreements - a case study,” in In Proceedings of the International 

Conference on Security and Cryptography, ser. SECRYPT 2012. SciTePress, 

2012, pp. 64–73. 

[73] J. Luna, R. Langenberg, and N. Suri, “Benchmarking cloud security level 

agreements using quantitative policy trees,” in Proceedings of the 2012 ACM 

Workshop on Cloud Computing Security Workshop, ser.CCSW ’12. New York, 

NY, USA: ACM, 2012, pp. 103–112. Available: 

http://doi.acm.org/10.1145/2381913.2381932. 

[74] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A Gap Analysis of Internet-

of-Things Platforms,” 2015, Arxiv, arXiv:1502.01181. [Online]. Available: 

http://arxiv.org/abs/1502.01181  



 
 
 
 
 

199 
 

[75] J. Singh and J. Bacon, “On Middleware for Emerging Health Services,” Journal 

of Internet Services and Applications, vol. 5, no. 6, pp. 1–34, 2014 

[76] J. Singh, J. Bacon, J. Crowcroft, A. Madhavapeddy, T. Pasquier, W. K. Hon, 

and C. Millard, “Regional Clouds: Technical Considerations,” University of 

Cambridge, Tech. Rep. UCAM-CL-TR-863, 2014, accessed: 28th July 2015. 

[Online]. Available: http://www.cl.cam.ac. uk/techreports/UCAM-CL-TR-

863.pdf  

[77] J. Xu, D. Zhang, L. Liu, and X. Li, ‘‘Dynamic authentication for crossrealm 

SOA-based business processes,’’ IEEE Trans. Services Comput., vol. 5, no. 1, 

pp. 20–32, Jan./Mar. 2012.  

[78] J.-M. Bohli, N. Gruschka, M. Jensen, L. L. Iacono, and N. Marnau, ‘‘Security 

and privacy-enhancing multicloud architectures,’’ IEEE Trans. Dependable 

Secure Comput., vol. 10, no. 4, pp. 212–224, Jul./Aug. 2013.  

[79] Jegou, Y., Harsh, P., Cascella, R. G., Dudouet, F., & Morin, C. (2012, October). 

Managing OVF applications under SLA constraints on contrail virtual 

execution platform. In 2012 8th international conference on network and service 

management (cnsm) and 2012 workshop on systems virtualiztion management 

(svm) (pp. 399-405). IEEE. 

[80] Kanagasabapathi, Kaaviyan& Deepak, S. & Prakash, Parvathy. (2016). A Study 

on Security Issues in Cloud Computing. 10.1007/978-81-322-2674-1_17. 

[81] Khan, Fiaz. (2016). Service Level Agreement in Cloud Computing: A Survey. 

International Journal of Computer Science and Information Security (IJCSIS). 

14. 324-330. 

[82] Kozlov, J. Veijalainen, and Y. Ali, “Security and privacy threats in IoT 

architectures,” in Proc. 7th International Conference on Body Area Networks 

(BodyNets). ICST, 2012, pp. 256–262.  



 
 
 
 
 

200 
 

[83] Leitner, J. Ferner, W. Hummer, and S. Dustdar, ‘‘Data-driven and automated 

prediction of service level agreement violations in service compositions,’’ 

Distrib. Parallel Databases, vol. 31, no. 3, pp. 447–470, Sep. 2013.  

[84] Lesjak, T. Ruprechter, J. Haid, H. Bock, and E. Brenner, “A Secure Hardware 

Module and System Concept for Local and Remote Industrial Embedded 

System Identification,” in Emerging Technology and Factory Automation 

(ETFA). IEEE, 2014, pp. 1–7 

[85] Liu et al., NIST Cloud Computing Reference Architecture, vol. 500, no. 2011. 

Gaithersburg, MD, USA: NIST, 2011, pp. 1–28.  

[86] Luna Garcia, J., Langenberg, R., & Suri, N. (2012, October). Benchmarking 

cloud security level agreements using quantitative policy trees. In Proceedings 

of the 2012 ACM Workshop on Cloud computing security workshop (pp. 103-

112). 

[87] M. Chhetri, J. Lin, S. Goh, J. Yan, J. Zhang, and R. Kowalczyk. A coordinated 

architecture for the agent-based service level agreement negotiation of web 

service composition. In Australian Software Engineering Conference, 2006.  

[88] M. Hutter and R. Toegl, “A Trusted Platform Module for Near Field 

Communication,” in International Conference on Systems and Networks 

Communications (ICSNC). IEEE, 2010, pp. 136–141.  

[89] M. Kazim and S. Y. Zhu, ‘‘Virtualization security in cloud computing,’’ in 

Guide to Security Assurance for Cloud Computing. Springer, 2015 

[90] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic from the 

firmware to the cloud: Towards the thin server architecture for the Internet of 

Things,” in Proc. 6th International Conference on Innovative Mobile and 

Internet Services in Ubiquitous Computing (IMIS). IEEE, 2012, pp. 751–756.  

[91] M. Rak, N. Suri, J. Luna, D. Petcu, V. Casola, and U. Villano, ‘‘Security as a 

service using an SLA-based approach via SPECS,’’ in Proc. IEEE 5th Int. Conf. 

Cloud Comput. Technol. Sci. (CloudCom), Vol. 2, Dec. 2013, pp. 1–6 



 
 
 
 
 

201 
 

[92] M. University, “Service measurement index,” CMU, Moffett Field, CA, United 

States, Tech. Rep., 2011. 

[93] M. Weiser, “Ubiquitous computing,” Computer, vol. 26, no. 10, pp. 71–72, 

1993.  

[94] Mario Mac´ıas and Jordi Guitart. Sla negotiation and enforcement policies for 

revenue maximization and client classification in cloud providers. Future 

Generation Computer Systems, 41:19–31, 2014. 

[95] McGrew and E. Rescorla, “Datagram Transport Layer Security (DTLS) 

Extension to Establish Keys for the Secure Real-time Transport Protocol 

(SRTP),” IETF, 2010. 

[96] Mell and T. Grance, “The nist definition of cloud computing,” National Institute 

of Standards and Technology (NIST), Tech. Rep. 800-145, September 2011. 

[Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf. 

[97] Mganga, R. P., & Charles, M. (2011). Enhancing Information Security in Cloud 

Computing Services using SLA Based Metrics. 

[98] Mr. Praveen Kaushik Ms. Shaheen Ayyub. An analysis of security attacks on 

cloud wrtsaas. International Journal of Advancements in Research & 

Technology, Volume 4, Issue, February 2015.  

[99] Mubeen, Saad &Abbaspour, Sara & Papadopoulos, Alessandro &Ashjaei, 

Mohammad & Pei Breivold, Hongyu& Behnam, Moris. (2017). Management 

of Service Level Agreements for Cloud Services in IoT: A Systematic Mapping 

Study. IEEE Access. PP. 1-1. 10.1109/ACCESS.2017.2744677. 

[100] Muhammad Faheem Mushtaq, Sapiee Jamel, Abdulkadir Hassan Disina, 

Zahraddeen A Pindar, N Shafinaz Ahmad Shakir, and Mustafa Mat Deris. A 

survey on the cryptographic encryption algorithms. International Journal of 

Advanced Computer Science and Applications, 8(11):333–344, 2017. 



 
 
 
 
 

202 
 

[101] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, ‘‘Towards model-

driven provisioning, deployment, monitoring, and adaptation of multi-cloud 

systems,’’ in Proc. IEEE 6th Int. Conf. Cloud Comput., Jun./Jul. 2017, pp. 887–

894. [ 

[102] N. M. Gonzalez, C. Miers, F. F. Redigolo, T. C. M. B. Carvalho, M. A. S. Jr., 

M. Nslund, and M. Pourzandi, “A quantitative analysis of current security 

concerns and solutions for cloud computing.” Journal of Cloud Computing: 

Advances, Systems and Applications, vol. 11, no. 1, pp. 1– 18, 2012. 

[103] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, ‘‘Policy-sealed data: 

A new abstraction for building trusted cloud services,’’ in Proc. USENIX Secur. 

Symp., Aug. 2012 

[104] Nie, Guihua& E., Xueni& Chen, Donglin. (2012). Research on Service Level 

Agreement in Cloud Computing. 10.1007/978-3-642-28744-2_5. 

[105] P. Middleton, P. Kjeldsen, and J. Tully, Forecast: The Internet of Things, 

Worldwide. Gartner, 2013.  

[106] P. Ohm, “Broken Promises of Privacy: Responding to the Surprising Failure of 

Anonymization,” UCLA Law Review, vol. 57, no. 6, pp. 1701– 1777, Aug. 

2010.  

[107] Paladi, N., Michalas, A., & Dang, H. V. (2018, April). Towards secure cloud 

orchestration for multi-cloud deployments. In Proceedings of the 5th Workshop 

on CrossCloud Infrastructures & Platforms (pp. 1-6). 

[108] Pandey, P. (2021). Security attacks in cloud computing. 

[109] Petry, A. (2007). Design and Implementation of a Xen-Based Execution 

Environment. Diploma Thesis, TechnischeUniversitat Kaiserslautern, April 

2007.  

[110] Phil Muncaster. Global e-commerce fraud to top usd25bn by 2024. UK / EMEA 

News Reporter ,Infosecurity Magazine. URL https://www.infosecurity-

magazine.com/news/ global-ecommerce-fraud-to-top-25/.  



 
 
 
 
 

203 
 

[111] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and SchahramDustdar. 

Monitoring, prediction and prevention of sla violations in composite services. 

In IEEE Web Services (ICWS) 2010, pages 369–376. IEEE.  

[112] Prakash Kuppuswamy, Rajan John, et al. A novel approach of designing e-

commerce authentication scheme using hybrid cryptography based on simple 

symmetric key and extended linear block cipher algorithm. In 2020 

International Conference on Computing and Information Technology (ICCIT-

1441), pages 1–6. IEEE, 2020.  

[113] Price, M. (2008). The Paradox of Security in Virtual Environments. IEEE 

Computer, Vol 41, Issue 11, pp. 22-38, November 2008. 

[114] Qazi, F. (2020). Automating SLA Enforcement in the Cloud 

Computing (Doctoral dissertation, University of Warwick). 

[115] R. Lin, S. Kraus, T. Baarslag, D. Tykhonov, K. Hindriks, and C. M. Jonker. 

GENIUS : An integrated environment for supporting the design of generic 

automated negotiators. Computational Intelligence, vol. 30, no. 1, pp. 48-70, 

2014.  

[116] R. M. Savola and H. Abie, “Metrics-driven Security Objective Decomposition 

for an e-Health Application with Adaptive Security Management,” in 

International Workshop on Adaptive Security. ACM, 2013, p. 6. 

[117] Raiffa. The Art and Science of Negotiation. Harvard University Press, 1982. 

[118] Ravele, K. J., & Mtotywa, M. (2022). Factors influencing quality and 

performance of cloud computing platforms defined by personal users in South 

Africa. International Journal of Research in Business and Social Science (2147-

4478), 11(7), 78-91.  

[119] Ravele, Khathutshelo&Mtotywa, Matolwandile. (2022). Factors influencing 

quality and performance of cloud computing platforms defined by personal 

users in South Africa. International Journal of Research in Business and Social 

Science (2147- 4478). 11. 78-91. 10.20525/ijrbs.v11i7.2027. 



 
 
 
 
 

204 
 

[120] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. Santos, and A. 

Shraer, “Verifying cloud services: Present and future,” SIGOPS Operating 

Systems Review, vol. 47, no. 2, pp. 6–19, July 2013. [Online]. Available: 

http://doi.acm.org/10.1145/2506164.2506167. 

[121] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. Santos, and A. 

Shraer, “Verifying cloud services: Present and future,” SIGOPS Operating 

Systems Review, vol. 47, no. 2, pp. 6–19, July 2013. [Online]. Available: 

http://doi.acm.org/10.1145/2506164.2506167. 

[122] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. Santos, and A. 

Shraer, ‘‘Verifying cloud services: Present and future,’’ACM SIGOPS 

Operating Systems Review, 2013 

[123] S. Ferreira, “Uma arquitetura para monitoramento de 

segurançabaseadaemacordos de níveis de serviço para nuvens de 

infraestrutura,” Dissertação de Mestrado, Instituto de Computação, 

UniversidadeEstadual de Campinas, UNICAMP, 2013. 

[124] S. Jankowski, J. Covello, H. Bellini, J. Ritchie, and D. Costa, The Internet of 

Things: Making sense of the next mega-trend. Goldman Sachs, 2014 

[125] S. L. Keoh, S. Kumar, and H. Tschofenig, “Securing the Internet of Things: A 

Standardization Perspective,” Internet of Things Journal, vol. 1, no. 3, pp. 265–

275, 2014. [20] P. Urien, “LLCPS: A new security framework based on TLS 

for NFC P2P applications in the Internet of Things,” in Consumer 

Communications and Networking Conference (CCNC), 2013 IEEE. IEEE, 

2013, pp. 845–846.  

[126] S. Pearson, ‘‘Privacy, security and trust in cloud computing,’’ in Privacy and 

Security for Cloud Computing. London, U.K.: Springer, 2013, pp. 3–42 

[127] Sahal, Radhya&Khafagy, Mohamed &Omara, Fatma. (2016). A Survey on SLA 

Management for Cloud Computing and Cloud-Hosted Big Data Analytic 

Applications. International Journal of Database Theory and Application. 9. 107-

118. 10.14257/ijdta.2016.9.4.10. 



 
 
 
 
 

205 
 

[128] SAML. Accessed: Aug. 26, 2018. [Online]. Available: https://developers. 

onelogin.com/saml [16] Kerberos. Accessed: Jul. 16, 2018. [Online]. Available: 

http://web.mit. edu/kerberos/ 

[129] Sayginer, C., & Ercan, T. (2020). Understanding determinants of cloud 

computing adoption using an integrated diffusion of innovation (doi)-

technological, organizational and environmental (toe) model. Humanities & 

Social Sciences Reviews, 8(1), 91-102. 

[130] Sayginer, Can &Ercan, Tuncay. (2020). Critical Factors Affecting Cloud 

Computing Adoption In Turkish Companies With Diffusion Of Innovation 

Theory. Pamukkale University Journal of Social Sciences Institute. 

10.30794/pausbed.750829. 

[131] Sen, Jaydip. (2013). Security and Privacy Issues in Cloud Computing. 

10.4018/978-1-4666-4514-1.ch001. 

[132] Senarathna, Ishan & Wilkin, Carla & Warren, Matthew & Yeoh, William & 

Salzman, Scott. (2018). Factors That Influence Adoption of Cloud Computing: 

An Empirical Study of Australian SMEs. Australasian Journal of Information 

Systems. 22. 10.3127/ajis.v22i0.1603. 

[133] Skafi, M. & Yunis, Manal &Zekri, Ahmed. (2019). Factors Affecting Cloud 

Computing Adoption: A Literature Review Synthesis And Analysis. 

[134] Snehal Mumbaikar, Puja Padiya, et al. Web services based on soap and rest 

principles. International Journal of Scientific and Research Publications, 

3(5):1–4, 2013.  

[135] Stankov, I. &Datsenka, Rastsislau&Kurbel, K.. (2012). Service level agreement 

as an instrument to enhance trust in cloud computing - An analysis of 

infrastructureas-a-service providers. 18th Americas Conference on Information 

Systems 2012, AMCIS 2012. 5. 3813-3822. 

[136] T. Baarslag, K. Hindriks, and C. Jonker. Effective acceptance conditions in real-

time automated negotiation. Decision Support Systems, 2013.  



 
 
 
 
 

206 
 

[137] T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, and R. Lin. The first automated 

negotiating agents competition (ANAC 2010). New Trends in AgentBased 

Complex Automated Negotiations, pp. 113-135, Springer, 2010.  

[138] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” IETF, Tech. Rep., 

1999 

[139] T. Morris, “Trusted Platform Module,” in Encyclopedia of Cryptography and 

Security. Springer, 2011, pp. 1332–1335.  

[140] Takabi, Daniel & Joshi, James &Ahn, Gail-Joon. (2011). Security and Privacy 

Challenges in Cloud Computing Environments. Security & Privacy, IEEE. 8. 

24 - 31. 10.1109/MSP.2010.186. 

[141] TU Delft. GENIUS platform. http://ii.tudelft.nl/genius. Accessed: [21/11/2015].  

[142] Ullah, K. W. (2012). Automated security compliance tool for the 

cloud (Master's thesis). 

[143] Varsha R Mouli and KP Jevitha. Web services attacks and security-a systematic 

literature review. Procedia Computer Science, 93:870–877, 2016 

[144] W. Ulla, “Automated security compliance tool for the cloud,” Master, 

Department of  Telematics, Norwegian University of Science and Technology, 

NTNU, 2012. 

[145] Wan Mohd Isa, Wan Abdul Rahim &Suhaimi, Ahmad Iqbal Hakim &Noordin, 

Nurulhuda& Harun, Afdallyna& Ismail, Juhaida&Teh, Rosshidayu. (2020). 

Factors influencing cloud computing adoption in higher education institution. 

Indonesian Journal of Electrical Engineering and Computer Science. 17. 412. 

10.11591/ijeecs.v17.i1.pp412-419. 

[146] Wenjing Lou and Yuguang Fang. A survey of wireless security in mobile ad 

hoc networks: challenges and available solutions. In Ad Hoc Wireless 

Networking, pages 319–364. Springer, 2004 



 
 
 
 
 

207 
 

[147] Yaqub, E., Yahyapour, R., Wieder, P., & Lu, K. (2012). A protocol 

development framework for SLA negotiations in cloud and service computing. 

In Economics of Grids, Clouds, Systems, and Services: 9th International 

Conference, GECON 2012, Berlin, Germany, November 27-28, 2012. 

Proceedings 9 (pp. 1-15). Springer Berlin Heidelberg. 

[148]  Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. 

Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson, “The Matter of 

Heartbleed,” in Proc. Internet Measurement Conference (IMC). ACM, 2014, 

pp. 475–488 

[149] Zanella, “Internet of Things for Smart Cities,” IEEE Internet of Things, vol. 1, 

no. 1, 2014 

 

 

  


