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ABSTRACT 

The biggest cause of mortality worldwide is cardiovascular 

disorder, therefore cardiovascular fitness of the human heart has been a 

fascinating topic for decades. The electrocardiogram (ECG) signal is a 

comprehensive non-invasive method for determining cardiac health. 

Various health practitioners use the ECG signal to ascertain critical 

information about the human heart. A non-stationary biological signal 

electrocardiogram (ECG) helps us to diagnose heart problems. Because 

the artefacts that contaminate the data have similar frequency 

characteristics to the signal itself, reducing noise in electrocardiography 

signals is a critical and significant challenge. Filtering approaches, for 

example, were shown to be ineffective in removing these interferences. 

As a result, in order to achieve adequate noise-removal performance, 

electrocardiography signals require a novel and efficient denoising 

approach. 

For denoising ECG signals, wavelet techniques including 

DWT and EWT are hybridized together via machine learning methods. 

The suggested technique is assessed on ECG data gathered from MIT-
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BIH Database, which included artefacts including baseline wander and 

muscle contraction noise. The algorithm's efficacy on a range of signal 

kinds is determined by calculating parameters. The findings suggest the 

recommended denoising method is simple for designing and are used in 

electrocardiography data. 

The noisy ECG signal is denoised in this study using the 

suggested adaptive switching mean filter (ASMF) and discrete wavelet 

transform (DWT) optimized with the Enhanced African Vulture 

Optimization (AVO) method. Prior to adding white Gaussian noise, the 

input ECG signals are first extracted from the MIT-BIH ARR dataset. 

Then the corrupted ECG signals are denoised by DWT from which the 

threshold is optimized by an Enhanced African Vulture Optimization 

(AVO) algorithm to obtain the optimum threshold. The AVO algorithm 

is enhanced by Whale Optimization Algorithm (WOA). Additionally, 

ASMF is tuned by the Enhanced AVO algorithm. The tests are done in 

the MIT-BIH dataset and the proposed filter built using the EAVO 

algorithm, attains a significant enhancement in reliable parameters, 

according to the testing results in terms of SNR, mean difference (MD), 
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peak reconstruction error (PRE), mean square error (MSE), normalized 

root mean squared error (NRMSE), maximum error (ME), and 

normalized root mean error (NRME) with existing algorithms namely, 

PSO, AOA, MVO, etc.   

Keywords: ECG signal denoising, discrete wavelet transform, African 

Vulture optimization, whale optimization, adaptive switching mean filter, 

and MIT-BIH dataset.  
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CHAPTER 1 

INTRODUCTION 

1.1 Electrocardiograms  

  Electrocardiograms (ECGs) have been widely utilized to store 

the electrical impulses of the heart from 1901, thanks to William 

Einthoven's invention [1]. The medical community has been able to 

detect and diagnose heart abnormalities like cardiac arrhythmias, 

myocardial infarction, and heart failure with greater accuracy. 

Biomedical signals are produced by physiological processes within the 

organism. Signals may be produced by every living thing, from gene and 

protein sequences to brain and cardiac rhythms. These signals might be 

studied or tracked in order to understand certain elements of a 

physiologic system. The cardiac signal, or ECG, is the most frequent 

signal utilised by clinicians to evaluate heart irregularities in medical 

care. The ECG is a time-based image of cardiac electrical activity that is 

often used to diagnose heart problems. Based on the most current 

statistics of World Health Organization's, in all parts of the world, 

cardiovascular diseases remain the major cause of mortality [2]. 

The heart activity is represented by electrocardiography 

(ECG), which is primarily an electrical signal. It's presented as a graph. 

Electrodes (3 or 12 leads) are linked externally to the surface of the 
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thorax, legs, and hands to record the data. The potentials generated by 

cardiovascular muscle action are plotted on the ECG. Physicians utilize it 

widely to anticipate and treat a variety of cardiovascular disorders. The 

QRS complex, along with P, T, and U waves, each of which is associated 

with a particular occurrence that takes place within a single cardiac cycle, 

are just a few of the unique entities that may be seen on an ECG. The 

combination of these entities and knowledge of the ECG scale allows for 

the calculation of heart rate and the detection of rhythm disorders such as 

atrial fibrillation, atrial flutter, cardiac arrhythmia, sinus tachycardia, and 

sinus bradycardia, among other things. The axis deviation of the QRS 

complex, for example, is a symptom of ventricular hypertrophy, anterior 

and posterior fascicular block, and other disorders that can be detected by 

shape analysis. 

ECG equipment may now generate time series ECG data 

(amplitude and time) as well as the paper ECG record, which is 

frequently scanned and saved in digital format. Given that a significant 

proportion of paper ECG records have yet to be digitised, a variety of 

techniques have been proposed to efficiently convert paper ECG records 

into digitally recorded ECG signals. Electronic Medical Recordings 

(EMR) are increasingly being utilised to maintain patient information and 

digitally preserve ECG records [3]. Integrating EMR with digitised ECG 

signals might possibly aid in the collection of data needed for prediction 

algorithms. 
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The signal produced by the ECG is low amplitude voltage, and 

because of the numerous artefacts sources that might degrade it, the ECG 

signal recording should account for this. The most prevalent causes of 

ECG noise include equipment, power line interference, and biological 

systems surrounding the heart. Organic systems such as the heart are 

complex, and they are constantly influenced by other organic systems or 

subsystems in the environment. As a result, heart signals frequently 

include signals from other regions of the body, such as electromyography 

(EMG) signals. Removing unnecessary signal components from an ECG 

signal can lead to better signal interpretation. As a result, signal 

processing is employed to minimise noise in a wide range of ECG 

systems. 

1.2 ECG and Noise 

The ECG (electrocardiogram) displays the heart’s electrical 

movements as a series of electrical waves for each pulse as illustrated in 

Figure 1.1. The signals in the ECG is made up of five valleys and peaks 

denoted as T, R,Q, S, and P, that represent cardiac actions. Atrial 

depolarization represents the frequency P, the frequencies T are the three 

electrical entities that make up an ECG trace (ventricular repolarization) 

and ventricular depolarization represents the QRS complex. An ECG 

signal's normal frequency range is 0.05–50 Hz, with the wave P is 

situated among 0.67 and 5 Hz, the QRS complex is situated between 10 

and 50 Hz, and the wave T falling between 1 and 7 Hz. 
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Figure 1.1: Representation of a Pulse in ECG 

Various artefacts impact the ECG signal during capture and 

transmission. A multitude of noise sources can distort the ECG signal, 

which can be categorised based on their power spectral density (PSD). 

Electromyogram (EMG) artefacts, power line interference, and additive 

white Gaussian artefacts are samples of high-frequency artefacts with 

their major power spectral density located in larger frequencies according 

to the frequency spectrum of ECG. The low-frequency artefacts are 

baseline wandering which affects the signals of ECG in the lower 

frequency band. Furthermore, a variety of artefacts can contaminate 

ECG, including electrodes, motion artefacts, and muscle artefacts, the 
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most of which PSD overlap ECG signal spectrum and are thus the most 

difficult to eliminate. 

1.3 Artefacts in the ECG 

Unfortunately, the recorded ECG contains not just components 

created by the heart's electrical activity, but it is also contaminated with 

artefacts that can interfere with or interrupt the signal, resulting in data 

loss. The shape of these artefacts can be similar to that of an ECG [4]. 

The most common ECG artefacts are as follows: 

 Power line artefacts have a 50 / 60 Hz frequency, based on the 

country. 

 The lack of contact between the electrodes and the saturating skin 

causes steep voltage fluctuations. Furthermore, variations in the 

impedance between the skin and the electrode caused by the 

electrode's movement as a result of the patient's movement create 

some fast baseline jumps that may saturate. 

 Muscle contractions produce electrical activity that ranges from dc 

to 10kHz. 

 The most common source of baseline drift is respiration at 

extremely low frequencies, about 0.1-0.3 Hz [7]. 



6 
 

The presence of artefacts in the ECG signal makes it difficult 

to analyse. This happens because the artefacts and the signal have a 

significant spectral frequency overlap. Because there hasn't been much 

research done on artefact identification and removal, the literature 

available on the issue is restricted. Bala Gopakumaran et al. [24] 

investigated ECG artefacts recorded by four most important patient 

observer was created by (Phillip Medical Systems, Andover, MA; Ivy 

Biomedical Systems, Bradford,; Datex Ohmeda, Helsinki, Finland; and 

CT GE Medical Systems, Milwaukee, WI). They recommend the 

measures that reduce the surgical artefacts. Although those procedures 

can reduce the appearance of artefacts in general, they are ineffective at 

removing or eliminating them. 

1.4 Analysing the Artefacts in the ECG 

1.4.1 Baseline Drift 

 Baseline wander/baseline drift indicates the effect of a 

signal's base axis (x-axis) 'wandering' or shifting up and down instead of 

being straight. The signal deviates from its usual baseline, which is a 

zero-mean signal. Patient movement, breathing, and improper electrodes 

(electrode-skin impedance) cause baseline drift (respiration). Baseline 

wander has a frequency content of 0.5 Hz. On the other hand, increased 

physical activity while exercising or a stress test increases frequency 

content. Figure 1.2 shows a visual representation of baseline drift. 
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Figure 1.2: Representation of Baseline Drift 

1.4.2 Power line interference 

An artefact in the ECG and any other bioelectrical signal 

recorded from the human skin is frequently caused by the 

electromagnetic fields produced by power lines. This sort of noise is 

characterised by sinusoidal interference at 50 (or 60) Hz with several 

harmonics. Narrowband noise makes ECG analysis and interpretation 

more difficult due to inaccurate demarcation of low-amplitude 

waveforms and the possibility of false waveforms being formed. 

Electromagnetic field (EMF) interference induced by alternating current 

fields in power lines or adjacent machinery is the major source of 

interference. The pictorial representation of power line is shown in 

Figure 1.3. 
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Figure 1.3: Representation of Power Line Interference 

1.4.3 Electromyogram (EMG) Noise 

Muscle noise is a significant issue occurs in various ECG 

methodologies, particularly in recordings made while exercising, because 

ECG waves with lesser amplitudes can completely covered. Narrowband 

filtering does not diminish muscle noise, but it does provide a lot more 

difficult filtering problem since muscle activity's spectral content 

overlaps the PQRST complexes significantly. Figure 1.4 depicts a visual 

depiction of EMG noise. 

 

Figure 1.4: Representation of EMG Noise 
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1.4.4 Electrode Motion Artefacts 

Skin stretching alters the impedance of the skin around the 

electrode, which results in abnormal electrode motion. While motion 

artefacts have signal characteristics similar to baseline wander, their 

spectral content significantly overlaps the PQRST complex, making them 

more challenging to avoid. Between 1 and 10 Hz, they are most 

prevalent. Large-amplitude waveforms that resemble QRS complexes 

can be seen as a result of these abnormalities on the ECG. In ambulatory 

ECG monitoring, where they are the most common cause of inaccurately 

reported heartbeats, electrode motion artefacts are especially problematic. 

The pictorial representation of electrode motion artefacts is shown in 

Figure 1.5. 

 

Figure 1.5: Representation of Electrode Motion Artefacts 
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1.5 Signal Recording 

EMG data recorded near the heart typically contain ECG 

interferences, however in places where electrocardiogram contamination 

is limited, a clean EMG signal can be acquired. Figure 1.6 shows five 

sets of two-channel clean EMG data from the right biceps and deltoid 

muscles collected over five minutes. Applications for hand prosthesis 

control and hand motion prediction are the main reasons to use these 

muscles. Figure 1.6 shows five pairs of left pectoral is major muscle-

related two-channel ECG abnormalities. To taint the EMG signal, this 

signal is necessary. The polluted EMG signal generated by merging the 

clean EMG signal with the ECG artefact is shown in Figure 1.6. On the 

wrist, the reference electrodes were placed. 

For example, ANC, ANN, and ANFIS all need the recording of 

the ECG artefact as well as the associated ECG signal. As a result, the 

ECG signal in Figure 1.6 was recorded at V5. The patients' EMG signals 

were captured as they sat in a chair and exercised their biceps and deltoid 

muscles twice. Between each activity, a rest period was considered. The 

subjects were told to lie absolutely comfortably while the ECG and ECG 

artefacts were recorded. 

On the biceps muscles, deltoid, and pectoralis major, the 

SENIAM standard was utilised to determine electrode placement. At the 

Biological Systems Control Lab, ECG and EMG data were gathered 

using the Power Lab/16SP equipment (ML795 from AD Instrument). 
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Five 21.4+/-1.94 year old guys (tallness= 177+/-3.67 cm, weight= 

72.6+/-13.37 kg) were selected from the population subsequently 

receiving informed permission. 

 

Figure 1.6: (a) Clean ECG (b) Artefacts ECG (c) Clean EMG (d) 

Corrupted EMG 

SKINTAC FRG1, 32 x 41 mm, pre- clotted Ag-AgCl bipolar 

electrodes were implanted on the skin's surface to record the signals. The 

electrodes were spaced apart by 30 mm [37]. In order to prepare the skin, 

it was shaved, lightly abraded, and cleaned with alcohol. Below 10,000 

ohms of impedance were maintained. These electrodes' EMG signals 



12 
 

were examined using a biological amplifier. To reduce the influence of 

high frequency noise and avoid aliasing, the raw EMG signals were 

band-pass filtered with an analogue filter from 0.3 to 500 Hz before pre-

amplification and sampling. 

 

Figure 1.7: Corrupted EMG Signal Framework 

EMG frequencies were isolated from power line interference 

using a notch filter (centred at 50 Hz). 2000 Hz sample frequency was 

used to record the signals. The comparable artefacts free EMG signal 

must be given alongside, the polluted EMG signal in order to enable a 

quantitative comparison of the techniques. As a result, the polluted EMG 

signal was produced as precisely as feasible for this investigation. The 

contaminated EMG signal was created, as seen in Figure 1.7, by 

multiplying the artefact free EMG frequencies from the right side's 

biceps and deltoid muscles by a factor (C=0.65) and merging them with 

the ECG artefacts from the left side's pectoral is major muscle. The 

polluted EMG signals had their SNR value adjusted to zero (dB). This 

study looks at how various techniques impact the target signal while 

accounting for the starting SNR. Ten channels of polluted EMG signals 
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were produced after using this approach to analyse a 60-second slice of 

data from each channel collected from five healthy people. 

1.6 Artefact Removal Approaches 

Hybrid approach, gating method, ANC, spike clipping, HPF, 

ICA, wavelet-ICA, ANN, template subtraction, wavelet transform, and 

ANFIS were utilized to explore the effectiveness of ECG artefact 

removal methods. 

1.6.1 High Pass Filter 

ECG distortions were removed from EMG data using a FIR 

high pass filter with a Hamming window (length=100) and cutoff 

frequencies of 10, 20, 30, and 60 Hz. The 30 Hz cutoff frequency 

outperforms all others. When cutoff frequencies of 10 and 20 Hz are 

used, a substantial amount of noise is still present in the cleaned signal; 

however, when cutoff frequencies of 50 Hz are used, a large quantity of 

useable signal is lost. 

1.6.2 Spike Clipping 

Spike clipping is evaluated by Eqn. (1.1), which depends on a 

threshold level ( ). If the recorded signal's amplitude ( ) reaches 

this amount, the signal's amplitude is restricted at this level. The denoised 

signal is . 
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(1.1) 

1.6.3 Gating Approach 

The gating approach is similar to the clipping technique in that 

it needs the determination of a threshold. If the recorded signal's 

amplitude ( ) reaches this amount, the signal is clamped to zero (Eqn. 

(1.2)) . The thresholding procedure determines the method's performance. 

 

(1.2) 

1.6.4 Hybrid Approach 

ECG artefacts were removed from EMG data using a hybrid 

method [18]. It combines a spike clipping method with an HPF, as seen 

in Figure 1.3. Adaptive thresholding is used to implement the spike-

clipping mechanism in this approach. The amplitude of previous samples, 

as well as a gain chosen by the user, defines the threshold. The averaged 

rectified value (ARV) for polluted signal is computed in each iteration of 

the spike-clipping method across a window of N times. The ARV's gain 

is then set to a certain value. A spike that appears above the cutoff level 

is trimmed and put below it. One of the method's drawbacks is that 
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evaluating the spike-clipping procedure in each cycle takes a lengthy 

time. 

 

Figure 1.7: Hybrid Approach Framework 

1.7 Types of Denoising Techniques 

There are two strategies for denoising are, 

 Spatial domain filtering methodologies 

 Transform domain filtering methodologies 

1.7.1 Spatial domain filtering Techniques 

The filters spatial are a common technique for removing visual 

noise. There are two types of spatial filters: linear and nonlinear. 

1.7.1.1 Linear Filtering Technique 

In the realm of remote sensing, spatial domain filtering is done 

in the pixel grey geometric space, which allows a quick filtering 
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procedure if the contract is linear, and the filter is called a linear filter.In 

terms of MSE, an optimal linear filter is a mean or average filter for noise 

reduction. In the presence of noise that depends on the signal, it may also 

blur clear edges, erase lines, and obscure other crucial visual 

characteristics. 

1.7.1.2 Nonlinear Filtering Technique 

These filters are frequently helps to diminish the interference 

and identify the edges. A frequent sort of filter is the median filter. The 

spatial filters also use low-pass filtration in pixel groups, based on the 

assumption that noise dominates a larger regional frequency spectrum. 

Typically, spatial filters eliminate picture noises; nevertheless, blurring 

the image obscures the image's edges. To tackle these drawbacks, most 

upgraded median filters, including Rank Conditioned Rank Selection, 

Weighted Median Adaptive Filter, and Multilevel Hybrid Median Filter, 

are now offered. 

1.7.2 Transform domain filtering Techniques 

The analysis function or the choice of bases is used to classify 

transform domain filter approaches. Wavelet domain and spatial 

frequency filtering are two types of analytic functions. 
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1.7.2.1 Spatial Frequency Filtering Technique 

This filter is known as a low-pass filter since it uses FFT 

(frequency domain based filter). The frequency domain based filter 

smoothes down the frequency domain effective signal and changes the 

cutoff frequency to separate noise parts. Cut-off frequency and filter 

working behaviour impact the time consumption of these techniques. 

1.8 ECG Database 

Since 1975, the Massachusetts Institute of Technology (MIT) 

has collaborated with Boston's Beth Israel Hospital (now the Beth Israel 

Deaconess Medical Centre) to create a database to aid studies in 

arrhythmia analysis and related topics. The database of the Massachusetts 

Institute of Technology Beth Israel Hospital (MIT-BIH) was one of their 

first important accomplishments. In 1980, the database was completed 

and distributed. In addition to being used for basic research on cardiac 

dynamics at more than 500 locations across the world, the database was 

the first freely accessible set of standard test material for assessing 

arrhythmia detectors [34]. 

The MIT-BIH Arrhythmia Database contains 48 half-hour 

samples of two-channel ambulatory ECG recordings. These findings are 

from a group of 47 participants who were part of a mixed sample of 

inpatients (60%) and outpatients (40%) who were examined by the BIH 

Arrhythmia Laboratory. There contains 25 males and 22 women in the 
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study, with ages ranging from 32 to 89. Since its debut in September 

1999, around half of PhysioNet's database (25 of 48 full records and 

reference annotation files for all 48 records) has been made publicly 

accessible [35]. The extra 23 signal files, which were previously 

exclusively accessible via the MIT-BIH Arrhythmia Database CD-ROM, 

were made available to the public in February 2005 [36]. The recordings 

were digitalized across a 10 mV range at 360 samples per second, each 

channel. 

1.9 ECG Denoising Techniques 

The denoising techniques used to eradicate the artefacts in the 

ECG are, 

 FIR filter 

 Adaptive filter  

 Wavelet filter 

1.9.1 FIR Filter 

Based on how the system's unit pulse responds, the digital 

filters are categorised as IIR or FIR filters. The FIR system's impulse 

response is time-constrained, but the IIR system's impulse response is 

unbounded. Since IIR filters are typically built with feedback 

mechanisms, the current response of an IIR filter is a function of the 
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present, past, and prior values of the excitation as well as the prior value 

of the response. However, the FIR filter's response is frequently 

implemented using structures that do not provide feedback, therefore the 

response is totally dependent on the current and previous input values 

[37]. FIR filters are popular because of the merits described as follows:  

 Exact linear phase  

 Filter start-up transients have finite length 

 Always stable 

 Linear design approaches  

 Hardware implementation  

1.9.2 Adaptive Filter 

The filter coefficients (parameters) are modified over time in 

adaptive filtering. In order to minimise error, it responds to variations in 

signal quality. Channel equalisation, Adaptive noise cancellation, 

frequency tracking, and system identification are just a few of the 

applications available [38]. Figure 1.6 depicts the overall framework of 

an adaptive filter. 

The signal input is denoted as a0(n) in Figure 1.8. Eqn. (1.3) 

gives the vector form of a0(n). There are artefacts in this input signal. In 
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other terms, as described in Eqn. (1.4), d0(n) represents the intended 

signal sum and the artefacts as v0(n). 

 

Figure 1.8: Adaptive Filter Outline 

 (1.3) 

 (1.4) 

The outline of the adaptive filters is the Finite Impulse 

Response. Such systems' impulse responsiveness is equivalent to the 

filter coefficients. The N filter order coefficients are denoted as, 

 (1.5) 
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The outcomefor an adaptive filter is b0(n) which is written as, 

 (1.6) 

The difference between the intended and estimated signals is 

the error signal or cost function. 

 (1.7) 

Furthermore, the variable filter constantly changes the filter 

coefficients. 

 (1.8) 

 Here, isthe filter coefficients' adjustment factor. 

1.9.2.1 Handling of Adaptive Filter  

Filters lessen the effect of artefacts in a signal to enhance the 

SNR at the filter's output. Various filter categories are available 

depending on the application. This thesis employs adaptive linear filters, 
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with the filtered output changing over time. A filter can be made one of 

two ways. 

 Frequency selective filters including Filter with Low Pass 

(LPF), Filter with High Pass (HPF), and Notch Filter use the 

Classical method. The spectral components of the message 

signal and the artefact are monitored to reduce SNR. The 

most crucial thing to keep in mind is that these filters can 

only be applied if the frequency ranges of the input signal 

and the artefact are different. 

 

Figure 1.9: Wiener Filter 
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 Another option is to apply optimization theory to develop 

better filters using optimal filter design. The optimum filter 

design is the best for reducing artefacts if the statistical 

character of the stochastic process is understood in advance. 

As shown in Figure 1.9, the primary purpose is to reduce the 

MSE, or the dissimilarity among the filter outcome and the 

desired signal. 

Non-stationary noise signals are those whose statistical features 

shift over time. The wiener filtration method is theoretically acceptable in 

these scenarios but difficult to execute in practise. 

The adaptive filter is superior for this since it is self-designing. 

The adaptive filter structure is comprised of an adaptation algorithm. It 

keeps track of the input samples and changes the filter tap weights as 

needed. The adaptive algorithm begins the learning phase under specified 

conditions with an unknown input vector. As a consequence, depending 

on the received signals, attempts are made to develop the best filter 

design possible. 

1.9.2.2 Features of Adaptive Approaches 

The primary function of an adaptive filter is to minimise an 

objective function. It is possible to condition this objective function to 

have a continuous form by properly selecting it. The following elements 

contribute to the preferences of one algorithm over another. 
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 Convergence Rate 

 Misadjustment 

 Tracking 

 Computational Requirement 

1.9.3 Linear Adaptive Filter  

The adaptation algorithm for the application of linear filters 

can be obtained in several different ways. Two techniques are that 

develops linear filters are, 

 Stochastic Gradient Approach 

 Least Squares Estimation 

1.9.3.1 Stochastic Gradient Approach 

The linear adaptive filter is implemented using a transversal 

filter structure in this manner. The MSE stands for the cost function, 

which is also known as index performance. The MSE is the variation 

among the outcome of the transversal filter with the desired signal. The 

MSE, which is a second order function, is the cost function of the 

transversal filter's tap weights. The error performance surface is a 

multidimensional paraboloid structure that comes from MSE's reliance 
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on unknown filter coefficients. The filter coefficients corresponding to 

the least feasible location on the gradient are determined by the wiener 

solution. 

The transversal filter structures' adaptive algorithm may be 

changed at two separate levels. To find the best wiener solution, an 

adaption algorithm is first chosen. To optimise the adaptation process, 

the steepest descent approach is applied. The gradient vector, which is 

based on two key factors, determines the steepest descent technique. The 

first vector is the vector of adjustment among the desired signal and the 

input vector. The gradient vector estimate is then calculated using the 

correlation matrix's instantaneous values. As a result, the method 

developed is named as Least Mean Square (LMS) method. 

In every case, the LMS approach, which is straightforward and 

reliable, has the potential to deliver good outcomes. The LMS algorithm's 

principal drawbacks are its sluggish convergence rate and susceptibility 

to variations in the hermitian matrix-based input data vector. The LMS is 

a basic and dependable algorithm that may produce excellent results in 

any situation. In non-stationary signals, the adaptation of MSE behaviour 

changes over time. The LMS algorithm is also responsible for 

continuously tracking the error performance surface, which is linked to 

the volatility of the input data vector. 
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1.9.3.2 Least Squares Estimation 

The least squares strategy is used in another notion for 

developing the linear adaptive filter. The cost function, which is equal to 

the total of the weighted error squares, is reduced using least squares. 

The error, also known as the residue, is the discrepancy among the 

intended frequency and the filtered outcome. The filter coefficients are 

determined block by block using the least squares approach. A stream of 

input data is organised sequentially into a block of data with equal 

lengths. The filtering procedure in block estimation is accomplished 

block by block. The adaptive filter coefficients are organised on a sample 

basis in order to accommodate recursive adaptation. 

Recursive least squares (RLS) adaptations include the Kalman 

filter. The Kalman filtering technique is distinct in that it calculates the 

average value of the input samples applied to the linear adaptive filter at 

a certain time. 

1.9.4 Adaptive Noise Cancellation's Importance in Biotelemetry 

A filter must eliminate various distortions from the ECG signal 

before monitoring to present an accurate signal. FIR and IIR filters, 

which give exact frequency characteristics, are commonly used to change 

the signal frequency content. By obtaining the real frequency 

characteristics, Fourier Transform analysis is utilised to evaluate design 

methods. However, these design methods do not make it clear to users 
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which frequency characteristic is the best, i.e. which filter type 

successfully separates signals from noise. This decision is based on the 

source qualities or the user's signal understanding. The use of optimal 

filter theory to identify the structure's most acceptable frequency 

characteristics is offered. The divergence of the actual and desired filter 

responses prefers the wiener filter theory to MMSE for analysis. The 

error surface parameter simply represents the representation of the MSE 

for the linear filter's variable parameter. 

When non-stationary signals are met with time-varying forms 

of optimal filter, the wiener filter is not used. Only if the information fits 

the features of the input data is prior statistical data of the information 

necessary to process the Wiener filter and the optimal solution offered. 

Without this, data is impossible to understand entirely, and weiner filter 

improvement is no longer possible. As a result, the recursively based 

adaptive filter, which is a self-designed filter that produces approximated 

results even when all of the relevant signal's data is unavailable, is 

favoured. This method begins with a pre-determined set of beginning 

values that are relevant to the present situation. In a statistical sense, the 

algorithm's Optimum Weiner solution is found after a certain number of 

rounds. 

Adaptive filtering has been a prominent method for processing 

biological data such as ECG analysis in recent years. Adaptive filters 

allow for the identification of time-varying potentials as well as the 

monitoring of dynamic signal fluctuations. They also vary their nature in 
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relation to the quantity of incoming data samples, allowing for the 

evaluation of signal pattern changes. One of the best approaches to get 

rid of artefacts in biotelemetry applications is to use LMS-based adaptive 

noise cancellers (ANC's). 

1.9.5 Wavelet Filter 

The WT is quite similar as Fourier transform. The FFT's core 

functions are sines and cosines. Wavelets, mother wavelets, or studying 

wavelets, as well as scaling functions, are more complicated wavelet 

transform basis functions. Wavelet analysis divides the original (or 

mother) wavelet into shifted and scaled variations. The wavelet transform 

is excellent for non-stationary signals like the ECG since it is a multi-

resolution analysis [39]. 

1.9.5.1 Wavelet Transform 

The signal frequency modules are analysed by using the tool 

Fourier transform. However, when Fourier transform is applied to the full 

time axis, it is unable to determine when a given frequency increases. A 

sliding window is used in the short-time Fourier transform (STFT) to find 

a spectrogram that incorporates both time and frequency information. 

However, there is another problem: the window's length limits frequency 

resolution. The wavelet transforms looks to be a viable solution to the 

problem. Small wavelets with low duration are used in wavelet 
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transformations (WT). The time and frequency resolutions in the time-

frequency plane in WT change when doing a multi-resolution analysis. 

A signal a0(t) belonging to the integrable square subspace 

L2(R) describes the terms of scaling operation and mother wavelet 

operation in the wavelet transform (t). j is the dilation or frequency 

visibility parameter, while k is the location parameter. 

 

(1.9) 

Here, x and y are the coefficients for and . 

1.10 Role of Bio-inspired Algorithms for Denoising 

The desired coefficients in the filters are selected and 

optimised using bio-inspired computation-based methodologies. It is 

feasible to adapt the filter weights to fit varying picture and noise 

characteristics using population-based alternative hybrid algorithms. 

With the ultimate goal of decreasing noise in multidimensional siganls, a 

bio-inspired metaheuristic optimization strategy was used. The 

evolutionary algorithms are built on the soft computing notion, which 

includes concepts like fitness functions, cycles, and probabilistic 

conditions. Finding the right bio-inspired algorithm for picture denoising, 
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on the other hand, is a difficult challenge. Machine learning principles 

are integrated with a bio-inspired algorithm to increase the performance 

of denoising approaches. 

1.11 Motivation 

Signal processing is a discipline that is always evolving and 

improving. Every day, new and novel procedures and processes are 

produced. Signal processing engineers and scientists may use these 

approaches to extract useful information from a range of signals. There is 

no one approach that can help with the analysis of all forms of data in the 

field of signal denoising. Given the significance of ECG analysis in 

medical science, there are hundreds of methods for analysing the 

information and sending signals in numerous ways. However, no single 

strategy is totally reliable or durable. 

1.12 Background and Problem Description 

ECG artefacts in surface EMG data have drawn a lot of 

attention in recent years. ECG artefacts in EMG data must be removed 

when signal quality is crucial. Since their frequency spectra overlap so 

significantly, it is extremely challenging to remove ECG artefacts from 

EMG data. Depending on the kind of muscle and the quantity of fatty 

tissue, the frequency range of surface EMG impulses is 0 to 400 Hz. 

ECG impulses have a frequency range of 0 to 200 Hz, with frequencies 

under 45 Hz providing the most strength [5]. 
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To remove ECG artefacts, researchers used a a hybrid 

technique, template subtraction, a gating method, spike clipping, artificial 

neural network (ANN), high-pass filter (HPF), wavelet transform, 

adaptive neuro-fuzzy inference system (ANFIS), adaptive noise canceller 

(ANC), wavelet-ICA, and independent component analysis (ICA). 

Traditional high-pass filters are an easy and quick fix, but they are 

inefficient for a few software’s, including hand motion regulator, since 

they lose a lot of important information from EMG signals. The QRS 

complex identification must be exact, and the ECG signals must be 

stationary for the subtraction technique to work. 

Additionally, the use of pre-defined QRS templates is required 

[6]. The gating approach is arguably the most used way for eliminating 

ECG signals, however it misses parts of the EMG signal that cover the 

QRS complexes. Additionally, ANC has recently been employed to 

eliminate ECG artefacts; but, due to its high computational expense, it is 

not suited for usage in real-world applications.  The wavelet transform is 

a low-cost online method that does not need a large number of inputs. 

However, certain artefacts remain in the original signal, thus this method 

only removes portion of the desired signal. The ICA technique is an 

online method for processing multi-channel signals that increases 

hardware complexity. ANN and ANFIS approaches offer the best 

performance of all of these methods, but their results might be enhanced 

when combined with other techniques for specific applications [7]. 
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1.13 Scope and Proposes 

The goal of this study is to see how adaptive signal processing 

can help with ECG denoising. The major goal is to learn how adaptive 

filters function and to investigate how well they perform in biological 

signal denoising. The following are the major activities to complete this 

task: 

 In this study, the ECG signals from different sources will be used 

to determine the efficiency of the denoising procedure for high 

and poor quality ECG data. The ECG signal is taken from a high-

resolution record in the Beth Israel Hospital database at the 

Massachusetts Institute of Technology (MIT-BIH). 

 White Gaussian noise will be the noise under study. In ECG 

recordings, these are the most prevalent sounds. In the case of the 

ECG signal, simulated and actual noise signals will be 

investigated, and the denoising performance for simulated and real 

sounds will be compared. 

 The adaptive methods employed in the denoising process should 

take minimal computing resources and high efficiency into 

account. For this situation, the Honey Badger Optimization 

algorithm and African Vulture Optimization algorithm, an 

adaptive filter with weight technique, will be investigated.  
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 This method has a cheap computing cost and a high efficiency. It 

is sometimes referred to as FIR filtering for the same signal and 

noises, with the goal of recognising the differences between the 

two approaches. 

1.14 Thesis Organization 

The proposed thesis can be systematized as follows: 

Chapter 1describes the basic introduction of the suggested 

thesis which describes the importance of ECG signals, retrieving the 

ECG signals, denoising approaches, wavelet transforms and the role of 

optimization algorithms in denoising.  

Chapter 2 presents the review of literatures, review findings, 

research gaps and problem formulation of the research work.  

Chapter 3 presents an improved Empirical Wavelet Transform 

with Honey Badger Optimization for ECG signal denoising. 

Chapter 4 presents the design of ECG signal denoising 

utilized discrete wavelet transform with African Vulture Optimization 

algorithm. 

Chapter 6 concludes the thesis by highlighting the research 

contributions and the future direction for denoising ECG signals. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Introduction 

Despite the fact that digital formats became widespread in the 

late 1990s, many healthcare organisations still print ECG signals on 

paper. Digital storage options for ECG signals are becoming more 

popular as healthcare data become more digitised. This is because of 

benefits such as increased storage capacity, mobility, and accessibility. 

The lack of a common digital format is due to the considerable variation 

in ECG equipment types and the private interests of ECG manufacturers. 

The American Heart Association and the Common Standards for 

Quantitative Electrocardiography have made several attempts to 

standardise ECG forms. To minimise noise in ECG readings, signal 

processing methods are necessary. This stage is crucial for correctly 

detecting the waves in the ECG signal, which is crucial for monitoring 

and diagnosing. 

2.2 Adaptive Filtering 

Given that all ECG signals are nonlinear, adaptive filtering is 

the method most frequently employed to reduce signal noise. The author 

[8] examined the performance of RLS and LMS adaptive techniques and 

found that RLS-based adaptive filters outperform LMS-based adaptive 
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filters. To reduce artefacts in ECG, the author [9] devised a set of simple 

and fast sign-based normalised adaptive filters that outperform 

multiplier-free update loops in terms of computing efficiency. When 

comparing the performance of adaptive filters with and without reference 

noise, the authors [10] found that adaptive filters without reference noise 

perform better since noise in the primary signal may or may not correlate 

with the adaptive filter's reference input. 

The author [11] developed a framework for a resilient 

VSSNLMS method based on cost function optimization in the filter 

update norm with a time-variant constraint. The experts put this to the 

test in terms of detecting and eliminating echo applications. Another 

VSSNLMS method for the reduction of echo was proposed by the author 

[12]. Previously established techniques, according to the authors, dealt 

with accurate modelling simulations in which the adaptive filter's length 

equalled the length of the simulated system. In actuality, acoustic echo 

pathways are quite lengthy; therefore having a filter that is shorter than 

the path would be advantageous. They used that method in their solution 

after that. The article [13], provide the mean square performance for a 

partial update filter. A Normalized Subband Adaptive Filter can enhance 

the NLMS convergence rate (NSAF). 

The authors proposed a block-based multichannel LMS method 

in [14] if any prior knowledge about the input signal existed. To account 

for the incomplete acquisition problem where the needed data is non-

stationary, a new equation based on block based cross-relation has been 
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devised. A performance review is part of this contribution. A fractional 

normalised filtered-error based LMS approach is proposed in [15] for 

secondary route modelling. A fractional update is combined with the 

standard LMS integral operator, which is derived from the Riemann-

Liouville differ integral operator. By employing zero-mean binary inputs, 

this method is utilised to reduce noise from the principal path. An anti-

noise signal is developed using improved secondary route modelling to 

reduce noise influence and filter inaccuracy. It is tested using the 

specified approach for various techniques by altering the step size and 

fractional orders. 

The authors offer a wavelet-based sub-band adaptation filter 

approach in their study [16] for isolating a scant ECG signal in a busy 

environment. This fusion methodology keeps a high degree of 

consistency while sharpening the extraction accuracy. 

Widrow and Hoff [17] introduce LMS adaptive approach that 

is now broadly utilised in a variety of applications, including adaptive 

noise cancellation, channel equalisation [18], and system identification 

[19]. The resilience, low computational cost, and ease of hardware 

implementation of the LMS methodology are the key reasons for its 

popularity [20]. The following are some of the key features of the LMS 

algorithm: 
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 Without performing matrix inversion, the optimum filter solution 

may be effectively calculated. The autocorrelation and cross 

correlation matrices are also unnecessary. 

 A step-size, is easily chosen to modify the algorithm's convergence 

speed and stability. 

 In tackling several practical adaptive signal processing issues, the 

approach is resilient and reliable. 

The leaky LMS algorithm (LLMS) was created to solve the 

numerical instability of the filter in the digital version of the LMS 

algorithm. A leakage prevents overflow in finite-precision by permitting 

a trade-off between lowering the MSE and minimising the energy in the 

filter coefficients. This is achieved by incorporating a regularisation term 

in the cost operation of the LMS algorithm. 

When compared to the LMS method with a fixed step-size, the 

variable step size LMS (VSSLMS) technique was created to achieve the 

balance necessary for faster convergence time and lower MSE. By 

choosing a large step size at the start and giving each filter coefficient an 

independent time-varying step-size, the adaptation process can improve 

convergence speed. As the VSSLMS algorithm approaches the steady-

state solution, the step size decreases, lowering MSE. 
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Traditional adaptive algorithms, such as LMS and its 

variations, Kalman filters [21], and RLS are susceptible to strongly 

correlated inputs, have limited convergence, and consume a lot of power. 

Furthermore, the adaptive methods outlined above are unable to use a 

priori knowledge of the system structure, such as sparsity. For the 

adaptive filtering approach to work well, it may be necessary to use such 

a priori information. 

A parallel lookup table (LUT) updates concurrent filtering, and 

weight-update functions-based pipelined adaptive filter architecture is 

suggested by the author [22], which greatly improves performance. 

Instead of the usual adder-based shift accumulation, conditional signed 

bring accumulation is utilised for DA-based inner-product calculations to 

reduce sampling time and area complexity. By using a fast bit clock for 

carry-save accumulation and a considerably slower bit clock for all other 

operations, the recommended device uses less energy. 

2.3 Wavelet Transform  

Mashud Khan et al. [21] suggest a wavelet-based SNR 

technique in their work. Artefacts evolve in lockstep with the main ECG 

signal, according to this technique. For multi-scale signal decomposition, 

the symmlet mother wavelet was utilised, which allows for precise noise 

estimates and removal with little processing. Bingo W. et al. [6] proposed 

a few fuzzy criteria for selecting the best post filters, pre and multi 
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wavelets at different noise levels. Despite better denoising speed, 

selecting a membership function has remained tricky. 

In [24] the author suggested a wavelet-based denoising 

approach. This method is beneficial in that, unlike adaptive filtering 

techniques, it does not require an a priori reference. As a wavelet basis 

function, the discrete Meyer wavelet was used. A novel thresholding 

function that joins the properties of thresholding soft and hard is also 

suggested. 

In D. Zhang [23] presents a DWT-based technique for 

removing baseline wander. To minimise high-frequency noise, the 

shrinkage approach employs E-Bayes posterior median. For 

decomposition levels up to 6, a Symlet wavelet of order 8 is employed. 

The building of statistically matched wavelet filter banks has 

been thoroughly researched by R. Crandall [26], and has been presented 

as a constrained optimization issue. To examine the coding gain 

performance of matched filter banks built using the KLT's Vis-&-Vis 

approach, the parametric study must be broadened. Let h stand for the 

filter coefficients in a 2M-dimensional vector and Rxx stand for the 

covariance matrix of a process. The matching wavelet that maximises 

energy compaction may be formulated using the goal function. 

According to Major Joseph O. Chapa [27], the bulk of 

orthonormal multi-resolution analyses (OMRA) applications utilise 
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Daubechies, Meyer, or Lemarie's wavelets. The wavelet matching the 

target signal, though, would be amazing. This paper first presents a way 

for generating the scaling function from the wavelet, and then it gives the 

wavelet the specifications that assure an OMRA, in order to generate an 

OMRA using a wavelet that has been least squares matched to a signal of 

interest. 

A wavelet-based method for removing structured noise from 

data, such as impulsive spikes or unwanted harmonic components, was 

introduced by Phillip L. Ainsleigh [28]. Wavelets' time- and frequency-

localization skills allow for better noise identification and signal 

distortion than direct data filtering for this type of noise. This method is 

used to analyse data from multipath interference transfer functions and 

impulsive noise time series. 

Morlet introduced the Wavelet transform in early 1980 to 

assess seismic data, according to E. Farahabadi et al. [29]. The test signal 

or signal to be studied is divided into multiple sub-bands with different 

scales, and we simply compare or correlate the signal with shifted and 

scale wavelet. Since it is compatible with multi-resolution investigations 

and localization in time and frequency domain. 

2.4 Meliorating ECG Image 

The primary work of this research is to enhance the quality of 

ECG signals and reduce artefacts. A thorough review of the literature 
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was carried out to discover the many approaches to improving the ECG 

signal using adaptive linear filters and other traditional techniques [30]. 

To discover the variances in the input data samples, Thakor et al., 1991, 

created an ANC structure that functions as an LMS adaption method.  

Because of its capacity to capture pulse fluctuations quickly, 

this design is appropriate for ambulatory ECGs [31].The LMS's reference 

signal is an important requirement for improving the ECG signal. The 

reference signal is a deterministic orthonormal features-based function. 

The LMS algorithm's core function is based on estimating the tap weights 

for each iteration when a new sample comes. However, according to a 

research, the LMS algorithm's convergence characteristics limit the tap 

weight estimate to achieve the wiener solution converge [32].  

As a result, Block LMS (BLMS), an adaptation algorithm [33], 

was devised to solve the constraint. On the occurrence of the block 

gradient, the adaptive filter coefficients are calculated. BLMS is 

commonly used for stochastic systems with stationary signals. With the 

help of ANCs, this work may be completed.  

The author of [34] created a strategy for eliminating the 

Motion Artifact [MA] which hybridizes the LMS and the Normalized 

LMS (NLMS) methodologies. The suggested approach eliminates the 

artefacts while maintaining the ECG signal. In [35], the author developed 

a VLMS technique for real-time remote healthcare applications. In the 
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literature, several strategies for enhancing the efficiency of the LMS 

algorithm have been offered. 

To negate the Baseline Wander (BW), Sayadi et al., introduced 

a bionic wavelet transform [36]. Montazeri et al. suggested a novel 

approach for obtaining the foetal ECG from the mother's ECG [37]. 

Using Principal Component Analysis (PCA), Langley et al., presented a 

technique to improve the ECG signal [38]. When compared to traditional 

filters, the adaptive filter is the most effective in cancelling the maternal 

ECG. They also confirmed that the recommended method yields superior 

outcomes. This approach has a significant computational complexity 

problem, which is a critical characteristic in biological signal processing 

applications. The number of LMS algorithms reported in the literature is 

significant, but there is little emphasis on reducing computing 

complexity, which is an important parameter in healthcare applications. 

To overcome the computational complexity difficulties, sign algorithms 

are integrated with the LMS method in this thesis. Adaptive algorithms in 

real-time applications such as continuous ECG monitoring must have a 

fast convergence speed while being computationally simple. 

Rahman et al. developed an efficient ANC to lower the 

adaptive filter's computing cost [39]. The sign method has the benefit of 

requiring fewer computations, which is enabled via the signum function. 

Three types of sign algorithms have been documented in the literature: 

the Sign Sign Approach (SSA), the Sign Approach(SA), and the Sign 
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Regressor (SR) approach. In comparison to the previous LMS algorithm, 

all of the sign methods need half multiplications. 

2.5 Different types of Noises in denoising 

Noise estimation is the most important method in image 

processing approaches. This suggests that noise level estimation has an 

impact on the picture denoising approach's output. Asem Khmag et al 

[40] suggested an automated noise computation approach for AWGN 

(additive white Gaussian noise) based on local statistics. Even if the 

original image noise level is known, current denoising algorithms cannot 

provide outstanding results for photos with intricate details. The noise 

level is calculated using a blind picture denoising technique using a 

patch-based estimate approach. This approach chooses an image with a 

low rank and eliminates high frequency sections from the damaged 

image. The noise levels of the chosen sections are also calculated by 

Principal Component Analysis (PCA). This denoising approach is used 

with undecimated wavelet-based denoising methods and PCA in the case 

of blind denoising to obtain the picture's features. The findings 

demonstrate that this technique performs well even in circumstances with 

additive noise. When paired with other noise estimating techniques, this 

method produces better performance, higher-quality images, and saves 

time. 

Cho, D& Bui [13] proposed a universal estimate technique in 

the wavelet domain based on multivariate statistical theory to produce 
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denoised coefficients from a noisy image. Photographic effects such as 

Poisson, speckle, salt & pepper, and Gaussian noise are all frequent. 

Random variations in the picture pixels occurred in images of various 

circumstances and quality. The primary goal of the researchers was to 

erase these blemishes from the digital image. A parametric multivariate 

generalised Gaussian distribution (MGGD) model was used to precisely 

mimic the sample distribution. In addition, research was undertaken 

among Daubechies wavelets employing wavelets image denoising 

techniques and satellite images in order to obtain adequate findings. The 

PSNR measure was utilised to estimate the image denoising procedure's 

implementation. 

After several years of research, the discipline of picture 

denoising was well-established. Many practical problems in disciplines 

like geometric modelling, computer vision, medical imaging, and 

computer graphics still use pictures in irregular domain collections like 

graphs. Poisson–Gaussian mixed and Poisson noise reduction of pictures 

on graphs was studied by Wang and Yang [12]. Based on the observed 

characteristics of noisy images, a wavelet frame-based variation model 

for picture restoration was developed. Consider a -regularized term and a 

weighted fidelity term for the corresponding model, which allows for the 

usage of tight wavelet frame conversion on maps to safeguard essential 

characteristics like image edges and textures. 

The images were damaged due to impulse and Gaussian 

disturbances, thus a cascade step technique was used to denoise them. Ali 
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Awad [10] developed an approach based on the early elimination of 

aberrant values, which would aid in the later removal of noisy tiny 

components. The first phase used the intensity difference approach, 

whereas the succeeding phases used principal component analysis. In the 

following step, the smallest noisy components were deleted, followed by 

the smallest ones that represented the remaining noise in succeeding 

stages. Finally, the restored picture acquired by that approach performs 

better in PSNR and has high visual quality. 

Ashek Ahmmed [14] proposed the additive noise corrupted 

digital picture denoising technique. The filter bank of dyadic Gabor, 

which decomposes the noisy picture into distinct scales Gabor 

coefficients, provided the information of localised frequency. Denoising 

was done in the transform domain using Gabor coefficient thresholding 

using phase preserve and non-phase preserve thresholds. The Bayes 

Shrink thresholding was used in the non-phase preserve technique. 

Finally, every channel Gabor coefficient threshold had generated a 

denoised picture. For smoothly moving pictures, it was discovered that 

the modified Bayes Shrink approach outperforms both Bayes Shrink and 

phase preserve methods and works best for high-contrast images. 

2.6 Noise Detection Methodologies 

Mitra et al. [9] presented a narrative approach to reduce 

intravascular ultrasonography (IVUS) in speckle noise. Because of the 

known impedances of the reflected ultrasound from dissipates, IVUS, 
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which is a conventional coronary course that analyses the imaging 

convention, is degraded by speckle noise. The presence of such noise has 

an impact on the categorization and division of these images. The non-

neighborhood channel has been proposed and implemented in wavelet 

space to trim noise obstacles and improve visual IVUS comprehension 

features. Finally, a correlation study was carried out using various 

channels, including anisotropic dispersion, nonlinear middle channel, and 

mathematical nonlinear dissemination channel. 

A de-dotting strategy based on wavelet change and rapid two-

sided channel is offered for enhancing ultrasound clinical imaging. Based 

on the real characteristics of the ultrasonic clinical picture in the wavelet 

area, Ju Zhang et al. [8] produced an improved edge work wavelet based 

on the general edge work wavelet. The sum of Gaussian conveyance and 

Laplace dispersion, respectively, is used to describe the coefficients of 

the wavelet without the sign of the noise and the speckle noise. To derive 

another shrinkage computation for the wavelet, the bayesian greatest 

posteriori evaluation is modified. 

In the wavelet field, Jing Tian et al [17] investigate the topic of 

image despeckling. By combining a non-parametric measurable model 

into a Bayesian derivation system, a most extreme a posteriori (MAP) 

evaluation based picture despeckling technique is provided. The 

suggested non-parametric model describes the wavelet coefficients' 

insignificant circulation. 
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Sameera V Mohd Sagheer et al [28] suggested a method in 

which the image's recurrence sections are obtained using wavelet decay, 

and then the bayesian structure is integrated to assess the noise in the 

high recurrence segments. By going via a dedicated guided channel, low-

recurrence noise portions are de-speckled. The suggested scheme was 

compared to several recent research, such as Bayesian non-nearby 

techniques channel (OBNLM), wavelet evaluation based on rapid 

reciprocal filtering, and non-parametric model. 

Yongjian Yu et al [29] discuss the induction of speckle 

lessening anisotropic dispersion (SRAD), a dissemination strategy 

optimised to radar imaging and ultrasonic applications. The edge-

sensitive dispersion in images with additional material noise is known as 

regular anisotropic dissemination, whereas the edge-sensitive dispersion 

in images with speckles is known as SRAD. At first, the Frost and Lee 

channels may serve as halfway differential conditions, and then we 

deduce SRAD by permitting edge-touchy anisotropic propagation inside 

this uncommon circumstance. 

Sara Parrilli et al. [30] projected a fresh approach to 

despeckling manufactured opening radar (SAR) images based on 

wavelet-area shrinkage and nonlocal separation concepts. It appears to be 

the design of square coordinating three-dimensional computation, which 

was recently presented for additional substance white Gaussian noise 

denoising, but it changes its major handling stages to account for the 

peculiarities of images in the SAR. When the wavelet shrinkage is made 
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utilising the additional substance signal-subordinate noise technique and 

finding the ideal nearby direct least mean-square-blunder assessor in the 

wavelet space, a measure for probabilistic similarity is used for 

coordinating the square. 

Jong-Sen Lee [31] uses neighbourhood mean and difference to 

construct computational methods such as contrast improvement and noise 

filtering on two-dimensional photo clusters. These computations are 

nonrecursive and do not need the use of any changes. They have 

comparable characteristics in that each pixel is treated independently. As 

a result, when used in continuous sophisticated picture handling 

applications and when an equivalent processor may be used, this 

technology has a noticeable amount of leeway. Every pixel's previous 

mean and fluctuation are derived from its surrounding mean and 

difference in both the added substance and multiplicative situations. The 

noise sifting computations are then obtained using the basic mean-square 

mistake assessor in its simplest configuration. 

Victor S. Ice and colleagues [32] in this study, a model for the 

radar imaging measure is developed, as well as a strategy for smoothing 

noisy radar images. The radar image is polluted by multiplicative noise, 

according to the imaging model. For smoothing radar images, the model 

suggests the utilitarian kind of an ideal (least MSE) channel. The channel 

is made flexible by using privately evaluated border esteems to provide 

the lowest MSE gauges inside homogenous zones of an image while 

maintaining the edge structure. 
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2.7 Wavelet Based Denoising  

For image segmentation, K.P. Baby et al [33] suggested a 

multi-level thresholding approach based on the Krill Herd Optimization 

(KHO) algorithm. To find the best threshold value, the Krill Herd 

Optimization primary function of Kapur'sor Otsu's was maximised. The 

development of an ideal threshold for multi-level thresholding lowered 

the computational time of the suggested technique. Different benchmark 

pictures were used to illustrate the computing competency of the KHO-

based multi-level thresholding. Bacterial Foraging (BF) , Moth-Flame 

Optimization (MFO), Particle Swarm Optimization (PSO), and Genetic 

Algorithm (GA) were used to compare the suggested method to current 

multi-level thresholding strategies, and the outcomes illustrates that the 

recommended strategy performed better. 

The wavelet approach is a useful technique for recovering 

infinite-dimensional objects such as images, densities, and curves. 

Wavelet techniques were utilised to effectively reduce noise because they 

have a high capacity to achieve signal energy at certain energy 

transformation values. It was also dependent on the wavelet coefficients 

are being shrunk in wavelet area. Mitiche et al [34] introduced a 

denoising approach based on shrinkage and DT-CWT. DTCWT was used 

to denoise the medical pictures utilising soft and hard thresholding 

approaches. The denoised picture findings demonstrated superior 

accuracy and smoothness stability than the SWT and DWT. SSIM 
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(Structural Similarity Index Measure) and PSNR were used as 

comparative measurements. 

The Poisson process was used to produce photon shot noise, 

which is the most prevalent cause of noise in optical microscope images. 

The DWT, on the other hand, has several flaws, such as aliasing, lack of 

directional selectivity, and shift variance. Ufuk Bala [35] used the DT-

CWT in denoising method to overcome these issues. The denoising 

strategy was founded on the notion that, in the presence of Poisson noise, 

approximation coefficients may be used to forecast threshold values for 

wavelet coefficients. Other denoising algorithms were compared to the 

proposed method. As a result, in image quality measures, the 

recommended strategy produced improved results. The effects of the 

suggested technique's contrast enhancement on collagen fiber images 

were also investigated. This technique also allows for the rapid and 

effective development of images captured in low-light situations. 

A unique adaptive singular value decomposition (ASVD) and 

dual-tree complex wavelet transform-based Partial Discharge (PD) signal 

denoising approach was suggested by Mohsen et al (DTCWT). 

ADTCWT was used to denoise from PD signals in accordance with PD 

signal and noise on the basis of choosing the best singular values on 

DTCWT-level decomposition. The major processes in denoising in 

power transformers were PD signal examination and diagnosis. 

Experimental sets and simulations were used to estimate the new 

adaptive DTCWT (ADTCWT) method. Different criteria were used to 
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compare the ADTCWT algorithm against the DT-CWT and ASVD 

approaches for noise reduction. 

Daubechies wavelet is the most frequent and widely utilised 

ortho-normal wavelet. The mother wavelet was selected to be the 

Daubechies wavelet. These wavelets are compactly supported and 

orthogonal, therefore there will be no overlaps during signal restoration. 

Daubechies was chosen because of its precise answer and low error rate. 

To improve picture seeing, C Vimala and P Aruna Priya [37] researched 

the Double Density DTDWT in image denoising. The photos were used 

in the study, and the results were compared to the Double Density DWT 

and the discrete wavelet transform. For denoised pictures, the Root Mean 

Square Error and PSNR values were calculated using all three wavelet 

approaches. It achieved superior results when compared to previous 

wavelet approaches. 

C. Vimala and P. ArunaPriya [38] presented DT-DWT based 

intelligent approaches for picture denoising. The existence of noise in an 

image causes misinformation, hence picture quality augmentation was an 

essential problem for proper image diagnostics. To simulate true artefacts 

deterioration, these photos were distorted by various noise levels. As a 

consequence, the recommended system has a high PSNR when compared 

to the effective strategies. 
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2.8 Various Filer Methodologies 

2.8.1 Bilateral Filer  

Image denoising has gained prominence in the realm of 

medical imaging (MI). Maintaining data-bearing structures like edges 

and surfaces while increasing PSNR to improve visual quality is the 

major challenge in image denoising. A technique to bilateral filtering 

based on optimization was created by Elhoseny and Shankar [39] for MI 

denoising. Swarm-based optimization of the Dragonfly (DF) and 

Modified Firefly (MFF) algorithms is utilised to pick these parameters. 

The settings were chosen using PSNR and vector root mean square error, 

two multi-objective fitness functions (VRMSE). The CNN classifier is 

also used to categorise denoised images as abnormal or normal. 

Yang et al. [40] demonstrated edge-preserving denoising 

utilizing twin support vector machines on non-sub sampled shearlet 

transform (NSST). It is a spatially adaptive non sub sampled transform 

based on the Bayesian approach for the application of natural picture 

denoising. Optimal approximation, directional selectivity, and 

approximate shift variance are among the functions included. It breaks 

down the noisy picture into sub-bands. Geometric regularity is used to 

create the feature vector for each pixel in the noisy picture. To train Twin 

Support Vector Machines, the detailed coefficients of NSST are 

separated into information relevant coefficients (TSVM). Finally, the 
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adaptive threshold is used to get the denoised image. The results are 

compared using distinct strategies on various images. 

Speckle noise degrades the low-resolution pictures produced 

by ultrasonic imaging. For medical applications, picture quality 

enhancing techniques are therefore required. Rodrigues et al. [21] 

introduced a quick bilateral filter based on S-median thresholding for 

speckle noise reduction and picture quality enhancement. S-median 

thresholding results are compared to those of other thresholding 

approaches. PSNR has improved by 14.13 percent, structural 

characteristics have improved by 4.96 percent, and contour preservation 

has improved by 0.70 percent, respectively. This method reduces speckle 

noise while preserving contour information and spatial domain 

properties. 

For prioritising infrared images, reducing image noise, and 

preserving image features related to a shelter room, Zhang [22] proposed 

combining bilateral denoising with 2D-DWT. The wavelet transform is 

applied to decompose the image without affecting the low frequency 

components. With the use of a bilateral filter, the image is rebuilt, 

keeping three high frequency components. The combination of wavelet 

transforms and bilateral filters produced improved denoising results with 

acceptable visual quality, making it appropriate for use in coal mine 

emergency shelters. However, as compared to edge-preserving 

smoothing, the fundamental drawback of bilateral filtering is its high 

computational cost. 
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Because speckle noise is multiplicative, SAR picture analysis 

is difficult. As a consequence, Choi and Jeong [13] developed the 

Speckle Reducing Anisotropic Diffusion technique for removing speckle 

noise (SRAD). It uses a guided filter for to decrease speckle noise and 

preserve edge information. To remove the multiplicative noise, the image 

is filtered. A logarithmic transformation is used to convert the 

multiplication noise into additive noise. DWT is then used to split the 

picture into several resolution images. To demonstrate the superior 

outcomes, the subjective and objective performances are compared to 

current algorithms.  

2.8.2 Weiner Filer  

Tayade and Bhosale [4] offer a DT-CWT and Wiener filter-

based denoising technique. In medical image denoising, the Wavelet 

Transform is a mathematical operation framework. Wavelet algorithms 

are ideal for removing noise because they can collect signal energy at 

low energy transformation values. On further examination, the image 

enhancement technique performed by DTCWT is used to produce 

multiple frequency bands. In this procedure, the attributes of precision 

and smoothness are balanced. The following performance, as assessed by 

PSNR and SSIM, regulates the quality of the denoised image. 

For noisy image suppression, Long kumer and Gupta [5] 

introduced the DWT approach. It takes advantage of both the Weiner 

filter's approximation coefficient and soft thresholding approaches. The 
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noisy pictures are created by feeding the Weiner filter salt and pepper 

noise as well as Gaussian noise. Finally, the noisy images are denoised 

using a thresholding-based coefficient model. The method's performance 

is measured using metrics such as MSE and PSNR. 

Wavelet coefficient reduction techniques will remove noise 

from distorted images in the wavelet area. Mitiche et al [6] introduce one 

of the wiener filter-based DTCWT techniques. To denoise medical 

pictures, it uses either a hard or a soft thresholding approach. In 

comparison to DWT and SWT, the Wiener filter-based techniques 

seamlessly balance the accuracy. PSNR and SSIM are used to assess the 

quality of denoised images. 

2.8.3 Median Filer  

For the purpose of eliminating salt and pepper artefacts, Erkan 

et al. [7] suggested employing an Iterative Mean Filter (IMF). The 

surrounding pixel values are taken into account in IMF to identify noise 

and remove high density noise. However, a broad window affects the 

precision of noise reduction. As a result, while picture filtering, new grey 

values are applied to the core pixels. Finally, image enhancement is 

performed to provide a better denoising picture. In comparison to other 

filter approaches, the testing findings suggest that it produces high-

quality reformed pictures. The effect of a median filter, on the other 

hand, is harder to analyse. 
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Chen et al. [8] designed a novel approach for avoiding blur and 

edge loss in medical applications by integrating both DWT and median 

filters. Image capture, storage, processing, and reconstruction are the four 

elements of this denoising operation. The captured pictures are made up 

of impulse and Gaussian noise, with the original images being saved for 

parameter and data preservation. Wavelet decomposition is used in the 

image processing module to divide the medical picture into four sub 

bands. Improved wavelet thresholds handle the high frequency 

coefficient. After wavelet threshold processing, median filtering is 

applied to three high frequency sub bands. The final image is rebuilt, 

with the benefits of this method including the use of multiple median 

filters. Medical images with excellent accuracy were generated using 

changed filter coefficients. The results are compared to those of the 

contourlet, wavelet, and DTCWT schemas. 

2.8.4  Fuzzy Filer  

In fuzzy modelling methodologies, the disadvantages of the 

pixel domain are taken into account. By using a fuzzy smoothing process, 

the zero-order Takagi–Sugeno fuzzy model was able to reduce additive 

noise. Zhang et al. [19] suggested an adaptive fuzzy filtering approach 

for determining fuzzy model parameters for noisy picture data. Both 

stochastic and deterministic mathematical analyses are available. The 

filtering model's robustness is assessed in order to calculate upper bound 

magnitude estimate errors. The fuzzy-filtering algorithm does not need 

the inference of Gaussian noise. 
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2.8.5 Whitening Filer  

In underwater applications, image denoising is an important 

and improving method. Underwater exploration is being researched for 

territorial defence and marine scientific purposes. In underwater acquired 

mages, the noise energy spectrum density does not fit inside a specific 

range. Abdul wahed and Kamil [10] investigated many basic 

functionalities of a DWT-based image denoising approach. For denoising 

images with a whitening filter, the properties of coloured noise are 

converted to white noise. Erkan et al. [7] suggested using an Iterative 

Mean Filter to remove salt and pepper artefacts (IMF). The symlet, bi-

orthogonal, and Debauchiese wavelet bases recommended the denoising 

method to use the pre-whitening filter for creating conspicuous images. 

2.9 Thresholding techniques 

Erkan et al. [7] suggested using an Iterative Mean Filter to 

remove salt and pepper artefacts (IMF).However, the SURE-LET method 

uses point wise thresholding, which ignores the wavelet transform's 

intrascale information. As a result, the local wiener filter, as described in 

Zhang, is designed to combine the point-wise thresholding function with 

the SURE-LET approach. Wavelet transformations are compared 

subjectively and objectively to the performance of a hybridised 

thresholding-based denoising technique. 



58 
 

Bhandari et al. used evolutionary algorithms to compare the 

increasing sub-band adaptive thresholding function for various wavelet 

filters to denoise satellite pictures. Adaptive thresholding parameters are 

obtained using the Cuckoo Search (CS) method, PSO, and ABC. The 

quantitative and visual findings based on Meyer wavelet filter 

demonstrated the greater flexibility and efficiency of the CS method. For 

satellite pictures, the Meyer wavelet-based CS algorithm's denoising 

method provided the best results in terms of PSNR, SNR, and MSE. 

Based on linear Bayesian maximum a posteriori (MAP) 

estimation, Sun et al. [28] suggested a sparse representation model for 

image denoising. A linear Bayesian MAP evaluator is built to obtain the 

most probable one behind the annotations after producing a pre-

probability distribution in the demonstration vector. This is excellent for 

resolving typical image inversion issues. Furthermore, to address the 

picture denoising issue, a closed form solution with a few feasible 

approximations is constructed. All feasible patches are extracted and 

sorted into several sub groups using structural patterns in this novel 

technique. To estimate the MAP parameters, the K-SVD technique is 

used to train several dictionaries. 

The current media communication field's evolution, as well as 

the demand for high-quality visual information, has prompted the 

creation of several picture denoising algorithms based on DWT. 

Gaussian noise clearly distorts visual information communicated in 

image form. This is a common problem in image processing. Translation 
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invariant and wavelet thresholding together can reduce random noise 

using wavelet denoising technique due to their capacity to acquire signal 

energy at particular energy transformation levels. For image denoising, 

Hassan and Saparon proposed a wavelet threshold and image denoising 

translation invariant technique. The outcomes revealed improved visual 

performance and PSNR. 

Adaptive thresholding and k-means clustering-based picture 

denoising methods were reported by Yahya et al.. It's a hybrid of block-

matching hard-thresholding and 3D filtering (BM3D). In the heavy and 

mild noise areas, gentle and strong thresholding are used, respectively. 

Adaptive thresholding is used to achieve optimum noise reduction and 

high spatial frequency detail. Because of the capacity of k-means 

clustering to locate meaningful candidate-blocks, this clustering is 

acceptable in the final evaluation. It separates the denoised image into 

many sections and locates the boundaries between them. By using k-

means clustering, the reference blocks help to decrease bad matching. 

PSNR and SSIM's performance is compared to that of reference methods. 

2.10 Wavelet Coefficient based Denoising Methodologies 

In DWT, the multi-resolution topology may be used to 

investigate multiple frequencies at different resolutions. Yan et al. used 

non-local dictionary learning decomposition levels to apply wavelet 

sparsity and multi-resolution structure to noisy images. Additionally, 

hard and universal thresholds are used to determine the best threshold 
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value. The proposed strategy produced higher compression ratio, lower 

MSE, and improved PSNR. 

The shearlet transform is used for pre-processing, and the 

kernel smoother is used with variable texture and feature attributes. The 

image filtering with shearlet transform is the first stage in this two-step 

technique. The filter weight coefficients of Yaroslavsky are estimated in 

the second stage. Simulations on 2D pictures distorted by additive white 

Gaussian noise are used to verify the theoretical conclusions. The 

pseudo-Gibbs and shearlet-like artefacts were effectively suppressed 

using this strategy. 

Speckle noise is a typical occurrence in ultrasound pictures 

used in clinical diagnosis in the medical field. This makes it challenging 

to automatically diagnose ailments from ultrasound images. A speckle 

noise reduction strategy based on wavelet coefficients was proposed by 

Sahu et al. To create noise-free coefficients, the Bayesian technique is 

utilised. The wavelet and noisy coefficients are defined, respectively, by 

the Gaussian Probability Density Function (PDF) and the Cauchy prior. 

The Maximum A Priori estimator is then used to produce the noise-free 

wavelet coefficients (MAP). The appropriate variance of the impacted 

wavelet coefficients is evaluated using the Median Absolute Deviation 

(MAD) evaluator. PSNR (21.48 percent), SSIM (1.82 percent), Edge 

Preserving Index (EPI) (7.68 percent), and Correlation coefficient (ρ) (1 

percent) had better experimental outcomes than the other approaches. 



61 
 

With the aid of a multi-scale product rule, wavelet thresholding 

and adaptive wavelet thresholding are used to maintain edge features and 

decrease blur. Vijay et al. created an improved wavelet threshold 

function. This function denoizes the wavelet coefficients for dissecting 

detail in a picture with Gaussian noise. The wavelet distortion is 

calculated using the reconstructed image's approximation coefficients. 

The results show that the advanced threshold function has a higher 

influence on denoising than hard and soft thresholds. The threshold for 

different layers of wavelet will be changed when denoising. The 

approach that is advised combines the wavelet enhanced threshold with 

the benefits of the median filter.  

2.11 Machine Learning Denoising Methodologies 

Sensor noise in aircraft images degrades image quality, which 

has ramifications in satellite photography applications. As a result, deep 

learning techniques are used to eliminate noise from satellite data. The 

supervised learning is the deep learning technique that denoises data the 

most. It needs tough-to-obtain noisy and artefacts free picture pairings, 

which are challenging to get in real time. For satellite imaging, Song et 

al. developed a wavelet sub band cycle consistent adversarial network 

(WavCycleGAN) based denoising approach. To compensate for the lack 

of balancing data, the proposed unsupervised learning strategy employs 

cycle consistency loss and adversarial effect loss. In order to properly 

show high-frequency components as margins and comprehensive 

information, the wavelet-subband domain learning programme is also 
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offered. The efficiency of the noise reduction approach is demonstrated 

by the vertical stripe removal and wave noises of satellite sensor image 

findings. 

Stripe noise degrades the quality of infrared imaging systems. 

As a result, noise reduction is carried out via destroying algorithms, 

which struggle to maintain balance. To address this problem, a wavelet-

deep neural network with a transform domain was suggested by Guan et 

al. [12]. To correctly estimate the noise with the lowest predicted load, it 

completely considers the inherent qualities of complementary 

information among the stripe noise and the coefficients of different 

frequency sub bands. In addition, directional regularisation is employed 

to extract scene features of stripe noise and to retrieve many other details 

properly. In terms of quantity and quality estimations, extensive testing 

of simulated and real-world data indicated that the suggested technique 

surpasses various established de-striping methods. 

Su et al. [15] suggested a deep learning and mapping (DLM) 

system for detecting changes in ternary tasks in imbalanced pictures. It is 

based on a deep learning method that uses feature extraction from two 

pictures and two networks. On both photos, the auto-encoder is employed 

as a feature extractor for stacked denoising at first. The mapping 

functions are derived from the utilised stack mapping network after 

sample selection to build links between each class and the features. 

Finally, a comparison is done between the features and the clustered final 

trinity map. 



63 
 

Deep learning and model-based optimization algorithms are 

used to handle picture noise concerns. However, model-based 

optimization takes longer, and while deep learning is quicker, 

Convolution Neural Network (CNN) performance is subpar. Liu et al. 

[18] suggested a deep residual learning model that incorporates both 

multi-scale and dilated residual convolution groups to avoid the 

discussed effects. The use of a multi-scale convolution group reveals the 

patterns and field receptive expansion. To keep the denoising 

performance and enhance the training process, batch normalisation and 

residual connection are also used. After that, the hybrid dilated 

convolution is used to reduce gridding artefacts. Finally, the denoising 

performance produces enhanced outcomes. 

Ding et al. [20] suggested a convolution nerve-based image 

mixing noise reduction technique. The traditional filter desiccation 

algorithm can only remove one noise and is hence ineffective. As a 

result, this method achieves picture super-resolution in order to create a 

de-convolution layer that expands the image. Magnification factor is one 

of the de-convolution processes that eliminate image interference and 

noise. The de-convolution layer's magnifying impact is terrible. The 

algorithm showed good noise reduction results in the experiments, 

making it ideal for various noisy images. It can also help with image 

indexing and visual effects. 

Blind and Universal Image denoising is a unique model that 

can denoise images with any amount of noise. For additive Gaussian 
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noise reduction, El Helou and Süsstrunk [17] suggested using a deep 

learning image denoiser. It is based on a blind and universal picture that 

is logically founded. The network under consideration is based on fusion 

denoising, an optimum denoising method. It is theoretically derived from 

a Gaussian image assumption. Synthetic trials revealed an additive noise 

level that obscured the networks' generalisation power. The genuine 

images are denoised using the fusion denoising network. This strategy 

increased the PSNR results, which in turn improved the colour image 

performance. 

2.12 Bio-inspired Algorithms for Denoising 

Threshold optimum for wavelet image denoising was given by 

Zhao et al. [23] Wavelet conversion to a unique signal and wavelet 

selection were completed first. The GA technique was used to find the 

best threshold after wavelet decomposition of each level. To get final 

signals, the coefficients were quantized in high level at each level and the 

end inverse transition was applied to the coefficients. In order to utilise 

the best image threshold, a genetic algorithm was devised. The suggested 

strategy quickly obtained the appropriate threshold and shown good 

competence in a comparison of threshold techniques. 

For satellite image denoising in the wavelet transform, 

Noorbakhsh Amiri et al proposed a population-based Harris Hawks 

Optimization Technique (CMDHHO). Noise suppression techniques 

based on CMDHHO and TNN were compared to the de-noising 
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outcomes. This technology is computationally efficient and improves 

processing quality and quantity while speeding up the process. Optimized 

noise suppression outperforms TNN-based picture de-noising in the lab. 

Finally, the PSNR and SSIM data were compared using several de - 

noising techniques. 

Jonatas et al [34] suggested a hybrid genetic method for picture 

denoising (HGA). The sounds deformed the digital photos, which were 

then repaired without losing the texture, corners, or edges. HGA stands 

for a denoising approach combined with a genetic algorithm. As local 

search and mutation operators, this strategy employs various complex 

denoising algorithms and filtration strategies during evolution. Gaussian 

noise of various level combinations corrupted a collection of digital 

communities often the scientific community utilized it as a standard. 

During the studies, a fresh set of Satellite Aperture Radar (SAR) pictures 

warped by increased speckle noise were employed. The suggested 

method was then compared to many other approaches, and the findings 

were presented. 

Jeevitha and Amutha [33] use discrete wavelet transforms to 

build a block-based scrambling technique (DWT). The corners of the 

original image are extracted using this procedure. This approach 

comprises three phases: decomposing the DWT-plane, generating edge 

map sequences, and scrambling the DWT-level. The first phase is 

decomposing the images into various DWT-planes. The deriche edge 

detector technique was used in the second step to examine the corner 
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maps. To divide neighbouring pixels into various rows and columns, 

DWT-level scrambling was utilised. The tight association between 

neighbouring pixels deteriorates in this way. This strategy reduces time 

while also improving pixel correlation. 

To eliminate noise from satellite images, Asokan and Anitha 

offer a mix of bilateral filter and nature-inspired optimization techniques. 

The Gaussian noise in the satellite picture is removed using an Adaptive 

Cuckoo Search (ACS) technique with a bilateral filter to denoise the 

image. Other typical ways blur the edges of satellite photos, but our 

method does not. By removing Gaussian noise from the picture, it 

protects the corners and other crucial information connected to satellite 

images. It was quicker and less complicated than previous ways. The 

algorithm's limitation was that it couldn't completely eliminate the noise, 

so it suppressed it inside the image. 

Pan et al. [37] developed a unique pre-trained convolutional 

neural network for image denoising. This suggested article divides the 

synthetic aperture radar (SAR) pictures into LF bands and HF bands. In 

addition to additive white Gaussian noise, the Multi-channel Logarithm 

with Gaussian Denoising (MuLoG) structure featured a pre-trained fast 

and scalable denoising convolutional neural network (FFDNet) 

(AWGN). This approach removes unnecessary noise from both single 

channel and multiple channel SAR videos. 
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The stationary bionic wavelet transforms (SBWT) and the 1-D 

double-density complex DWT algorithms are suggested by Talbi [40] as 

a denoising technique for the EKG (ECG). SBWT, which provides the 

coefficients ce1 and ce2, initially reduced the artefacts in the ECG data. 

The coefficient ce1 stands for stationary Bionic, whereas ce2 stands for 

approximation one. The coefficients ce1 can remove white artefacts from 

the ECG data using the soft thresholding procedure. The ce2 coefficients 

can be denoised using the 1-D double-density complex DWT denoising 

approach. The ECG signals were taken from the MIT-BIT dataset, which 

includes ECG signals with additive Gaussian white noise and various 

SNR values. 

Bhargava and Sivakumar [39] suggest a non-local approach of 

packing multi patches based on directionality and multi-scale 

decomposition for eliminating noise from non-subsampled contourlet 

images. The Guided filter with picture statistics is also used in the local 

framework to decrease noise, such as edges, texturing, and other 

artefacts. A non-local strategy of packing multi patches filters is used to 

address low frequency sounds in the base subband and edges with 

moderate textural components in the detail scale. Image statistics are also 

employed in a guided filter to improve the visual impression of a 

denoised image. 

For robust denoising, Papageorgiou et al. used a greedy 

technique. For the estimate and modelling of outliers, the authors devised 

sparse modelling. The bulk of the outliers were successfully discovered 
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using this greedy strategy. For recovering denoised images from noisy 

photographs, including anonymous noise patterns, Zhu et al.[23] 

developed a novel blind image denoising technique.  It's a learning-based 

method for recovering a clean image from a noisy image containing 

different types of noise. Jia et al. suggested a novel TV-Stokes model 

with a beautiful geometrical structure for picture deblurring. It kept an 

image's textures, edges, and other information. Even in very blurred and 

highly noised images, it produced better results. 

By incorporating super pixel segmentation into low rank 

representation, Fan et al. presented a unique denoising approach. It 

eliminates outliers and different sorts of noise from hyper-spectral 

images' spatial information in order to generate homogenous zones. 

Shahdoosti et al. [32] proposed using a hidden Markov tree to denoise 

noisy pictures using a combination of one-sided exponential densities. To 

avoid pseudo-Gibbs occurrences, this approach employs a dual contourlet 

transform. To minimise picture noise, it consisted of one Gaussian 

distribution and two one-sided exponential distributions. 

Chandra et al. [30] conceived and implemented an enhanced 

high-speed adaptive filter-based denoising architecture on the Xilinx 

FPGA tool. It outperforms the existing wavelet based technique and 

adaptive filter architectures. It is required to decrease the distortions 

generated by multiple sources of noise in the case of an ECG. Vargas and 

Veiga (2020) [27] presented a denoising approach by genetic algorithm 

minimization of a new noise dissimilarity estimate as a new ECG 
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denoising approach (GAMNVE). In the noisy ECG signal, the 

GAMNVE approach uses the DWT and processes the wavelet 

coefficients by reducing a new noise variance estimate. The genetic 

algorithm was used to achieve this reduction. On the other hand, 

individual variances make ECG denoising problematic, mainly for DCG.  

As a result, Hao et al., [35] developed a multi-lead model-

based denoising scheme in which an inherently tailored guided filter is 

used for denoising. A patient-specific statistical prototype is made for 

each individual using a sparse auto-encoder (SAE), which can efficiently 

maintain complete signal properties. As a result, the statistical model's 

directed signal can operate well in the guided filter. The suggested 

technique can handle ECG readings with irregular heartbeats and hence 

increase disease identification accuracy. 

WT-based filter bank design for ECG denoising was 

implemented by Kumar et al., [24]. In comparison to earlier built 

architectures, the introduced strategy only has three low-pass filters and 

one high-pass filter. A multi-lead model has been suggested by Hao et 

al., [33], in which to denoise ECG data a guided filter is essentially fitted. 

A sparse auto-encoder (SAE), which can effectively maintain particular 

signal attributes, will be used. As a result, the statistical model's directed 

signal can accomplish well in the guided filter. 

Georgieva-Tsaneva [27] reviews the WT-based denoising 

method and provides an effectual algorithm for denoising in non-
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stationary signals that uses an adaptive threshold scheme, detailed and 

approximate coefficients processing, and the level of decomposition. The 

denoising procedures allow specifying the decomposition level, wavelet 

basis, and testing signal size, as well as calculating the denoising process 

assessment features.  

The Adaptive Dual Threshold Filter (ADTF) was suggested by 

Jenkal et al. [38] for the denoising of ECG data. The suggested design is 

not excessively complex and just utilises a small amount of resources. 

Wavelet denoising is one of the most used denoising methods for ECG 

data. The feeble a characteristic of ECG signals may, however, are 

diminished during the noise filtering process because of the frequency 

overlap between the EMG and the ECG. 

A modified wavelet design approach is presented by Wang et 

al. [19] and used for ECG signal denoising. The wavelet is constructed 

using the optimal filter coefficients, which are derived by predicting the 

amplitude-frequency response of the ideal filter. 

The Kalman filter-based novel Bayesian structure presented by 

Hesar and Mohebbi [8] may be used to different ECG morphologies 

without requiring the use of an existing scheme. For denoising the QRS 

complex as well as the P and T waves, it uses a filter bank with two 

adaptive Kalman filters. These filters' parameters are continually 

estimated and updated using the expectation-maximization (EM) 

technique. And also Manju and Sneha proposed two filters to remove the 
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noises by Wiener filter and the Kalman filter. The simulation results 

suggest that the Wiener filter is an excellent filter for denoising the ECG 

data. However, ECG analysis is a time-consuming operation that 

necessitates a significant amount of computational power due to the vast 

amount of data that is essentially evaluated in parallel at high 

frequencies.  

Mejhoudi et al. [15] evaluate the Adaptive Dual Threshold 

Filter (ADTF) approach for ECG signal denoising as a result using a 

number of embedded architectures. This technique was used to the MIT-

BIH Arrhythmia dataset with a 360 Hz sampling rate in order to validate 

the assessment. 

Swarm intelligence approaches are used in the biomedical 

signal processing sector by Yadav et al., [12] in the optimization of 

adaptive noise cancellers. The PSO, SOS, and harmony search (HS) 

optimization was used to evaluate and update the adaptive filter 

parameters.  

Heart rate signals obtained utilizing non-contact radar systems 

for use in assisted living situations are focused on by Pravin and Ojha, 

such signals contain more noise than those measured under clinical 

settings, necessitating the development of a new signal noise removal 

approach capable of determining adaptive filters. The wavelet and 

elliptical filtering methods are investigated in this study for the objective 

of decreasing noise in ECG readings recorded utilizing assistive 
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technology. Currently, the most frequent approach to reducing noise from 

such a waveform is to utilize filters, with the wavelet filter being the 

most prominent among them. However, in some cases, applying a 

different filtering approach can result in a waveform with a greater SNR. 

2.13 Summary 

The noise reduction strategies, filtering-based denoising 

approaches, transform-based denoising methods and machine learning 

techniques have all been thoroughly researched. The PSNR, MSE, and 

SSIM, as well as other metrics like SDME, PC, and SMAPE, are 

enhanced to be characterised as a better denoising approach, according to 

the literature review. It contributes significantly to the current research 

effort in expanding and increasing the performance of image denoising 

algorithms since an in-depth review of the existing approaches was 

conducted in a methodical manner.  

The focus of this study is on image denoising optimization 

methods based on WT. Machine learning-based neural network concepts 

are being investigated for this purpose. In addition, hybrid optimization 

methods are used to increase efficiency and improve PSNR. These are 

the most successful noise reduction approaches that have been presented 

in the field of ECG denoising so far. Though these methods are effective, 

the performance can be improvised by hybridizing with some other 

algorithms or filters thereby harvesting the best part of both the 

techniques. 
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CHAPTER 3 

ECG SIGNAL DENOISING USING OPTIMIZED ADAPTIVE 

HYBRID FILTER WITH EMPIRICAL WAVELET TRANSFORM  

3.1  Introduction 

The majority of modern therapeutic gadgets that capture bodily 

signals have grown smaller and more efficient in recent years. The ECG 

signal is the signals that are most frequently recorded. Due to the way it 

shows the monitoring of a patient's heart throughout medical treatment, it 

may be used to diagnose a variety of cardiac conditions. Muscle artefact 

(MA), baseline wander (BW), and electrode motion (EM), among other 

noises (coined artefacts), always degrade recorded ECG data. These 

sounds have a considerable influence on the ECG waveform, obscuring 

the ECG signal's weak qualities, making it harder to identify 

cardiovascular disorders. As a result, signal denoising for ECGs is 

becoming more significant. As a result, signal denoising for ECGs is 

becoming more significant. EMG interference, Power line noise, baseline 

drift, and electrode contact noise all distort the ECG signal, which is a 

weak non-stationary signal. 

Signals from electrocardiography (ECG) are essential for 

making a variety of heart problems diagnoses. The World Health 
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Organization (WHO) reports that CVDs kill more people globally than 

any other cause does each year. The ECG is done with accurate 

electronic equipment because cardiac pulses may fluctuate significantly 

and noise can impact decision accuracy. When collecting data to detect 

ECG signal features and make choices about various cardiac disorders 

using advanced algorithms, precision measurements are essential. 

Aberrations and noise, however, can skew even the most exact results. 

Both internal and external factors, such as the evaporating electrode gel 

in Parkinson's disease, can result in artefacts. 

During the process of collecting and transmitting the ECG 

signal, high frequency artefacts may pollute it (baseline wandering). 

Since noise in ECG data might result in incorrect interpretation, it must 

be eliminated. As a result, much work has gone into establishing 

mathematical approaches and computing algorithms for accurately 

extracting ECG patterns from normal (noisy) data for medical reasons 

during the last few decades. A Fourier transform-based method for 

extracting frequency domain ECG signal characteristics. However, this 

technique ignores time resolution, which has an impact on estimating 

accuracy. Other researches have overcome this issue by analysing time-

frequency data without affecting resolution. The wavelet transform-based 

algorithms were developed with the purpose of discovering medicinal 

applications. A balance between frequency and temporal resolutions is 

easier to accomplish in the wavelet domain, and a suitable wavelet may 

be chosen to provide enough precision. 
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The ECG readings can quickly reveal cardiac abnormalities. 

However, the data are still degraded as a result of artefacts introduced 

into the ECG signals during acquisition. These aberrations degrade the 

performance of the acquired ECG signals, resulting in incorrect cardiac 

disease prediction. The White Gaussian artefacts in the ECG data must 

be removed before the problem can be identified. To eliminate artefacts 

from ECG data, several denoising techniques can be applied. ECG signal 

filtering is all about finding a balance between de-noising performance 

and processing complexity. This research proposes a hybrid methodology 

that receives the ECG signals and provides a high denoised ECG signal 

which helps to predict the disease accurately.  

ECG signal denoising is a method for separating the real signal 

from unwanted signals to produce a denoised ECG that enables quick and 

accurate diagnosis. In order to prevent unforeseen artefacts from 

influencing the findings, a denoising algorithm should be able to 

recognise and filter distinct types of noise in the data. The ECG signal 

can get contaminated during acquisition and transmission by both low-

frequency noises like power-line interference and electromyogram noise, 

as well as high-frequency disturbances such additive white Gaussian 

noise, power-line interference, and electromyogram noise (baseline 

wandering).  Denoising the ECG signal is necessary because noise might 

cause inaccurate interpretation. As a result, much work has gone into 

creating mathematical techniques and computational algorithms that can 
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properly extract ECG features from normal (noisy) data during the 

previous few decades. 

The contribution of the work is as follows, 

 The input of the design is thought to be the ECG signals from the 

MIT-BIH dataset. A clean signal is combined with white Gaussian 

noise to produce a noisy signal. 

 The denoised ECG signal is decayed by the EWT and the window 

function is optimized by the proposed Honey Badger Optimization 

algorithm. 

 After the decomposition, the noisy signal is transferred into the 

Adaptive hybrid filter and its weight parameters are adjusted by 

the HBO technique. Finally, the denoised ECG signals are 

obtained from the suggested strategy. 

 The success of the proposed approach is verified in terms of 

NRMSE, SNR, MD, NRME, PRE, ME, and CC with various 

existing approaches.  
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3.2 Background 

3.2.1 Wavelet Transform 

In the mathematician's writings from a long time ago, the 

wavelet theory is obfuscated. Karl Weirstrass mathematically stated how 

to build the functions of a family by superimposing the measured forms 

of a given basis operation in 1873. The term wavelet refers to a tiny 

wave, and compactness denotes that the window function requirement is 

supported compactly to a limited length. A wave function is a temporal 

function that oscillates from time to time. Localized waves, on the other 

hand, are wavelets. They build up energy over time and are good for 

analysing transitory signals. Figure 1.3 illustrates the dissimilarity among 

a wave and a wavelet. 

The WT is among the most important signal processing 

techniques because of its multi-resolution capabilities. In contrast to 

Fourier transformation, WT is appropriate for non-stationary signals with 

varying frequency responses. The degree of frequency content similarity 

between a signal and the chosen wavelet is measured by frequency 

coefficients. Due to its band-pass like spectrum, these coefficients are 

estimated as the conversion of the signal and the observed wavelet 

function. It is also derived as an extended band pass filter. The radian 

frequency is inversely proportional to the magnitude in this case. Lower 

frequencies resemble greater scales and lengthier wavelet operations as a 

result. 
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Approximations are based on wavelet analysis, which is used 

to extract information from one of the signals using a high-scale 

technique. Details of a signal are exploited at lower levels to obtain 

greater information. Signals are often band-limited, and using finite 

energy is equivalent, therefore confined scale intervals are employed. 

Continuous Wavelet Transform, on the other hand, provides much 

redundant information. Because wavelet families are bi-orthogonal or 

orthogonal, using a space-saving Discrete Wavelet Transform (DWT) 

algorithm saves space and avoids superfluous analysis. The DWT is 

comparable to the subsequent version, which is generally a dyed stage 

model. The signal to be investigated is amplified using a wavelet 

function, and its transformation is calculated for each segment formed in 

wavelet analysis. At low frequencies, the wavelet transform enhances 

frequency and temporal resolution. 

 

(a)                                                                     (b) 

Figure 3.1: Dissimilarity among Wave and Wavelet (a) wave (b) 

wavelet 
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Any signal may be analysed by scaling and translating a single 

mother wavelet function (Basis function). Because their energy is 

concentrated throughout time and has wave-like (duration) properties, 

wavelets allow simultaneous time and frequency analysis of signals. As a 

result, the wavelet provides a flexible mathematical tool for evaluating 

statistically unexpected and time-varying (non-stationary) signals, 

particularly in the region of discontinuities, which is a prevalent property 

of images with edges that are discontinuous. 

3.2.2 Adaptive Filter 

An approach containing an adaptive filter includes a linear 

filter with a transfer function that may be optimised and is controlled by 

moveable parameters. The majority of adaptive filters were designed in a 

digital manner owning to the complexity for optimization methods. 

Adaptive filters are necessary in some situations because certain elements 

of the intended processing operation are not known or unpredictable. T 

By receiving feedback in the form of an error signal, the closed loop 

adaptive filter improves its transfer function. In order to lower the cost, 

which is essential for the optimum filter performance, the closed loop 

adaptive method often entails feeding a cost function to an algorithm that 

determines how to adjust the filter transfer function on the subsequent 

iteration. The mean square of the error signal is the most typical cost 

function.  
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The recording of a heartbeat may be hampered by noise from 

the AC mains (an ECG). The harmonics and frequency of a power source 

may change over time. The heartbeat almost probably contains frequency 

components in the rejected zone, therefore one way to decrease noise is 

to filter the signal using a notch filter at the mains frequency and its 

environs. However, this might considerably impair the quality of the 

ECG. 

An adaptive filter could be utilized to reduce the chance of data 

loss. The adaptive filter would receive data from the patient as well as the 

mains, enabling it to follow the noise's varying true frequency and 

exclude it from the recording. In these situations, an adaptive approach 

often permits a filter with a reduced rejection range, indicating that the 

output signal quality is better for medical purposes. 

3.2.3 LMS Technique 

When a tapped delay line in FIR framework is included in the 

variable filter, the least mean square updating mechanism is simple to 

implement. The FIR filter's coefficients are typically modified as follows 

after each sample: 

 (3.1) 

Here,  is known as the convergence factor. 
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Because the LMS approach requires no precise relationship 

between the X values, it may be used to change both a linear combiner 

and a FIR filter. The following is the update formula: 

 (3.1) 

The LMS algorithm modifies each weight by a little amount at 

each time k. If the modification had been made at time k, the error would 

have been reduced. The accompanying value X and the fault at time k 

determine the magnitude of each weight shift. The weights that have the 

most influence on the production have been adjusted the most. The 

weights should remain the same if the mistake is zero. If the value 

matching of X is 0, altering the weight has no impact, thus it is left alone. 

3.3 Proposed Approach 

In this proposed approach, a novel strategy for denoising ECG 

signal based on Empirical Wavelet Transform (EWT) with honey badger 

optimization algorithm and weighted adaptive filter is proposed. Initially, 

the White Gaussian artefacts are included in the ECG signal images 

obtained from three datasets namely MIT-BIH ARR, BIDMC-CHF and 

MIT-BIH NSR. Then the acquired ECG signals are denoised using 

Empirical Wavelet Transform (EWT) in which the window size is 

optimized with a Honey Badger Optimization (HBO) algorithm to obtain 
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the optimum value. Finally, the denoised image is again processed with a 

weighted adaptive filter for enhancing the edge information and 

improving the denoising performance. Furthermore, the suggested 

method is compared against current denoising methods. The suggested 

approach's framework is defined in Figure 3.2. 

 

Figure 3.2: Proposed Approach Flow diagram 

3.3.1 Empirical Wavelet Transform (EWT) 

The EWT was founded by Jerome Gilles in the year 2013 

which uses the adaptive wavelet filter bank for decomposing. In the 

proposed approach the EWT uses weighted adaptive filter for denoising 

the ECG signals. The EWT works based on segmenting the Fourier 

afterwards it constructs a group of wavelet filters that helps to retrieve 

the various modes of the ECG.     
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Figure 3.3: Flow Diagram of EWT 

 If the sections of Fourier are automatically then EWT adapts 

to adaptive for handling this weighted adaptive filter is designed.  The 

operation of EWT is it locates all of the spectrum's local maxima and 

then uses the centres of the two neighbouring local maxima as the 
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Fourier segment borders. Figure 3.3 demonstrates the operation of the 

EWT. 

In the process of denoising, at first white Gaussian noise is 

introduced to the input ECG signals in various amplitude scales to create 

synthetic bio-signals contaminated by WGN over a wide range of SNR. 

Because substantial noise levels deform ECG to such an extent that small 

magnitude complexes are not discernible, only SNRs greater than 0 dB 

are evaluated. 

EWT is a wavelet that is tailored to the signal being processed. 

This wavelet is analogous to that of band-pass filters. Empirical wavelets 

allow signal flexibility. It divides the certain signal into a variety of 

modes called AM-FM components using this wavelet. The Fourier 

spectrum of these AM-FM components is compactly supported. Different 

mode segmentation is equal to Fourier spectrum segmentation in this 

case. Assume that there are N segments in the Fourier spectrum. Between 

each segment, there is a limit . The task of segmenting the spectrum is 

critical since segmentation allows for adaptation. Our goal is to 

distinguish the various regions of the spectrum that correspond to various 

modes. We need a total of  borders to divide into  segments by 

spectrum, but the Fourier spectrum limit is among 0 and , hence 

need  additional limits. To establish such confines, initially locate the 

spectrum's local maxima and arrange them in decreasing order. If the 

algorithm finds  maxima, two scenarios can emerge. 
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: Maintain the first  maxima once the algorithm 

discovered sufficient maximum to determine the necessary segments. 

: Maintain all of the observed maxima because the signal 

contains fewer modes than expected and set  to the proper value. 

The empirical wavelet transform is defined similarly to the 

classical wavelet transform. The inner product of the Empirical wavelets 

yields the detail coefficients [17]. 

          (3.1) 

And the inner product of the scaling function with the 

approximation coefficients, 

           (3.2)        

Where  and  are well-defined by 

 

      (3.3) 

The reconstruction is obtained by, 
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                (3.4) 

The mid points among the adjacent local maxima are obtained. 

After, the rectangular window function is applied which is utilized to 

multiply the midpoints with this window function. Then the inverse 

Fourier transform is taken.  

3.3.2 Rectangular window function 

Equations (3.5) and (3.6) gives the weighting function and 

spectrum of the -point Rectangular window function. In time domain, 

    (3.5) 

In frequency domain, 

                     (3.6) 

The window design function outperforms filter design 

strategies in terms of performance, easiness, and robustness. The 

performance of a window function with a progressive deterioration to 

zero has been enhanced. Therefore, to optimize the window function, the 
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HBO algorithm is introduced. The HBO algorithm is utilized to MSE 

parameter which is represented in Equation, 

                 (3.7) 

Where, (𝑚) is the pure signal, (𝑚) is output of the filter output 

and number of sample is signified into , that is each MIT-BIH signal.  

3.3.3 Adaptive Hybrid Filter  

Adaptive filtering is a mechanism for iteratively determining 

the relationship between two signals. Figure 3.4 demonstrates the flow 

diagram of an adaptive filter. Where  represent desired signal,  

is the adaptive filter's input signal,  is the adaptive filter's output 

signal, and  is the error signal. The difference among signals  

and  is  which are mathematically stated as (3.8)-(3.10). The 

signals in this case are a pair of reference signals and information and the 

configuration is used to implement a digital filter as a FIR.  

         (3.8) 

         (3.9) 

           (3.10) 
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Figure 3.4: Adaptive hybrid filter 

In an ECG signal,  is made up of additive low-frequency 

and high-frequency components that are unrelated to . The signal 

 is used in this paper comes from the MIT-BIH dataset. The high 

and low-frequency noise components are  and , respectively. 

The adaptive hybrid filter receives the reference noise  and  to 

creates the outputs  and , respectively. The difference between 

 and  is computed as the error signal  that fed back to the 

adaptive hybrid filter in each iteration to alter its weight vector . 

The iteration process will continue until the suggested HBO method 

minimizes the error . The low-frequency noise output 

signal, , is sent to the adaptive hybrid filter's second stage, 

wherever  is figured as the difference between  and 

. The adaptive hybrid filter receives  and updates its weight 

vector  in each iteration until  is minimized.  is roughly 
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equal to as the final output signal. The output of the first stage of 

adaptive hybrid filter, and the output of the second stage . 

 

Figure 3.5: Proposed Adaptive Hybrid Filter (AHF) 

3.3.4 Honey Badger Optimization - Empirical Wavelet Transform 

(HBO-EWT) 

For diminishing the artefacts interference or frequency 

dispersion in the acquired ECG signals the Honey Badger Optimization 

(HBO) algorithm is hybrid with the EWT.  The proposed approach finds 

all the local maxima found in the spectrum of Fourier in a specified 

window and afterwards the boundaries are segmented. The specified 

window value is optimized by the HBO algorithm. The foraging features 

of honey badger are emulated in the HBO approach. It contains two 
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stages one is digging and the other is honey. The following are the steps 

followed by the HBO algorithm. 

 Initialization: The Eqn. (3.11) initializes the total honey badgers and 

its locations. 

 (3.11) 

 Here, indicates the total number of honey badgers, i is the 

location of the honey badger, a is an arbitrary number varies from 0 to 1 

and  are the maximum, minimum bounds. 

 Defining Intensity: It defines thevictims power and the distance 

which is computed as follows, 

 

(3.12) 

 (3.13) 

 (3.14) 
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Here,  is the power of the victim and  is the distance of the 

victim. 

 Modify Density Factor: Altering the density factor helps to reduce 

the number of iterations and is computed as follows. 

 

(3.15) 

 Here,   denotes the density factor, t is the changing time 

and  is the constant value ≥1 by default it is set to 2. 

 Evading local optima: This contains two stages digging and honey 

which helps to evade from the local optima.  

 Digging stage: The digging stage is computed as in Eqn. (3.16). 

 

(3.16) 

 Here, the search position is modified based on the flag F. 

 Honey stage:  The honey stage is computed as in Eqn. (3.17). 
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 (3.17) 

The flag F is computed based on the Eqn. (3.18) 

 
(3.18) 

Thus the HBO algorithm integrated with EWT denoise the 

ECG signal in a better way than other existing approaches and provide 

better accuracy in diagnosing the disease. 

3.4 Results and Discussions 

MATLAB2018a software running on a Windows 8.1 operating 

system is used to simulate the suggested denoising method. White 

Gaussian noise with 10dB variations is incorporated in the ECG signals. 

For experimental purposes, the proposed technique is tested on the MIT-

BIH ARR, MIT-BIH NSR, and BIDMC-CHF datasets. One of the most 

well-known ECG databases, the MIT-BIH dataset consists of 48 half-

hour snippets from 2-channel ambulatory ECG recordings made at the 

BIH Arrhythmia Laboratory between 1975 and 1979. The kind of 

congestive heart failure was determined using data from the BIDMC 

CHF dataset, which contains 150 signals for testing (CHF). Sinus rhythm 

signals from the MIT-BIH normal sinus rhythm dataset were utilized for 
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testing. It comprises 18 ECG recordings from patients who were sent to 

the same institution's Arrhythmia Laboratory. There were no noticeable 

arrhythmias in the signals in this database, which included five males 

between the ages of 26 and 45 and thirteen females between the ages of 

20 and 50. There were 142 10-second signals (type NSR) used in total. 

Figure 3.6 illustrates the datasets, clean ECG signal, artefacts ECG signal 

and denoised ECG signals. 

Dataset Clean ECG Artefacts ECG Denoised ECG 

MIT-

BIH 

ARR 
   

MIT-

BIH 

NSR 
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BIDM

C-CHF 

   

Figure 3.6: Artefacts free ECG Signal, Artefacts ECG Signal and 

Denoised ECG Signal 

Table 3.1 describes the performance of the suggested approach 

like normalized root-mean-square error (NRMSE), maximum error (ME), 

peak reconstruction error (PRE), mean difference (MD), mean square 

error (MSE), correlation coefficient (CC), signal-to-noise ratio (SNR), 

and normalized root maximum error (NRME) is computed and are 

compared with other existing approaches such as RLS-based adaptive 

filter, Multichannel LMS and DWT-based baseline wander. From the 

readings it is evident that the suggested approach produces 

superiordenoised signals than the other traditional approaches. 

Table 3.1: Performance of the Suggested Methodology compared 

with other Approaches 

Datasets RLS-based 

adaptive 

Multichannel 

LMS 
DWT- based 

baseline 

Proposed 
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filter wander 

SNR 

MIT-BIH 

ARR 
73.624 75.258 80.158 83.65 

MIT-BIH 

NSR 
70.265 73.189 78.529 80.12 

BIDMC-

CHF 
72.221 76.741 84.621 86.21 

MSE 

MIT-BIH 

ARR 
2.621e-10 1.984e-10 1.854e-10 2.369e-11 

MIT-BIH 

NSR 
3.149e-10 2.956e-10 2.369e-10 1.95e-10 
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BIDMC-

CHF 
3.901e-10 3.652e-10 2.689e-10 1.632e-10 

ME 

MIT-BIH 

ARR 
8.308e-4 6.325e-4 4.102e-4 6.954e-5 

MIT-BIH 

NSR 
1.589e-3 1.360e-3 9.547e-4 7.158e-4 

BIDMC-

CHF 
9.659e-4 7.172e-4 6.984e-4 6.341e-4 

MD 

MIT-BIH 

ARR 
-7.052e-7 -4.150e-7 -3.049e-7 -1.10e-7 

MIT-BIH 
-7.454e-7 -6.894e-7 -5.154e-7 -3.15e-7 
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NSR 

BIDMC-

CHF 
-1.025e-6 -6.250e-7 -5.965e-7 -3.87e-7 

PRE 

MIT-BIH 

ARR 
4.897e-7 3.564e-7 1.065e-7 5.624e-8 

MIT-BIH 

NSR 
9.741e-8 9.654e-8 8.264e-8 6.254e-8 

BIDMC-

CHF 
1.055e-7 9.056e-8 8.364e-8 7.056e-8 

NRME 

MIT-BIH 

ARR 
2.904e-1 2.365e-1 2.105e-1 1.250e-1 
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MIT-BIH 

NSR 
2.981e-1 2.450e-1 2.119e-1 1.354e-1 

BIDMC-

CHF 
3.204e-1 2.415e-1 2.35e-1 1.405e-1 

NRMSE 

MIT-BIH 

ARR 
3.647e-5 2.5691e-5 1.9521e-5 1.508e-5 

MIT-BIH 

NSR 
3.054e-5 2.641e-5 1.9974e-5 1.689e-5 

BIDMC-

CHF 
3.954e-5 3.564e-5 2.94e-5 1.984e-5 

CC 

MIT-BIH 
0.9698 0.9788 0.9998 1 
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ARR 

MIT-BIH 

NSR 
0.9788 0.9788 0.9888 0.9998 

BIDMC-

CHF 
0.9708 0.9715 0.9899 0.9999 

Figures 3.7 to 3.13 displays the SNR, NRMSE, MSE, ME, 

PRE, MD, CC and NRME of proposed and existing RLS-based adaptive 

filter, Multichannel LMS and DWT-based baseline wander denoising 

methods. The experimental process is conducted on three MIT-BIH 

database ECG signals. As can be shown, the suggested method achieves 

superior SNR values for nearly all signals when compared to the 

denoising techniques currently in use. Thus, the proposed algorithm is 

powerful to deal with noises compared to existing denoising methods. 

Moreover, the MSE and NRMSE values should be least as possible for 

denoised signals. The proposed approach has reportedly obtained the 

least amount of ME and NRMSE. In contrast, DWT-based baseline 

wander, Multichannel LMS, and RLS-based adaptive filter acquired the 

highest ME and NRMSE when compared to current denoising 

techniques. These outcomes show that the suggested approach is suited 

for an efficient denoising procedure. Each coefficient in the wavelet 
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domains is distributed with noise energy. Among the denoising 

algorithms other than proposed algorithm DWT-based baseline wander 

has gained relatively improved denoising performance than existing 

denoising algorithms. 

 

Figure 3.7: Various denoising schemes compared with Suggested 

scheme in terms of SNR 
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Figure 3.8: Various denoising schemes compared with Suggested 

scheme in terms of MSE 

 

Figure 3.9: Various denoising schemes compared with Suggested 

scheme in terms of PRE 
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Figure 3.10: Various denoising schemes compared with Suggested 

scheme in terms of ME 

 

Figure 3.11: Various denoising schemes compared with Suggested 

scheme in terms of NRME 
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Figure 3.12: Various denoising schemes compared with Suggested 

scheme in terms of NRMSE 

 

Figure 3.13: Various denoising schemes compared with Suggested 

scheme in terms of CC 
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Signal-to-noise ratio (SNR), maximum error (ME), peak 

reconstruction error (PRE), normalised root mean square error 

(NRMSE), mean square error (MSE), mean difference (MD), correlation 

coefficient (CC), and normalised root maximum error (NRME) are 

computed and are compared with other existing machine learning 

approaches like PSO, AOA, and MVO. The performance of the proposed 

approach is described in Table 3.2. The findings demonstrate that 

suggested HBO with EWT strategy outperforms the other current 

machine learning approaches in terms of performance. 

Table 3.2: Performance of the Suggested Approach compared with 

other Machine Learning Methodologies 

Datasets PSO AOA MVO Proposed 

SNR 

MIT-BIH 

ARR 
69.254 73.154 78.154 83.65 

MIT-BIH 

NSR 
70.890 72.890 75.624 80.12 
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BIDMC-

CHF 
81.069 83.654 85.265 86.21 

MSE 

MIT-BIH 

ARR 
3.658e-10 3.789e-10 1.687e-10 2.369e-11 

MIT-BIH 

NSR 
5.065e-10 4.356e-10 3.651e-10 1.95e-10 

BIDMC-

CHF 
6.087e-10 5.648e-10 3.987e-10 1.632e-10 

ME 

MIT-BIH 

ARR 
3.698e-4 1.687e-4 9.635e-5 6.954e-5 

MIT-BIH 
2.397e-3 1.589e-3 9.347e-4 7.158e-4 
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NSR 

BIDMC-

CHF 
3.087e-3 1.674e-3 8.146e-4 6.341e-4 

MD 

MIT-BIH 

ARR 
-3.658e-7 -3.458e-7 -2.39e-7 -1.10e-7 

MIT-BIH 

NSR 
-3.897e-7 -3.854e-7 -3.674e-7 -3.15e-7 

BIDMC-

CHF 
-4.2287e-7 -4.125e-7 -3.978e-7 -3.87e-7 

PRE 

MIT-BIH 

ARR 
7.651e-8 6.974e-8 6.874e-8 5.624e-8 
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MIT-BIH 

NSR 
7.047e-8 6.874e-8 6.814e-8 6.254e-8 

BIDMC-

CHF 
7.369e-8 7.254e-8 7.156e-8 7.056e-8 

NRME 

MIT-BIH 

ARR 
1.957e-1 1.705e-1 1.548e-1 1.250e-1 

MIT-BIH 

NSR 
1.796e-1 1.684e-1 1.567e-1 1.354e-1 

BIDMC-

CHF 
1.894e-1 1.782e-1 1.635e-1 1.405e-1 

NRMSE 

MIT-BIH 
1.960e-5 1.705e-5 1.678e-5 1.508e-5 
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ARR 

MIT-BIH 

NSR 
1.987e-5 1.804e-5 1.735e-5 1.689e-5 

BIDMC-

CHF 
2.222e-5 2.173e-5 2.014e-5 1.984e-5 

CC 

MIT-BIH 

ARR 
0.9998 0.9999 0.9999 1 

MIT-BIH 

NSR 
0.9998 0.9998 0.9999 0.9998 

BIDMC-

CHF 
0.9989 09998 0.9999 0.9999 

Figure 3.14 depicts the SNR of different optimization 

approaches like PSO, AOA and multi-verse optimization algorithm 
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(MVO) compared with the proposed approach. From this figure it is 

evident that the suggested approach gives higher SNR value than other 

optimization algorithms. The experimental findings illustrates that the 

proposed approach is superior to all other denoising techniques. 

 

Figure 3.14: Various Optimization algorithms compared with 

proposed scheme in terms of SNR 

Figure 3.15 compares the Mean Square Error (MSE) of several 

optimization techniques to the proposed methodology, including PSO, 

AOA, and multi-verse optimization algorithm (MVO). The 

recommended technique provides a less MSE value than previous 

optimization strategies, as seen in this graph. The experimental findings 

demonstrate that the proposed strategy outperforms every other 

optimization technique currently in use. 
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Figure 3.15: Various Optimization algorithms compared with 

proposed scheme in terms of MSE 

Figure 3.16 depicts the maximum error (ME) of numerous 

optimization methodologies including PSO, AOA and multi-verse 

optimization algorithm (MVO) compared with the proposed approach. 

From this figure it is evident that the suggested approach gives lesser ME 

value than other optimization algorithms. The experimental findings 

illustrates that the proposed approach is superior to all other optimization 

techniques. 
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Figure 3.16: Various Optimization algorithms compared with 

proposed scheme in terms of ME  

 

Figure 3.17: Various Optimization algorithms compared with 

proposed scheme in terms of MD 
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Figure 3.17 shows the mean difference (MD) between the 

suggested technique and other optimization methodologies including 

PSO, AOA, and MVO. This chart shows that the proposed technique 

generates a larger MD value than existing optimization approaches.  

The peak reconstruction error (PRE) between the suggested 

approach and other optimization algorithms like PSO, AOA, and multi-

verse optimization algorithm (MVO) is shown in Figure 3.18. The 

suggested approach produces a lower PRE value than existing 

optimization techniques, as seen in this graph. The results of the 

experiments reveal that the proposed strategy outperforms all other 

optimization strategies. 

.  

Figure 3.18: Various Optimization algorithms compared with 

proposed scheme in terms of PRE 
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Figure 3.19 depicts the correlation coefficient (CC) of 

numerous optimization methodologies including PSO, AOA and multi-

verse optimization algorithm (MVO) compared with the proposed 

approach. From this figure it is evident that the suggested approach gives 

better CC than other optimization algorithms.  

 

Figure 3.19: Various Optimization algorithms compared with 

proposed scheme in terms of CC 

The normalized root maximum error (NRME) among the 

suggested approach and other optimization algorithms like PSO, AOA, 

and multi-verse optimization algorithm (MVO) is shown in Figure 3.20. 

The suggested approach produces a lower NRME value than existing 

optimization techniques, as seen in this graph. The results of the 
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experiments reveal that the proposed strategy outperforms all other 

optimization strategies. 

 

Figure 3.20: Various Optimization algorithms compared with 

proposed scheme in terms of NRME 

The NRMSE between the suggested strategy and other 

optimization approaches like PSO, AOA, and multi-verse optimization 

algorithm is shown in Figure 3.21. In comparison to previous 

optimization techniques, the recommended methodology produces a 

significantly lower NRMSE. The results of the experiments reveal that 

the proposed strategy outperforms all other optimization strategies. 
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Figure 3.21: Various Optimization algorithms compared with 

proposed scheme in terms of NRMSE 

Table 3.3 illustrates the Mann-Whitney U test for the proposed 

approach and the other existing approaches. On comparing this proposed 

approach produces best diagnosing value than the existing approaches. 

Table 3.3: Mann-Whitney U test 

Method Mean 
Sum of 

ranks 

U 

value 
P value 

PSO 2.3333 7 8 0.2 
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Proposed 4.6667 14 1 

AOA 2.6667 8 7 

0.4 

Proposed 4.3333 13 2 

MVO 2.6667 8 7 

0.4 

Proposed 4.3333 13 2 

The use of analysis of variance (ANOVA) is advised for 

identifying significant factor or interaction effects. ANOVA is a valuable 

method for breaking down total variability into usable components like 

mean sum of squares (MS), F-value, sum of squares (SS), and degree of 

freedom (Df), among others. Table 3.4 illustrates the output parameters 

and the values obtained during the ANOVA test for various optimization 

algorithms with the proposed denoising approach. 
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Table 3.4: Variance Investigation (ANOVA) 

Source SS Df MS F Prob>F 

Columns 152.979 3 50.9931 1.8 0.2242 

Error 226.028 8 28.2535 

Total 379.008 11 

For the average of all datasets, Figure 3.22 illustrates the 

convergence curve of the suggested denoising technique and similar 

current algorithms. In comparison to previous methods, the suggested 

method demonstrated good convergence. The suggested technique is 

based on gain optimization using the HBO algorithm, with execution 

time being a critical aspect in the denoising strategy. When compared to 

current methods such as PSO, AOA, and MVO, the suggested technique 

requires less computing time. 
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Figure 3.22: Convergence Curve for the proposed and existing 

denoising approaches 

3.5 Summary 

This study uses HBO, a novel bio-inspired metaheuristic 

algorithm, to implement an adaptive hybrid filter-based denoiser and 

demonstrate HBO's capacity to find high-quality solutions that 

outperform other metaheuristic algorithms such as PSO, AOA, and 

MVO. The HBO algorithm not only maintains a correct poise among 

exploration and exploitation, however, it also features a control 

parameter-free algorithm, which eliminates the need for a time-

consuming control parameter tweaking process. EWT window function 

and filter parameters are adjusted by the proposed HBO algorithm. A 

comparison of the HBO approach with the RLS-based adaptive filter, 
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multichannel LMS, and DWT methods has been done to show the 

usefulness of the proposed adaptive hybrid filter. When compared to 

prior reported results, estimated results show that the proposed HBO 

based adaptive hybrid filter achieves a considerable improvement in 

NRMSE, SNR, MD, NRME, PRE, ME, and CC. As a result, the 

proposed strategy for denoising the cardiovascular signal is quite 

effective. As a consequence of the examined the findings and debates, it 

can be said that the suggested HBO algorithm supported by EWT and 

AHF can be employed efficiently for cardiovascular signal denoising. 
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CHAPTER 4 

ECG SIGNAL DENOISING USING DISCRETE WAVELET 

TRANSFORM WITH AFRICAN VULTURE OPTIMIZATION 

ALGORITHM 

4.1  Introduction 

Electrocardiography (ECG), which is largely an electrical 

signal, depicts cardiac activity. It's displayed in the form of a graph. 

Electrodes (3 or 12 leads) are externally fastened to the thorax, legs, and 

hands to record the data. On the ECG, the potentials produced by 

cardiovascular muscle activity are depicted. It is commonly used by 

doctors to predict and treat a wide range of cardiovascular problems. The 

QRS complex, P, T, and U frequencies, can all be seen on an ECG, each 

of which is associated with a different phenomena that happens within a 

single cardiac cycle. The combination of these entities, as well as 

knowledge of the ECG scale, enables the computation of heart rate and 

the diagnosis of rhythm problems including atrial fibrillation, atrial 

flutter, cardiac arrhythmia, sinus tachycardia, and sinus bradycardia, 

among others. The QRS complex's axis deviation, for example, is a sign 

of ventricular hypertrophy, anterior and posterior fascicular block, and 

other illnesses that may be diagnosed via shape analysis. 
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An examination to ascertain the electrical potentials of the 

heart is called an electrocardiogram (ECG). The depolarization and 

repolarization of certain cells brought on by the movement of Na+ and 

k+ ions through the blood causes the electrical wave to be generated. 

Since the ECG signal is usually in the 2 mV region, a recording 

bandwidth of 0.1 to 120 Hz is required. Electrodes are applied to the 

patient's skin at the patient's current locations as part of a non-invasive 

technique for collecting the ECG. The ECG signal and heart rate serve as 

indicators of the cardiac illness of the human heart. A disturbance in 

heart rate or rhythm, or a change in the morphological pattern of the ECG 

signal, are both considered cardiac arrhythmias. The recorded ECG 

waveform is analysed to detect and diagnose it. 

The ECG signal in a clinical setting is subjected to a variety of 

artefacts during capture. Random body and equipment noise, electrode 

contact noise, respirational movements, and electromyography artefacts 

are all major sources of noise. These disturbances decrease signal quality, 

frequency resolution, and have a significant impact on the morphology of 

critical ECG signals. For improved diagnosis, it is critical to eliminate 

ECG signal disruptions and increase ECG signal accuracy and reliability. 

A noisy ECG signal has been investigated in a variety of 

methods. The signal is first filtered using high pass, low pass, and notch 

filters. On the other hand, these filters are static. The static filter's most 

significant drawback is that it eliminates a number of significant 

frequency components around the cutoff frequency. Static filters have set 
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filter coefficients. Because the noise's time variable behaviour is 

uncertain, fixed filter coefficients are difficult to use to reduce 

instrumentation artefacts. Adaptive filtering approaches have been 

created to get around the drawbacks of static filters. Other dynamic filters 

include the modified extended Kalman filter, wiener filter, adaptive 

Kalman filter, and other dynamic filters. 

An essential stage in signal processing is the elimination of 

artefacts. A heart condition's diagnosis may be made using an ECG. ECG 

is a quick, painless, and non-invasive method of evaluating the 

cardiovascular system. The accurate extraction of information from a 

signal necessitates the precise characterisation of waveform 

morphologies and the absence of noise.  While obtaining the ECG signals 

the signals are tainted by different type of artefacts including motion 

noise, electromyogram artefacts, and interference in power line and 

wandering baseline. It is difficult to eliminate these aberrations from the 

recorded ECG signal meanwhile an ECG is non-stationary. In this article, 

a novel denoising method that combines the discrete wavelet transform 

(DWT) and African vulture optimization (AVO) algorithm is proposed to 

denoise the white Gaussian noise found in ECG data. 

Waveform morphologies must be well-characterized and noise-

free to guarantee that the data obtained from a signal is correct. ECG, on 

the other hand, is a very little electric signal with amplitudes in the 

millivolt range. ECG noise comprises instrument interference, human 

activity, baseline drift, and other signal-related variables. The most 
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frequent noise in ECG data, baseline wander generates the most 

disturbances because of its magnitude. The ST segment as well as tiny 

waves like the P and T waves are frequently disrupted as a result of the 

signal deviating from its typical baseline level. As a result, researchers 

have proposed several strategies for decreasing signal noise. 

A common signal processing technique called the wavelet 

transform (WT) creates a smooth signal in the time-frequency domain by 

using variables such the wavelet function name, thresholding techniques, 

selection rules, decomposition level, and threshold rescaling strategies. 

The literature has described a number of methods for addressing ECG 

components that have been impacted by various noises. Some of the 

solutions that have been proposed include WT, adaptive filters, neural 

networks, and non-linear filter bank designs. 

The contribution of the work is as follows, 

 The input of the design is thought to be the ECG signals from the 

MIT-BIH dataset. A clean signal is combined with white Gaussian 

noise to produce a noisy signal. 

 The denoised ECG signal is split by the DWT and its parameters 

are optimized by the proposed Enhanced AVO algorithm. The 

AVO algorithm exploration phase is enhanced by the WOA 

optimization approach. 
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 After the decomposition, the noisy signal is transferred into the 

ASMF filter and its weight parameters are adjusted by the EAVO 

algorithm. Finally, the denoised ECG signals are attained from the 

suggested strategy. 

 

Figure 4.1: Proposed Approach Flow Diagram 

4.2 Proposed Approach 

The ECG signal is denoised in the suggested way utilising an 

adaptive switching mean filter and a discrete wavelet transform (DWT) 

optimised with the African vulture optimization (AVO) technique. The 

input ECG signals are recorded using the MIT-BIH ARR dataset and 

then exposed to white Gaussian noise. The distorted ECG data is 

denoised using the Discrete Wavelet Transform (DWT), and the 

threshold is optimised using the African Vulture Optimization (AVO) 



125 
 

method.  In order to increase edge information and boost denoising 

performance, the denoised image is then reprocessed with an adaptive 

switching mean filter. Additionally, the proposed approach is contrasted 

with existing denoising techniques. Figure 4.1 displays the flow diagram 

of the proposed method. 

4.2.1 DWT 

The DWT is a wavelet transform that is utilized to extract 

wavelet coefficients from images at various sizes. In this situation, the 

larger coefficients in sub-bands will have more signal information than 

noise, whereas the lower coefficients in sub-bands will have more noise. 

These image noises can be decreased using a reconstruction approach 

that replaces the noisy coefficients with zeros and reverses the discrete 

wavelet transform. DWT stands for discrete wavelet series of discrete 

time signals, in which the wavelets, scaling function, and signal are all 

discrete in time. Filters are divided into two types: high and low pass. 

The high pass filter is responsible for image details, whereas the low pass 

filter is responsible for approximation. Using the horizontal and vertical 

dimensions, 2D DWT with one-dimensional decomposition is 

accomplished. High and low pass filters will be put into the photos in 

distinct rows and columns. The deconstruction occurs along the rows of 

photos initially in this manner. The data will be separated into columns 

after that. Low-low (LL), high-high (HH), low-high (LH), and high-low 

(HL) are the four deconstructed subband pictures produced by this 
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process (HH). These sub-bands' frequency components obscure the 

original image's whole frequency spectrum. 

When a function meets the requirements stated in Eqn. 

(4.1) it has a Fourier transform for all  

 
(4.1) 

The basic wavelet is defined as the function By shifting 

and scaling the wavelet function as described in Eqn. (4.2), a wavelet 

sequence may be obtained.  

 

(4.2) 

An image's signal is a continuous two-dimensional signal. The 

continuous signal of the wavelet transform is given by equation (3). 

 
(4.3) 

 It's important to note that this filter is referred to as a 

quadrature mirror filter because the low pass and high pass filters is 
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interconnected. As stated by Nyquist's rule, half of the samples are 

deleted because half of the signal's frequency is discarded. The low pass 

filter g[n] output signal is then down-sampled by a factor of 2 and passed 

through an additional series of low pass and high pass filters to obtain the 

level-2 detailed and approximation coefficients. The cut-off frequency of 

the current set of filters is half that of the prior stage filter. 

 

Figure 4.2: 3-level DWT block diagram 
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The main goal of employing DWT is to divide the input signal 

into various coefficient levels in order to adjust the input signals' high 

frequency. To put it another way, DWT divides the EEG signal into 

numerous frequency bands based on the assumption that the artefacts will 

have substantial amplitudes in each band. Fig. 4.2 illustrates the 

decomposition level L = 3 for denoising. In signal processing, signal 

noise removal is regarded as a difficult task. As a result, researchers have 

devised a number of solutions to this challenge, including the use of the 

filtering process. The solution is evaluated by the selected metaheuristic 

algorithm using the MSE objective function. 

4.2.2 Adaptive switching mean filter 

 Some noises remain in the reconstructed signal after DWT-

based denoising. The region amongst QRS complexes shows these 

disturbances very clearly. As a result, an ASMF filter is used to improve 

signal quality even more. ASMF is a powerful filtering technique that is 

utilized to eliminate impulse noise from signals. The core premise of 

ASMF is that signal samples in the same neighborhood should be 

identical. In this procedure, a specific window length is chosen, and the 

window center is put on an ECG sample at each iteration. If the variance 

among the ECG sample and windowed area's mean value is more than 

the threshold limit, the sample is considered corrupted, and its value is 

adjusted to match that of the mean. The ASMF operation's mathematical 

formulation is expressed in Eqn. (4.4). 
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    (4.4) 

Where, ASMF operation input and processed ECG samples are 

represented into and , respectively. The windowed region standard 

deviation denoted as and . Then the upper limit threshold value is 

chosen and the value varies from 0 to 1. The value of 0.1 is chosen 

empirically in this study, and a window of length of 9 samples is used.  

 

Figure 4.3: Adaptive switching mean filter 

        (4.5) 

The total number of coefficients or weights is indicated by . 

The  filter parameter signifies a specific time  and is valid for  
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weight sequences. The open interval ranges from 0 to N this specific time 

changes. The fitness function is minimization of , which is given in 

Eqn. (4.6), 

              (4.6) 

4.2.3 African Vulture Optimization (AVO) Approach 

The African Vulture Optimization imitates the foraging 

characteristics of African vulture. The following are the working 

principle of the AVO approach.  

 In a given setting, there might be up to N vultures. In metaheuristic 

algorithms, it specifies the same number of population, and the 

number depends on the issue the researchers wish to apply to the 

AVOA. 

 Many vultures may be physically segregated into two groups in a 

natural habitat, and the algorithm divides them into categories by 

first calculating the fitness function of all solutions (starting 

population). The finest response is designated as the best and first 

vulture, while the second response is designated as the second-best 

vulture. Others create a population that moves or replaces one of 

each performance's top two vultures. 
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 The rationale for group separation in this algorithm is that vultures' 

most important natural purpose may be stated as follows: group 

living to find food. Each vulture tribe has a unique incapacity to 

locate and consume food. 

 Vultures' proclivity for eating and hours of searching for food 

allows them to flee the hungry trap. At the formulation stage, our 

anti-hunger compromises assume that the population's worst 

option is the weakest and most hungry, so the vultures strive to 

stay away from the worst and come up with the best solution. The 

strongest and best vultures in the AVOA are two of the best 

solutions, and the other vultures aim to approach the best. 

This optimization algorithm consists of five phases that 

describes different characteristics of the vulture in its foraging phase. 

 Clustering Population 

 Starving Vultures 

 Exploration Phase (Intial) 

 Exploitation Phase (Medium) 

 Exploitation Phase (Later) 
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 Clustering Population: In this phase the vultures cluster together and 

then move towards the source of food as described in Eqn. (4.4). 

 

(4.3) 

 Here,  denotes the cluster of top vultures that are 

nearer to the food,  and  are arbitrary number that varies from 0 to 1. 

 Starving Vultures: The degree of starvation of vulture is computed 

as in Eqn. (4.4). 

 
(4.4) 

Here,  refers an arbitrary number that varies from 0 to 1 

and   is also an arbitrary number that varies from -1 to 1. 

 Exploration Phase: The exploration phase is computed as follows, 

 

(4.5) 
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 (4.6) 

Here,  denotes the ith vulture at t+1 iteration and 

 refers the arbitrary number that ranges from 0 to 1. 

 Exploitation Phase (Medium): For eradicating the imbalance in the 

food exploitation phase is divided into two: fighting for food and 

flying around. The location of a vulture is computed as, 

 (4.7) 

 (4.8) 

 On flying in the circular motion the vulture update the 

location based on the Eqn. (4.9). 

 (4.10) 

 

(4.11) 
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(4.12) 

 Exploitation Phase (Later): This phase the vulture characteristics are 

divided into aggregation and attack. In aggregation the vulture 

location is updated based on the Eqn. (4.13). 

 

(4.13) 

In attacking phase the vulture location is updated based on the 

Eqn. (4.14). 

 (4.14) 

Once the optimization process begins, EWOA makes a 

random, initial population and analyses the fitness function. Following 

the discovery of the optimum solution, the algorithm repeats the stages 

until the end condition is met. The main parameters are first updated. 

Finally, the method returns the optimal solution. The use of the best 

solution discovered so extreme to update the location of the remainder of 
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the resolutions ensures the convergence of this algorithm. As a result, the 

Enhanced AVO offers the most optimal solutions. 

Pseudo code for Enhanced AVO 

Inputs: population size  and maximum iterations  

Outputs: Best fitness value   

Initialize the random population  

while(stopping condition is not met) do 

Compute fitness  

  Set PBestVulture1 as the position of Vulture (First best solution)  

  Set PBestVulture2 as the position of Vulture (Second best solution)  

for (each Vulture ( )) do 

     Select using Eq. (10)  

     Update the  using Eq. (12)  

     if (|H| ≥ 1) then 

if (  ≥ rand ) then 
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             Update the location Vulture using Eq. (14)  

else   

           Choose a arbitrary search agent ()  

           Current search agent position is modified by the Eq. (17)  

end if  

    end if 

end for  

Check for any solutions that go beyond the limit and make necessary 

changes. 

Compute fitness  

Update  if better solution found  

end while  

return best solution 

4.2.4 Adaptive Switching Mean Filter 

Using an adaptive median filter, the filtering window size is 

changed based on the anticipated global noise density and the level of 

local corruption. For lesser noise ratios, an adaptive centre weighted 
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vector median filter is used; however, for greater noise ratios, noisy 

pixels are determined by comparing the difference between the vector 

pixel mean and projected variance. The window encompassing the 

detected noisy pixel is then re-evaluated, and the pixels are assigned 

exponential weights based on their spatial and radiometric similarity to 

other pixels. The weighted average of the pixels inside the window is 

used to replace the noisy pixels. When compared to other robust filters, 

the filter can maintain more signal information at greater noise ratios. 

4.3 Experimental Results  

 The suggested denoising approach is simulated by 

MATLAB2018a software running on a Windows8.1 operating system. 

The White Gaussian noise is included in the ECG signals with the 

variances of 10dB to create a noisy signal. For experimentation purposes, 

the proposed approach is tested with three standard datasets BIDMC-

CHF, MIT-BIH NSR and MIT-BIH ARR. Figure 4.4 illustrates the clean, 

noisy, and denoised ECG signals. The first collection of uniform test data 

for identifying readily accessible arrhythmias was the MIT-BIH dataset. 

Over 500 places worldwide have used this database since 1980 for basic 

heart dynamics research. 48 half-hour segments of 24-hour, 2-channel 

ECG recordings from 47 subjects were gathered by the BIH Arrhythmia 

Laboratory for this database. The patient's age, gender, and state of 

sickness are all included in each set of ECG data. The database allows 

associated institutions to exchange services and technical support while 

cutting R&D expenditures since it contains a wider range of ECG 
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abnormalities and more data types. The datasets, clean ECG signal, 

artefacts ECG signal, and denoised ECG signal are shown in Figure 4.4. 

Table 4.1: Parameter description of proposed algorithm 

Parameters  Value  

Population size  40 

Maximum iteration  200 

 0.8 

 0.2 

k 2.5 

 0.6 

Random search ability  0.1 
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Dataset Clean ECG  Artefacts ECG  Denoised ECG  

MIT-

BIH 

ARR  

   

MIT-

BIH 

NSR 

   

BIDM

C-CHF 

   

Figure 4.4: Original ECG Signal, Artefacts ECG and Denoised ECG 

Signal 



140 
 

For quantitative evaluation in denoising performance, the 

proposed strategy is utilized the following metrics such as peak 

reconstruction error (PRE), SNR, ME, MSE, correlation coefficient (CC), 

normalized root maximum error (NRME), normalized root-mean-square 

error (NRMSE), and MD are separately computed. These parameters are 

computed using  is the pure signal;  is the filtered outcome. 

    (4.15) 

It's worth noting that the SNR measures noise suppression; 

consequently, the greater the SNR, the greater the denoising 

performance. 

      (4.16) 

      (4.17) 

      (4.18) 

    (4.19) 

    (4.20) 
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 (4.21) 

Table 4.2 describes the performance of the suggested approach 

including MSE, peak reconstruction error (PRE), SNR, normalized root-

mean-square error (NRMSE), maximum error (ME), mean difference 

(MD), normalized root maximum error (NRME), and correlation 

coefficient (CC) is computed and are compared with other existing 

approaches such as RLS-based adaptive filter, Multichannel LMS, 

improved multiverse optimization with adaptive threshoding, Empirical 

Wavelet Transform with honey badger optimization and DWT-based 

baseline wander. The suggested technique delivers superior denoised 

signals than the other current approaches, based on the results. 

Table 4.2: Performance of the Suggested Approach compared with 

other Approaches 

Datasets 

RLS-

based 

adaptive 

filter 

Multichannel 

LMS 

DWT- 

based 

baseline 

wander 

IMVO-

AT 

HBO-

EWT 
Proposed 

 SNR 
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MIT-

BIH 

ARR  

74.854 77.258 79.583 81.191 83.542 86.56 

MIT-

BIH 

NSR  

71.526 73.819 75.925 77.953 79.549 84.45 

BIDMC-

CHF  
73.765 75.471 80.163 82.616 85.643 87.28 

 MSE 

MIT-

BIH 

ARR  

 

2.812e-

10 
1.943e-10 

3.983e-

10 

2.904e-

10 

3.365e-

10 

2.356e-

11 

MIT-

BIH 

NSR  

 

3.419e-

10 
2.987e-10 

2.654e-

10 

2.981e-

10 

2.450e-

10 
1.78e-10 
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BIDMC-

CHF  

3.731e-

10 
3.256e-10 

3.465e-

10 

3.204e-

10 

2.915e-

10 

1.932e-

10 

 ME 

MIT-

BIH 

ARR  

8.348e-

4 
6.356 e-4 

4.265e-

4 

8.338e-

4 

6.749e-

4 
6.945e-5 

MIT-

BIH 

NSR  

2.945e-

3 
2.609 e-3 

9.455e-

4 

3.549e-

3 

3.604e-

3 
7.578e-4 

BIDMC-

CHF  

9.964e-

4 
7.843e-4 

6.894e-

4 

9.624e-

4 

7.752e-

4 
6.431e-4 

 MD 

MIT-

BIH 

ARR  

 

-7.86e-7 -4.590e-7 

-

3.933e-

7 

-

7.752e-

7 

-

4.150e-

7 

-1.10e-7 



144 
 

MIT-

BIH 

NSR 

-7.75e-7 -6.775e-7 

-

5.436e-

7 

-

7.514e-

7 

-

6.894e-

7 

-3.15e-7 

BIDMC-

CHF  
-1.15e-6 -6.593e-7 

-

5.965e-

7 

-

1.215e-

6 

-

6.250e-

7 

-3.87e-7 

 PRE 

MIT-

BIH 

ARR  

4.643e-

7 
3.864e-7 

1.654e-

7 

4.804e-

7 

1.065e-

7 
6.464e-8 

MIT-

BIH 

NSR  

9.568e-

8 
9.641e-8 

8.644e-

8 

8.859e-

8 

8.264e-

8 
5.524e-8 

BIDMC-

CHF  

1.505e-

7 
9.567e-8 

8.664e-

8 

1.739e-

7 

8.364e-

8 
7.065e-8 

 NRME 

MIT- 3.230e- 2.539e-1 3.214e- 2.562e- 2.567e- 1.250e-1 
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BIH 

ARR  

1 1 1 1 

MIT-

BIH 

NSR  

2.704e-

1 
2.425e-1 

2.439e-

1 

2.481e-

1 

2.450e-

1 
1.354e-1 

BIDMC-

CHF  

2.264e-

1 
2.453e-1 

2.958e-

1 

2.550e-

1 

2.519e-

1 
1.405e-1 

 NRMSE 

MIT-

BIH 

ARR  

3.477e-

5 
3.691e-5 

2.904e-

5 

3.365e-

5 

2.105e-

5 
1.581e-6 

MIT-

BIH 

NSR  

3.145e-

5 
2.461e-5 

2.981e-

5 

2.450e-

5 

2.119e-

5 
1.698e-6 

BIDMC-

CHF  

3.294e-

5 
3.624e-5 

3.204e-

5 

2.915e-

5 

2.353e-

5 
1.974e-6 

 CC 
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MIT-

BIH 

ARR  

0.9888 0.9899 0.9983 0.9993 0.9997 1 

MIT-

BIH 

NSR  

0.9778 0.9856 0.9871 0.9944 0.9976 0.9997 

BIDMC-

CHF  
0.9868 0.9871 0.9958 0.9985 0.9988 0.9998 

Figure 4.5 depicts the correlation coefficient (CC) of various 

denoising methods such as RLS-based adaptive filter, Multichannel 

LMS, improved multiverse optimization with adaptive threshoding, 

Empirical Wavelet Transform with honey badger optimization and 

DWT-based baseline wander compared with the proposed approach. This 

chart clearly shows that the recommended method provides better CC 

than previous denoising techniques.  
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Figure 4.5: CC values of various denoising methods 

Figure 4.6 defines the mean difference (MD) among the 

suggested technique and other denoising approaches methods such as 

RLS-based adaptive filter, Multichannel LMS, improved multiverse 

optimization with adaptive threshoding, Empirical Wavelet Transform 

with honey badger optimization and DWT-based baseline wander. This 

chart shows that the proposed technique generates a larger MD value 

than existing optimization algorithms. The suggested technique delivers 

superior denoised signals than the other current approaches, based on the 

results. 
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Figure 4.6: MD values of different denoising methods 

Figure 4.7 depicts the maximum error (ME) of various 

optimization algorithms such as RLS-based adaptive filter, Multichannel 

LMS, improved multiverse optimization with adaptive threshoding, 

Empirical Wavelet Transform with honey badger optimization and 

DWT-based baseline wander compared with the proposed approach. 

From this figure it is evident that the suggested approach gives lesser ME 

value than other denoising techniques. The experimental findings 

illustrates that the proposed approach is superior to all other denoising 

techniques. 
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Figure 4.7: ME values of different denoising methods 

Figure 4.8 compares the Mean Square Error (MSE) of several 

optimization techniques to the proposed methodology, including RLS-

based adaptive filter, Multichannel LMS, improved multiverse 

optimization with adaptive threshoding, Empirical Wavelet Transform 

with honey badger optimization and DWT-based baseline wander. The 

recommended technique provides a less MSE value than previous 

denoising strategies, as seen in this graph. The experimental findings 

demonstrate that the suggested methodology outstrips all currently used 

denoising techniques. 
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Figure 4.8: MSE values of different denoising methods 

The normalized root maximum error (NRME) between the 

suggested approach and other optimization algorithms like RLS-based 

adaptive filter, Multichannel LMS, improved multiverse optimization 

with adaptive threshoding, Empirical Wavelet Transform with honey 

badger optimization and DWT-based baseline wander is shown in Figure 

4.9. The suggested approach produces a lower NRME value than existing 

denoising techniques, as seen in this graph. The results of the 

experiments reveal that the proposed strategy outperforms all other 

denoising strategies. 



151 
 

 

Figure 4.9: NRME values of different denoising methods 

 

Figure 4.10: NRMSE values of different denoising methods 

The peak reconstruction error (PRE) between the suggested 

approach and other optimization algorithms like RLS-based adaptive 
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filter, Multichannel LMS, improved multiverse optimization with 

adaptive threshoding, Empirical Wavelet Transform with honey badger 

optimization and DWT-based baseline wander is shown in Figure 4.11. 

The suggested approach produces a lower PRE value than existing 

denoising techniques, as seen in this graph. The results of the 

experiments reveal that the proposed strategy outperforms all other 

denoising strategies. 

 

Figure 4.11: PRE values of different denoising methods 

Figure 4.12 depicts the SNR of various approaches such as 

RLS-based adaptive filter, Multichannel LMS, improved multiverse 

optimization with adaptive threshoding, Empirical Wavelet Transform 

with honey badger optimization and DWT-based baseline wander 
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compared with the proposed approach. From this figure it is evident that 

the suggested approach gives higher SNR value than other existing 

approaches. The experimental findings illustrates that the proposed 

approach is superior to all other denoising techniques. 

 

Figure 4.12: SNR values of different denoising methods 

Table 4.3 describes the Wilcoxon signed rank test for the 

proposed approach versus the existing approaches. 
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Table 4.3: Wilcoxon signed rank test 

Comparative 

hypothesis 

Proposed 

VsPSO 

Proposed 

VsAOA 

Proposed 

VsMVO 

Proposed 

VsIMVO 

Proposed 

VsHBO 

P-value 0.164 0.157 0.125 0. 125 0.05 

For discovering interaction effects or significant factors, 

Friedman’s analysis of variance (ANOVA) is recommended. ANOVA is 

a useful method for separating overall variability into useable 

components such as a degree of freedom (Df), sum of squares (SS), F-

value, and mean sum of squares (MS). Table 4.4 displays the output 

parameters and values obtained from the ANOVA test for several 

optimization methods utilising the suggested denoising methodology. 

Table 4.4: Friedman’s test 

Source SS Df MS F Prob>F 

Columns 30.3333 2 15.1667 4.04 0.1324 
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Interaction 2.3333 2 1.1667   

Error 87.3333 12 7.2778 

Total 120 17 

4.4 Summary 

This study uses Enhanced AVO, a novel bio-inspired 

metaheuristic algorithm, to implement an adaptive switching mean filter-

based denoiser and demonstrate WOA-AVO capacity to find high-quality 

solutions that outperform other metaheuristic algorithms such as PSO, 

AOA, MVO, IMVO, and HBO. The Enhanced AVO algorithm not only 

maintains a correct poise among exploration and exploitation but it is 

control parameter-free algorithm, which eliminates the need for a time-

consuming control parameter tweaking process. The DWT wavelet 

parameter of window function and ASMF filter is optimized by the 

Enhanced AVO algorithm. To prove the effectiveness of the proposed 

denoising filter, EAVO method comparative analysis has been conducted 

with the RLS-based adaptive filter, multichannel LMS, IMVO-AT, 

HBO-EWT, and DWT- based baseline wander techniques. When 

compared to prior reported results, estimated results show that the 

proposed EAVO-based adaptive switching mean filter achieves a 
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considerable improvement in NRMSE, SNR, MD, NRME, PRE, ME, 

and CC. As a result, the proposed strategy for denoising the 

cardiovascular signal is quite effective. The results and discussions 

examined allow for the conclusion that the proposed hybrid algorithm, 

which is supported by DWT and filter, can be used effectively for 

cardiovascular signal denoising.  
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CHAPTER 5 

CONCLUSION AND SCOPE FOR FUTURE WORK 

5.1 Conclusion 

The electrocardiogram (ECG) is a non-stationary biological 

signal used to diagnose cardiac issues. Noise reduction in 

electrocardiography signals is a key and important task since the artefacts 

that contaminate the data have similar frequency characteristics as the 

signal itself. Filtering techniques, for instance, have been demonstrated to 

be unsuccessful in eliminating these interferences. Electrocardiography 

signals, as a result, require an innovative and efficient denoising 

technique in order to achieve appropriate noise-removal performance. 

The non-stationary electrocardiography data may be 

successfully denoised using empirical wavelet transform or discrete 

wavelet transform hybridized with machine learning approaches. The 

current thesis provides a unique connection for cleaning up ECG signals. 

A noisy signal is made up of a limited number of IMFs that represent the 

data's oscillatory mode. The first few IMFs (Instrinsic Mode Functions) 

capture the signal's noisy component, whereas higher order IMFs capture 

slower fluctuations like baseline wander.  
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Any complex signal's high and low frequency components may be 

separated using EWT-based techniques. The reconstruction method can 

omit those IMFs that capture noisy components. Denoising is performed 

by removing the unwanted bits of the signals. To verify the presented 

methodology, experimental testing of the novel proposed approach was 

done on various electrocardiogram data (MITBIH ECG Database).The 

findings suggest that the suggested approach is appropriate for ECG 

denoising and improves signal quality significantly. To reduce 

computational complexity, various ANCs that use sign-based versions of 

all three normalised algorithms have been successfully developed, and 

maximum data normalisation based processing has been applied to all 

algorithms to reduce the number of multiplications in the denominator 

part of the weight update recursion. 

5.2 Future Work 

Future research should focus on reducing all forms of noise 

from ECG signals using a single hybrid strategy that combines existing 

approaches. And also the work presented here might be expanded upon, 

as could the different options for future research. These are detailed 

briefly below. Other noise categories, such as foetal noise, donor heart 

noise, pacemaker noise, and so on, will require further ANC 

development. The use of fewer leads to extract data for current ECG 

recorders may result in processing problems that can be corrected using 

new algorithms that are still being developed. There is potential for the 
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creation of intelligent cardiac systems in which various algorithms may 

be utilised, with the appropriate adaptive algorithm activating for 

filtering based on the noise characteristics. New ANCs may be created 

utilising neural networks and fuzzy logic. 

 

 

 

 

 

 

 

 

 

 


