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Appendix - 7

Abstract

The study of non-Newtonian fluids (the fluids which do not obey the Newtonian law of
viscosity) 1s of wide interest and significance as 1t deals with both the biological and non-
biological fields. A non-Newtonian fluid i1s a fluid whose viscosity depends on the force
applied (and sometimes time and temperature as well). Fluids like water and gasoline behave
according to Newton's model, and are called Newtonian fluids but ketchup, blood, yogurt,
gravy, pic fillings, mud and cornstarch paste don’t follow the model. They are non-
Newtonian fluids because doubling the speed that the layers slide past cach other does not
double the resisting force. [t may less than double (like ketchup), or it may more than double
(as in the case of quicksand and gravy). That's why stirring gravy thickens it, and why

struggling in quicksand will make 1t even harder to escape.

Heat transfer 1s that science, which seeks to predict the energy transfer, which may take
place between material bodies as a result of temperature difference. In the simplest of the
terms, the discipline of heat transfer is concerned with only two things: temperature and flow
of heat. Temperature represents the amount of thermal energy available, whereas heat flow
represents the movement of thermal energy from one place to another place.

The theory of the Newtonian fluids gives a correction to the theory of perfect fluids, which is
complete within terms of order one in c. If we neglect all the terms of order greater than two

in ¢, then the simple fluid 1s called an incompressible second-order fluid.

In our present problem, we here study the flow pattern of an incompressible second-
order fluid between two parallel infinite discs in the presence of transverse magnetic field
when one is rotating (called rotor) and other is at rest (called stator). A uniform injection 1s
applied to the stator forming the subject matter of the paper. The Rotor coincides with the
plane z = 0 and the stator coincides with the plane z = d. Here the dimensionless parameters
T,(p5/pd?). T,(u,/pd?) govern the effects of elastic-viscosity and cross—viscosity, while the
effect of the injection are governed by a non- dimensional parameter k (=wy/2dQ) where w,
18 the uniform suction velocity (negative for injection).

This thesis has been divided into seven chapters.

1. The first chapter consists of the brief introduction of the topic along with the

objectives. relevance, and role. importance of research work with literature review of



n

the study. This chapter also contain the MHD FLOW OF A SECOND-ORDER
FLUID.

The second chapter highlights the Flow second-order fluid between two infinite discs

in the presence of the presence of the magnetic field.

Third chapter discusses the Flow of a non-Newtonian second-order fluid over an

enclosed torsinally Oscillating disc in the presence of the magnetic field.

The forth chapter discuss the Flow of a non-Newtonian second-order fluid between

two enclosed torsionally oscillating discs in the presence of the magnetic field.

The fifth chapter contains the Heat transfer in the flow of a second-order fluid

through a channel with porous wall under a transverse magnetic field .

The sixth chapter contains Heat transfer in the flow of a non-Newtonian second-order
fluid over an enclosed torsion ally oscillating disc with uniform section and injection

in the presence of the magnetic field.

The seventh chapter contains Heat transfer in the flow of a non-Newtonian second —
order fluid second-order fluid between two enclosed torsion ally oscillating discs with
uniform suction and injection in the presence of the magnetic field. And this chapter

also discusses summary, conclusion including suggestions.
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Chaptter No. 1

Introductlon

Introduction

The study of non-Newtonian fluids (the fluids which do not obey the
Newtonian law of viscosity) is of wide interest and significance as it deals with
both the biological and non-biological fields. A non-Newtonian fluid is a fluid
whose viscosity depends on the force applied (and sometimes time and
temperature as well). Fluids like water and gasoline behave according to
Newton’s model, and are called Newtonian fluids but ketchup, blood, yogurt,
gravy, pie fillings, mud and cornstarch paste don’t follow the model. They are
non-Newtonian fluids because doubling the speed that the layers slide past each
other does not double the resisting force. It may less than double (like ketchup),
or it may more than double (as in the case of quicksand and gravy). That’s why
stirring gravy thickens it, and why struggling in quicksand will make it even

harder to escape.

For some fluids (like mud or snow) we can push and get no flow at all
until we push hard enough and the substance begins to flow like a normal

liquid. This 1s what causes mudslides and avalanches.

Rheology is defined as the flow of fluids and deformation of solids under
stress and strain. Rheometers are the instruments used to measure a material’s
rheological properties. Hook’s low is probably the first recognizable law, which
states that deformation, is proportional to the applied force. Newton considered

the behaviour of an imaginary fluid when to fill all space. in which resistance to



motion was proportional to what has variously been named rate of strain, rate of
deformation, velocity strain or flow tensor d;; and is known as Newton-Cauchy-

Poisson law. Accordingly,

;= pd; + 2pd; + Ad,, ™4
where

di= (u;j+u;,)/2,

p is the pressure, p and = — 2u/3) being material constants, also termed as
coefficients of viscosity and §,; is kronecker’s delta tensor. The fluids
satistfying the relation (1.1), are called Newtonian fluids e.g. honey, glycerin

and certain thick oils. For incompressible fluids the relation (1.1) becomes
T = -pdy+ 2pud;.

Although certain phenomena like skin-friction, form drag, separation, secondary
flows etc., are successfully explained by this classical theory, but it has proved
inadequate to explain the rheological properties of certain materials like paints,
slurries, ceramics, melts poly-iso-butylene solution in the mineral oils or in
tetralin, poly-methylmethacrylate solutions in the dimethyl-pthalate, rubber-
toluene solutions etc. certain phenomena like Anmolous viscosity” the
Weissenberg effect®®, Merrington effect®** and spinnability effect™***
observed in these fluids could not be explain by the solutions of Navier-Stokes
equations and therefore a basic search into the foundations of fluid dynamics

had to be undertaken.
1.1 MAGNETOHYDRODYNAMICS:-

MHD is the study of the motion of the electrically conducting fluids in the
presence of electric and magnetic fields. When a conducting fluid is under the

influence of the electro-magnetic field, it behaves differently than without



electromagnetic field. This is mainly because of Lorentz force, which is a cross
product of electric field and magnetic field (Sir Flemming’s right hand law).
Even without the external electric field, flow pattern is altered due to the
presence of strong magnetic field. Magnetic field and the motion of the
conducting fluid particles generate electric current. This current and magnetic
field interact with each other, and change the flow motion, with a chain
reaction, all three fields (velocity, magnetic, electric) are interconnected and

reveal very unique features.

One of the most popular applications of MHD is electricity generator.
Since there is no mechanical friction whatsoever, this MHD generator has very
high efficiency. However, the conducting fluid itself is usually heavy and
harmful (for example, mercury), so its practical usage is limited. Nevertheless.
as soon as ‘super conducting’ material is available, there is a hope that we can

use sea-water as working fluid.

The other usage of MHD is turbulence control using electro-magnetic
field. Since generally Lorentz force tends to suppress the fluid motion® we may
be able to get some insights to utilize the Lorenz force in the turbulent drag

reduction control.

*Anamolous viscosity® or structural viscosity is the viscosity, the value of

which changes with the driving pressure p in one apparatus or the rotational

velocity Q in the order.

**\Weissenberg effect® is the property of rising up of the fluid along the inner

cylinder of the viscometer in steady shear or along a stirring rod.
**xMerrington effect” is the property of swelling of the liquid jet as it leaves

the tube.




#**%Spinnability_effect is the phenomena of spontaneous thread formation

assessed by placing the tip of a rod in contact with the liquid surface and then
drawing it away.

Dynamo action, the spontaneous generation of a magnetic field in a flow
of conducting fluid, is supposed to be at the origin of the planets and stars
magnetic fields. A lot of theoretical and numerical work has been devoted to
this problem and it has been demonstrated Riga (Ponomarenko flow) and

Karisruhe (Roberts flow).

This 1s mainly due to the fact that to build dynamo, one must use the
liquid sodium, with all its incumbent dangers. Moreover, the dynamo will work
only if the advection of the magnetic field and generation of the current are fast
compared to dissipation- namely if the magnetic Reynolds number exceeds a

critical value, which strongly depends on the geometry of the flow.

Application of MHD to natural events received a belated stimulus when
astrophysicists came to realize how prevalent throughout the universe are
conducting, ionized gases (plasmas) and significantly strong magnetic fields.
The final implication was that MHD processes must dominate most areas of
astrophysics. Larmor made the attractive suggestion that the magnetic fields of
the sun and the other heavenly bodies might to be due to dynamo action,
whereby the conducting material of the star acted as the armature and stator of a
self-exciting dynamo. MHD is important in astrophysics because the enormous
scale of events makes up for the smallness of the conductivities and magnetic

fields.

The booms in post-war applied science soon affected MHD.
Electromagnetic pumping of liquid metal coolants in nuclear reactors became
standard practice and electromagnetic pumping, string and levitation (to avoid

contamination) were exploited in the metallurgical industries.



It seems that the first attempt to study the problem of

magnetohydrodynamics was made by Faraday® (1832). Thereafter Williams®,

10)

Stewartson”, Bhatnagar® And Andersson® Charyulu®®, Helmy'™, Singh and

Thakur*? developed the field successfully.

1.2 HEAT TRANSFER

Heat transfer is that science, which seeks to predict the energy transfer.
which may take place between material bodies as a result of temperature
difference. In the simplest of the terms, the discipline of heat transfer is
concerned with only two things: temperature and flow of heat. Temperature
represents the amount of thermal energy available, whereas heat flow represents

the movement of thermal energy from one place to another place.

On a microscopic scale, thermal energy is related to the kinetic energy of
the molecules. The greater a matenial’s temperature, The greater the thermal
agitation of its constituent molecules (manifested both in linear motion and
vibrational modes). It is natural for regions containing greater molecular kinetic

energy to pass this energy to regions with less kinetic energy.

Several material properties serve to modulate the heat transferred
between two regions at differing temperatures. Examples include thermal
conductivities, specific heats, material densities, fluid velocities, fluid
viscosities, surface emissivities, and more. Taken together., these properties

serve 1o make the solution of many heat transfer problems an involved process.
Heat transfer mechanisms can be grouped into three bond categories:
(1) CONDUCTION:

Regions with greater molecular kinetic energy will pass their thermal energy to

regions with less molecular energy through direct molecular collisions, a



process known as conduction. In metals, conduction-band electrons also carry a

significant portion of the transported thermal energy.
(11) CONVECTION:

When heat conducts into a static fluid it leads to a local volumetric expansion.
As a result of gravity-induced pressure gradients, the expanded fluid parcel
becomes buoyant and displaces. thereby transporting heat by fluid motion (i.e.
convection) in addition to conduction. Such heat-induced fluid motion In

initially static fluids is known as free convection.

For cases where the fluid is already in motion, heat conducted into the
fluid will be transported away chiefly by fluid convection. These cases, known
as forced convection. require a pressure gradient to drive the fluid motion, as

opposed to a gravity gradient to induce motion through buoyancy.
(111) RADIATION:

All materials radiate thermal energy in amounts determined by their
temperature, where the energy is carried by photons of light in the infrared and
visible portions of the electromagnetic spectrum. When temperatures are
uniform, the radiative flux between objects is in equilibrium and no net thermal
energy is exchanged. The balance is upset when temperature is not uniform, and
thermal energy is transported from surfaces of higher to surfaces of lower

temperature.

Some of the major contributions in the field or heat-transfer are due to

Tao'?, Cess 'Y, Riley ', Sastry'®, Bestman'”, Kasture'®, Sharma, Sunil Pal'?.

1.3 RHEOLOGICAL EQUATION OF STATE OR CONSTITUTIVE
EQUATION

It expresses the relationship between stress and rate of strain.

10



On the basis of large amount data, which could not be explained on the
basis of linear assumption, it is felt that linearity is too drastic an assumption
and one should explore mathematically the consequences of more general
functional relationship than that for a Newtonian fluid. The availability of high
speed computers have rendered possible the solution of non-linear equations
involved. This development has lead to the growth of the subject matter of non-

linear mechanics.

Non-linearity in the equation (1.1) has been attempted in a number of
ways. The first generalization consisted in taking A and w occurring in this
equation as functions of three invariant of strain-rate tensor d;j;. Non-linearity in
stress-strain-rate law is thus introduced through the material constants. Other
generalizations were obtained by including terms corresponding to elastic and
plastic properties of the material and micro-rotational inertia and micro-
rotational effects. These different generalizations gave rise to the study of the
fluids called plastics, pseudo-plastics, Bingham palastic, dilatants materials,
non-Newtonian fluids (including the rheopectic and thixotropic fluids). All
these fluids along with their constitutive equations are treated in details in

references®® Y,

1.4 Rivlin-Ericksen Fluids:-

Starting with different premises, Rivlin and Ericksen®" enunciated a theory for
elastic-viscous fluids, known as Rivlin-Ericksen theory. The constitutive

equation in this case is®?
7= -pl + 1A + $oB + oA’ + PuB’ + s (AB+BA) + dpo(A’B+BAY) + ¢+(AB? +
B2A) + (A’B*+ B?A?),

(1.2)

11



Where | is a unit matrix and ¢’s are polynomial functions in the various
invariants trA, trA2, trA3, trB, trB?, trAB, trAB?, trA’B and trA’B’.

A= 2[d;j] = [uij + uig],
B=2[ejj] = [aij+ aij], 2u™,iUm,
uij being velocity vector.

From expression (1.2), it is evident that if we put ¢o, ¢a, §s,
zero; we obtain equation for Reiner-Rivlin fluids. Thus Reiner-Rivilin fluids are
particular cases of Rivlin-Ericksen fluids. Some of the work in this fields is

reviews in refrences®

As far as we know, this theory is adequate, to describe the steady
viscometric flows and some of the time dependent behaviour. However, it does
to explain the phenomena of gradual stress relaxation after the ceasation of the

motion, which is a commonly observed elastic-viscous effect.

1.5 SECOND-ORDER FLUIDS:-

A Theory of more general type of incompressible fluid was put forward by
Green et. AL*®, Coleman and Noll*”. The Theory is based on the hypothesis
that the stress is a function of the deformation gradient, that is the stress at the
material point depends only on the previous history of the deformation gradient.

The materials obeying this theory are termed as simple materials by Noll*”.

An incompressible simple fluid is an incompressible simple material if it

possesses the property that all local states with the same mass density are
intrinsically equivalent in response. For a given history g(s) a retarded history

gc(s) can be defined as:

12
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g(s)=g(s),0 <5 < oo,
(1.3)

where ¢ 1s the retardation factor 0 < ¢ < 1.taking into consideration, this
definition of retarded history and assuming that the stress is more sensitive to
recent deformation than to deformations which occurred in the distant past.
Coleman and Noll*” proved that the theory of the simple fluids yields the
theory of perfect fluids ( in which deviatoric stress is independent of strain-rate)
for ¢ proved that the theory of the simple fluids yields the theory of perfect
fluids ( in which deviatoric stress is independent of strain-rate) for c—( and
yields the theory of the Newtonian fluids (in which deviatoric stress is linearly

proportional to deviatoric strain-rate) as the next approximation.

The theory of the Newtonian fluids gives a correction to the theory of perfect
fluids, which is complete within terms of order one in c¢. If we neglect all the
terms of order greater than two in c, then the simple fluid is called an

incompressible second-order fluid. The constitutive equation of non-Newtonian

second-order fluid 1s

T = -pdyt+ zpldij +2p€5+ 2Hac;
(1.4)

On taking p> = 0, we get the constitutive equation for Reiner-Rivlin visco-

inelastic fluid as

T;= -pd+ 2pd;; +4psc;;
(1.5)

where
d ij = '/2 [Ui‘, + Ui‘j].

=1
¢ i /3 [aiJ + aiJ]s um!iulllJ!

14



Cij= dim dmj.

p is the indeterminate hydrostatic pressure; tjj is the stress-tensor; and a; are the
velocity and acceleration vector and p;, Mo, M3 are called the coefficient of
Newtonian-viscosity, the coefficient of elastic-viscosity and the coefficient of

Cross-viscosity respectively.

Rivlin, Noll, Coleman, Markowitz and others**“*" have solved elementary
flow problems (steady as well as unsteady in nature) for these fluids. Some
evidence favoring the Weissenberg effect etc. were given by Roberts and
others***®, Coleman, Noll, Ericksen and Markowitz contended that the most
general type of fluid is characterized by three functions of the rate of

Shear38’41’44).

Ting* has taken positive values of the elastic-viscosity but later it was
confirmed that it should be taken as negative**®. The problems concerning the
behaviour of the second-order fluids have also been discussed by Langlois*”,
Srivastava®®*®, Sharma*?, Gupta®, Sharma®”, Bhatia®® , Sharma™ |,

Prakash®® , Gupta® , Singh®™* , Smit®® , Rita Chaudhary and Alok Das>".

1.6 Basic Equation

The governing equations, which will be used in the problems, are as follows:
1. Equation of Continuity:

The law of conservation of mass states that fluid mass can be neither created nor
destroyed. The equation of continuity aims at expressing the law of

conservation of mass in a mathematical form.

Thus in continuous motion, the equation of continuity expresses the fact. the

increase in the mass of fluid within anv closed surface drawn in the fluid in anv

15



time must be equal to the excess of the mass that flows in over the mass that

flows out.
dp/0t + (pu)i =0

Where u' and p are respectively the velocity vector and density of the fluid. For

incompressible fluids this equation reduce to
Ui’i: 0 (17)
2. Momentum Equation:

These equations are based on the Newton’s law of motion, which continues to

be the basis of all continuum mechanics except relativistic mechanics.

Where F is the impressed force per unit mass of fluid and t"; the stress tensor.

The Momentum equation for no extraneous force is simply
p(0u il Ot+Umlim) = T m
(1.9)
3. Equation of Energy:

This equation is based on the first law of Thermodynamics. For incompressible
fluid the energy balance is determined by the internal energy, the conduction of
the heat, the convection of the heat with the stream and the generation of the
heat through friction. In a compressible fluid there is an additional term due to
the work of expansion (or compression) when the volume is changed. In all
cases radiation may also be present, but its contribution is small at moderate

temperatures, and we shall neglect it completely.

16



pc(dT/at + u™T, ) = kg'T ;;+ ¢,
(1.10)

Where T is the temperature, c, the specific heat at constant volume, k the
thermal conductivity, g” the associate of metric tensor gij and ¢, the dissipation

function is given by
o=7"d,
7} is the mixed deviatoric stress tensor.
4. The equations of electromagnetic field:

Maxwell’s equations:

divB =0,
(1.11)

divD = pe,
(1.12)

Curl E = -0B/at,
(1.13)

Curl H =J+aD/at.
(1.14)

Ohm’s law:

J=0 (E+VXxB)+ p. V,
(1.15)

Where

BzﬂeH,

17



D =¢.E,
Also the Lorenz force is given by

pF=J x B+pE
(1.16)

Where B is the electromagnetic induction, Eis the electric field, H is the
magnetic field, Dthe density of the electric displacement, Jis the electric current
density, p. the electric charge density, €. the di-electirc constant, p. the

magnetic permeability and ¢ the electric conductivity.
Thus the equation of energy for incompressible MHD fluid is

pedT/at +u"T, ) =JF/a + kg*T 5+ ¢
(1.17)

And the equation of motion will become

p(au./at f umuun) =JxB+ Tml.m
(1.18)

APPENDIX

The transformation of the basic equations. in terms of the Cartesian and

cylindrical polar co-ordinates in physical component’s form is as follows:

(A)CARTESIAN SYSTEM (x,v.7)

Equation of continuity (1.7) transforms to

(0u/ dx) +(dv/dy) Hadw/dz)= 0
(A.1)

and momentum equations take the form

18



(A.2)
p Dv/Dt = (01,/ 0x) + (0ty/dy) + (01../0z) + pF, (A.3)
p DwW/Dt = (91./ dx) + (01./ dy) + (0t./dz) + pF, (A4)

where u, v, Wi Ty, Ty, Toz, Txy, Txz. Tyz. PF x» PF 4 ,pF , are the physical
components of the velocity vector, the stress tensor and the Lorenz force vector

respectively while D/Dt represents the material derivative given by
D/Dt = (dt/ at) + (ud/ 0x) + (va/ dy) + (wd/ 0z)
=(ud/ dx) + (vd/ dy) + (wd/ dz) for steady flow.

The constitutive equations (1.5) and (1.4) in terms of the physical components

take the following form:

Tax =P T 2”ldxx + 4#}(:“9

Tyy, = -P + 2i1dyy + 4pscyy,

Tez, = P + 2i1d,; + 4psC,

Txy = 2pt1dxy + 4ptsCyy,

Txy = 21y, + 413Cy;,

Txe = 2o + 4150 (A.5)
Tax = P + 21dxx + 2p2€xx + Ap3Cxx,

Tyy, = =P + 2idyy + 2peyy + 4pscyy,

Tzz,” -P + 2#Idu + Zﬂzeu + 4#3(:21’

Txy = Z#Idxy + zl.lzcxy + 4#3‘:“".'

19



Txz — 2lflldzx + 2,UZezx + 4,“3sz; (A6)

where dyy etC. exy etc. Cxy etc. and p are physical components of the symmetric
tensors dj; ej, Cjj and pressure in the directions indicates by second suffix. For

steady flow — etc. are given by:
dux = (Qu/ 0x), dyy= (0v/ dy) d;;= (0wl 0z)
dyy = (1/2) d(0u/ 0y + dv/ 0x), dy,= (L/2)( 0v/ 9z + dwl dy),

dx = (1/2) d(ow/ dx + dul 0z).
(A7)

Now
€ij = 1/2 [aij + aij] + Um,iUm,j,
where acceleration a; = Du;/Dt = du;/ dt+ u™ ;uy, and for steady flow
a; = udu/ox + vou/dy+ wou/ou + u™,u, Therefore
eij = D(dyj)/Dt+(d" iU, + d™,ium,).
Thus
exx = {D(dxx)/Dt} 2{(0u/0x))dxx + (0v/0x)dxx + (0v/0x)dyx + (OW/0x)dx}
for steady flow

exx = (Ud/0x +vd/0y +W0d/0z)dyx + 2{(du/0x)dx + (Ov/0x)dy + (dw/
0x)dx},

ey = (UD/dx +vd/dy +Wd/dz)dyy + 2{(0u/dy)dxy + (dv/dy)dy, + (Ow/
dy)dzy},

20



e; = (Ud/0x +va/dy +wd/0z)d, + 2{(0u/dz)dy, + (dv/dx)dy, + (Ow/
0z)dz},

ex=(ud/0x +va /0y +wd/dz)dy, + (du/0x+du/dy)dy, + (0v/0x)dy, +
(0v/0x)dy,+ (0w /0x)dy, + (Ow/0y)dx + (Ou/0y)dxs,

ey~ (ud/dx +va/dy +wad/0z)dy, + (du/dy)d,, + (du/dy)dy, + (Ov/0y)dy, +
(0w /0y)d, + (0u/0z)dyy+ (0v/0z)dy + (0w /0z)d,y,

ex= (Ud/0x +va /0y +W0/0z)dx + (0u/0z)dy + (0v/0z)dyx + (OW/0z)d +
(Ou/0x)dx+ (dv/0dx)dy, + (0v/0z)dyy+ (0w /0x)d,,
(A.8)

— 2 2 2
Cxx = dxx + dxy +dxz ,

Cyy = Oy + dy” +0byy”,

- 2 2 2
Czz = dxz + dyz +dzz )
Cxy = dxx dxy + dxy dyy + dxz dzy,
Cxy = dxx dxy + dxy dyy + dxz dzy,

Cyz = (0% dxy + dyz (dyy +dy),

Cx = dxy dyz + dxz (dxx + dzz);
(A.9)

The energy equation (1.10) transforms to --
pc, (DT/Dt) = k V2T + ¢,
(A.10)

Where

V% = 0% 0x°+ 0% ay*+9% 07°

21



And
¢ = fxxdxx'i'fyydyy'l'fzzdzz'i'2(’Z'xydxy*'’Z'xzdxz"'f'yzdyz)a
T« etc. are the deviatoric stress tensors.

(B) Cylendrical Polar System (r,0,2)

In this system equation of continuity (1.7) takes he form

ou/or + u/r+(1/r) 0v/06 + ow/0z =0
(B.1)

and the momentum equations (1.8) take the form

p(Du/Dt-V?/r) = a1yl dr+(1/r)( 1.l Or 8)+ (Ur)( Tol Tw) + 8T, Oz
(B.2)

p(Dv/Dt+uv/r) = dtel or+(1/r)(tel 00)+ 0Tpl 0z+ 2Ty,
(B.3)

(B.4)

where
D/Dt = d/dt +ud/or + (viIr)(9/06) + ed/0z,

U, v, w and T, tw, T, Te, Te, T, are the physical components of the velocity

vector and stress tensor respectively.

The constitutive equations (1.5) and (1.4) in terms of the physical components

of the stress tensor are given by the following set of equation:
T = -Pp + 2u1dy + 4usCyr,

Tyy, = -P + 2110y + 4p3Co,
22



Tz, = -P + 2U10z + ApisCyy,
Tpo= 2U10p0 + 413C4,
Toy = 21100, + 4p3Coy,
To, = 210, + 4pUsCoy,

Ty = 2;uldzr + 4usCyr;
(B.5)

Ty = -Pp +2u10yr + 2u0€ + 4pusCr,
Tw, = =P + 2100 + 220 + 4pt3Cs,
Ty, = =P + 2U10,; + 214285, + 4U3C,
T = 2U10p + 22610 + 413Cp,
Toy = 210, + 21260, + 4Li3Coy,
Tyr = 2010y + 204285 + 4sCor,
where physical components of tensors dj;, €j; and c;; are
dr=0u/adr, dw= (1/r)(u+ dv/00), d;,= 0w /0z
The energy equation (1.10) transforms to
where
dw= (1/2){1/r)( 0u/d0)IVIr + dv /or,
di, = (1/2) { 0v/dz +(1/r) dw/06)},
dx=(1/2)(0u/dz + ow/ar).

(B.7)
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d,.=(1/2)(du/dz + dw/ar).
(B.7)

.= 020/ 0rdt + 2(0u/0r)*+H0v/or)? HOw/0r)*+ud*u/dr+(v/r) (0
2u/9r00)-(v/r2)(0u/06)+(1/r)(0u/36)(0v/0r)+How/dr)(0u/dz)+ wdu/
ordz-(2v/r) (Ov/or)+v 2,

ew=(0/0t){(1/r)(0v/00)+u/r} +(1/r*)(0u/06)*+(2/r*)(dv /08 ) +(1/r*)(
ow /00)*+(3u/r2)(dv/8)+(1/r)(0u/d0)+(1/r)(du/d0) (0v/or)+(ult) (9>v/
9rd0) + (v/r2)(0*v/06%)+ )+(1/r)(Ow/08) (0v/dz)Hw/r) (0>v/ 000z) +
(u/r)(0u/dz)+ u*/r?,

e,, = 0°W/ 0tdz + (0u/dz)*+(0v/dz)* +2(0w/dz)*+(0u/dz)(dw/dr)+u (
0°w/01dz)+(1/12)(0v/dz)(Ow/00)H(v/1)(0*W/060z)+W(d*W/dz?),

e.~(1/2)[(a/at){1/r)(du/d6)+dv/dr — v/t}+(3/r)(0u/dr) (Ou/06)+
(3/r)(0v/dr)(0v/00)+(1/r*)(0u/d60)(0y/d0)+(1/r)(0u/dz)(Ow/d6)H2/r)
(Ow/0or)(0w/d6)+(0u/or)(@v/or)+(dv/dz)( 0w /dr)+(u/r) (0*u/0rdh)
+u(92v/ 0r?)H(v/r2)(02u/06%)+(v/r)(0*v/0rd 8)+H(w/r)(0%u/000z) +w(d*u/dr
02)-(4v/r*)(0v/00)-(v/r)(Ou/dr)+Hu/r)(dv/dr)-(W/r)(0v/dz)-(2uv/r?)],

e, =(1/2)[(9/0t){(dv/dz)+(1/r)(Ow/00)}+(2/r)(0u/00)( du/dz)+
(3/r)(0v/00)(0v/0dz) + (3/r)(0w/06)(0w/dz)+(0u/dz)(0v/dr)Hdv/dz)
(Ow/0z)+(1/r)(du/08) (0w /or)-(v/r)(0u/dz)+(Bu/r)(0v/dz)+(1/12)(
0v/00) +u(0*v/0rdz)Hv/r)(0°v/000z)+(u/r)(0*W/drd0)+(v/1*)(0°W/06?)
+w(9*v/0z*)tw(w/r) (0*°W/0602)],

e,—~(1/2)[(d/dt)(0u/dz+dw/0dr)+3(0u/dr)(0u/dz)+2(dv/dr)(0v/0z

) + 3)(@w/0r)(0w/0dz)*+(1/r)(0u/00)(0v/dz)-(2v/t)(0v/dz)+HOu/0z)(

ow/0z)H(0u/dr)(0w/or)+(1/r)( dv/or)(0w/00) — (v/r*)(dw/d8)+u(d?u/
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0rdz)+u(0>w/or?)+(v/r)(0*u/000z)+H(v/r) (0°W/000z)+w {(0*u/0z>)+ 0*w/
0riz)} ], (B.8)

and

Ca=(@u/Ar)+H(1/A)[ 1/r2)(0u /30> +u/dz)+(0v/dr+H@w/drP+v e+
2{(1/r) +0u/d0) (0v/dr)+ (du/dz) (Bw/dr)-(v/r2)(u/dO)-(v/r)(dv/dr
)]s

cw—(1/12)(0v/00)*+(2u/r?)(0v/06)*+u/r>+(1/4)[ 1/1*)Hdu/00)*+Hdv/or
YHOv/0zP+2 (1) HOw [0 P+v2 /242 {(1/e)(u/30)dv/dr) (Vi)
dv/or)+(1/r) (v/dz) (Ow/d6)} ],

¢,,~(0w/0z)*H(1/4)(0u/0z)*+(0v/0z)*Hdw/dr)*+(1/r*)(Ow/06)*+2{(
du/0z)(0w/or)+(1/1)(0v/dz)(0w/00)} ],

c—(1/2)[(141)(Qu/0r)(du/06)H(du/dr)(0v/or)H(1+1*)(du/08)(1+r)(
dv/0r)(0v/d0)-(v/r)(0u/dr)+Hu/r*)(0u/d0)+H(u/r)(dv/dr)-(v/r*) (dv/d6
)-(uv/r)](1+4)[ (Qu/dz) (@v/dz)*+(1/r) (Qu/dz)(Ow/d0)Hdv/dz)(Ow /or
)+(1+r)(0w /0r)(0w/06)],

¢,=(1/2)[(1+r)(dv/06)(0v/0z)+(1/1*)(0v/d68) (0w /D6)+Hdw/dO)+(Ov/dz
) (Ow/dz)+(1/r)(0w/dz)(Ow/06)+(u/r)(dv/dz)+(u/r*)(Ow/D6
)+(1+4)(1/r) (Qu/00)(0u/dz)H(1/r)(du/d6) (0w /dr)Hdv/dr)(Ou/dz)*H(
dv/or)(0w/adr)-(v/r)(0u/dz)-(v/r)(Ow /dr)],

¢,~(1/2)(0u/dr)(0u/dz)Hou/dr)0w/0r)+Hdu/dz)(Ow/dz)  +HOwdz
)+H(1/r)(0w/dz) (0w /dr)+HOw/dz)+(1+4)[(1/r)(0u/06) (0vdz)+(1/r%)(
d0u/06)(0w/06)+H(dv/0r)(0v/dz)H(1+1)(0v/dr)(dw/06)-(v/1)(dv/0z)-
(v/r*)(0w/00)]. (B.9)

The energy equation (1.10) transform to

—_——



pc,(DT/Dt)= kV*T+ ¢, (B.10)
V2 = 0%/ ar*+(1/r) (8/ar)+(1Irh)( 8% 06°)+( 8% 87°),
And

¢ = frrdrr"'feedee'|'fzzdzz"'2(’LN'redr9'|'7v~'rzdrz""’v~'9zd@z)a

(B.11)

7, etc. are the deviatoric tensors.
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Chapter No. 2

THE FLOW OF A SECOND-ORDER FLUID BETWEEN TWO
INFINITE DISCS IN THE PRESENCE OF TRANSVERSE MAGNETIC

IL1 INTRODUCTION

The phenomenon arising out of the flow between two discs has important
applications in chemical and mechanical engineering as its generalization could
be helpful in the study of heat transfer for analysis of air cooling of turbine discs
and the determination of oil film temperature of pedestal bearing with centre
feeding of lubricant. Several authors have discussed the steady flow of an
incompressible viscous fluid between two infinite rotating discs theoretically as
well as experimentally. Sharma & Gupta °® have considered a general case of
the flow of a Newtonian second-order fluid between two infinite torsionally
oscillating discs Rajgopal®” studied the flow of a second-order fluid between
rotating parallel plates. Sharma & Singh®” have considered the presence of
transverse magnetic field. B. B. Singh and Anil Kumar®® have considered the
flow of a second-order fluid due to the rotation of an infinite porous disc near a

stationary parallel porous disc.

In our present problem, we here study the flow pattern of an
incompressible second-order fluid between two parallel infinite discs in the
presence of transverse magnetic field when one is rotating (called rotor) and
other i1s at rest (called stator). A uniform injection is applied to the stator
forming the subject matter of the paper. The Rotor coincides with the plane z =
0 and the stator coincides with the plane z = d. Here the dimensionless
parameters 7,(uo/pd®). 7o(uo/pd?) govern the effects of elastic-viscosity and

cross—viscosity, while the effect of the injection are governed by a non-
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dimensional parameter k (=w/2d€Q2) where w; is the uniform suction velocity
(negative for injection).

I1.2 FORMULATION OF THE PROBLEM

The second-order fluid characterized by the equation (1.4) is confined between
two infinite discs. The disc coinciding with the plane z = 0 rotates with a
uniform angular velocity Q about z-axis, while the other (assumed porous)
coincides with the plane z=d and is at rest. A uniform injection - w, (w, being
positive in z-increasing direction) is applied normal to the stationary disc. The
space between these two discs 1s occupied by homogeneous, electrically
conducting, incompressible second-order fluid. Let us suppose that u, v, w are
the velocities in r, 8 and z directions respectively. Let us suppose that axes of
the discs coincide with z-axis and the origin of the cylindrical co-ordinates is
taken at the centre of the rotator disc. Under transverse magnetic field of
constant intensity B, equation of motion, leaving induced magnetic fields, for
steady flow are

piu(@u/or)tw(du/dz)-viir}= 0T 0r+ 01,02+ 1/t) T, Tw)-0 B*u/p,
(2.1)

piu@v/or)w(dv/dz)-uv/r}= 0twdr+ 01,02 2T4/1-0 B*V/p,
(2.2)

ptu(@@w/ar)tw(ow/adz)}= 0t.,0r+ dt,,0z+ 1./t
(2.3)

Assuming u, v, w are the radial, transverse and axial components of
velocity respectively. p and g are respectively density and the conductivity of
the fluid considered. The relevant boundary conditions of the problem are:

z=0; u=_0, v =102, w = (),

z=d; u=~0. v =20, W = -W--,
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The velocity components for axi-symmetric flow compatible with continuity

criterion (B.1) can be taken as (cf. Von-Karman®)
u=rQF(g),
v=rQG’( ),

w = -2dQF’(§),
(2.5)

and
P = Qui[-p1(Q)+R E*(2t1+ To)(F2+G A +AE>

Where (=z/d, &= r/d, R=Qpd®/ui, 71 = polpd? (elasticO-viscosity), 71 = po/pd?
(cross-viscosity). Here the primes denote derivatives w.rt { and A is and

arbitrary constant to be determined from the boundary conditions (2.4) become.
¢ =0: F=0, G=1, F =0,

(=1 F=k, G=0, F
-0, 2.7)

where K = wo/2dQ is a dimensionless parameter representing the injection of

the stator.

Following sets of equations are obtained after substituting (2.5) & (2.6) into
(1.4), (2.1), (2.2), (2.3)

R(F*2-2FF>’-G?) = F>*’-2R1y(F 242G %+FF"Y) — R1p(F"24+3G°%2F°F>”") + m?F’-
21 (2.8)

2R(F’G-2FG’) = G”-2R1y(F’G>-FG***) + 2R1(F’G’-F’G”’) - m*G
(2.9)
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ARFF’ = py’-2F + 4Rzl (11 F’F’+FF > )+28R1,F F”’
(2.10)

where m’= B?od’/u, is the dimensionless constant.

11.3 SOLUTION OF THE PROBLEM

Assuming the relationship m? = Rm?, equations (2.8) & (2.9) becomes
R(E*2-2FF*’-G%)=F""-2R1o(F**?+2G ?+FF")-R1,(F**%+3G’*+F’FF***)+Rm, *F’-
21 (2.11)
2R(F’G—FG’)=G"+2RT1(F"G’—FG"’)+2R172(F"G’—F’G’)—lezG
(2.12)

Taking R to be small, we expand F, G and A in ascending powers of R as

follows:
F=Fo+Rfy+ R¥fp+ ...........
G=go+Rgs +R%go+ .........

A=Ao+RA +R* A0+ ..
(2.13)

Substituting (2.13) in (2.11) and (2.12), and on equating the constant terms and
the similar powers of R on both the sides, neglecting the powers higher than

two, we get the following sets of linear differential equations:
fo’>” = 24,,

fl’ X — foazgoz_ 2.|:0an ’+2Tl(f0, 32+29032+f0f0iV)+ TZ(fO’ ’2+3go’2+f0‘f0‘”)-

m12f0’+2/11,

£, = 26y’ £y 2f1fy-2f1fy - 20001 +271 (260 1> +4gogy +ufo +Hof,") +
2 Tz(fo’ ’f]_’ ’+3g0’gl’+f0‘ fo‘ ’ ’)'m12f1,+211.
(2.14)
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go” — 0,
00" = 2(f1*2o-fogo’) -274(fo”" 2o,-folo” ") 272(f0> g0’ Fo o™ ")+ myigo’,

gZ” — 2(f1‘g0+ fO‘g]_,' flcgo_l_ fO‘gl,)'ZTl(f]_”gO'l- focagla_ flgoan_ foglaaa)_
2T2(f1”g0"

fl‘go’ ’_ fo‘gl’ ’)+ mlzg()’
(2.15)

The boundary conditions (2.7) become

£°0)=0 vn, g’0)=1, g (0)=0 n>0, f,’(0)=0 vn,
f'()=0vn, g’ ()=0vn, f D=k f 1) =0 n>0,
(2.16)

The solutions of the set of equations (2.14) & (2.15), satisfying the

boundary conditions (2.16) are given by:
fo=k(3 20,

fi = -(BK¥3105)2 -7 &+18 &E-13 O)-(1/60)(  C-5+73-38%)+
{12(z1+1)k%/5}) (26>-56+4C%-3¢7)

IL.4 RESULTS AND CONCLUSION

The variation of radial velocity for different elastic-viscous parameter 7, = -1.3,
-2, -2.6. when cross-viscous parameter 1, 10, injection parameter Kk 5

Reynolds number R= 0.05, magnetic field m; = 5 is shown in fig (1). In this
figure. the curve of radial velocity w.rit ¢ is bell shaped with maximum at
{ = 0.5 approximately. It is also evident from this from this figure that the
radial velocity decreases with increase in 1, from { = 0.0-0.28, then it begins
increase with increases in 1, upto ¢ = 0.72 and then decreases with increase in 1,

from { = 0.8-0.95. The value of radial velocity is approximately equal at
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=0.28 and { ~ 0.72 for all values of 1; The point of maxima is in the middle of

the gap length for all values of elastic-viscous parameter T,.

The wvariation of transverse velocity for different elastic-viscous
parameter T, = -1.3. -2, -2.6; when cross-visous parameter 1, = 10, injection
parameter k = 5, Reynolds number R = 0.05, magnetic field m; = 5 is shown in
fig (2). In this figure, the transverse velocity increases upto { = 0.7 and
decreases thereafter. It is also evident from this figure that the transverse

velocity decreases with increase in 1, throughout the gap-length.

The variation of axial velocity for different elastic-visous parameter 1, = -1.3, -
2, -2.6; when cross-viscous parameter 1, = 10, injection parameter k = 5,
Reynolds number R = 0.05, magnetic field m; = 5 is shown (3). In this figure,
the axial velocity increases throughout the gap-length. It is also evident from
this figure that the axial velocity decreases with increase in 1, in the first half

and in increases with increase in 1, in the second half of the gap-length.

The variation of radial velocity for different cross-viscous parameter 1, =
3, 5, 7, when elastic-viscous parameter T, = -1 injection parameter k = 5,
Reynolds number R = 0.05, magnetic field m; = 5 is shown in fig (4). In this
figure, the curve of radial velocity w.r.t { is bell shaped with maximum at { =
0.5 approximately. It is also evident from this figure that the radial velocity
decreases with an increase in 1, from { = 0.0-0.28, then it begins increase with
an increase in T, upto { = 0.72 and then decreases with an increase in 1, from { =
0.8-0.95. The value of radial velocity is approximately equal at { = 0.28 and { =
0.72 for all values of 1,. The point of maxima is in the middle of the gap-length

for all values of cross-viscous parameter 1,

The variation of transverse velocity for different cross-viscous parameter
T, = 3, 5, 7; when elastic-viscous parameter 1, = -1, injection parameter k = 5,

Reynolds number R = 0.05, magnetic field m; = 5 is shown in fig (5) In this
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figure, the transverse velocity increases upto { = 0.7 and decreases thereafter. It
is also evident from this figure that the transverse velocity decreases with an
increase in T, upto near the lower disc and then increases with an increase in 1,

from{=03t0ol=1.0.

The variation of axial velocity for different cross-viscous parameter 1, =
3, 5, 7. when elastic-viscous parameter t; = -1, injection parameter k = 5,
Reynolds number R = 0.05, magnetic field m; = 5 is shown in fig (6) In this
figure, the axial velocity increases throughout the gap-length. It is also evident
from this figure that the axial velocity decreases with an increase in T, in the

first half and it increase in T, in the second half of the gap-length.

The variation of radial velocity for different injection parameter k = 3, §,
6: when elastico-viscous parameter 1, = -0.4 cross-viscous parameter T, = 2,
Reynolds number R = 0.05, magnetic field m; = 5 is shown in fig (7) In this
figure, the curve of radial velocity w.r.t. { is parabolic with vertex upward and
the radial velocity increases in the first half and then decreases in the second
half of the gap-length. It is also evident from this figure that the radial velocity
increases with an increases in injection parameter throughout the gap-length.
The point of maxima is in the middle of the gap length for all values of injection

parameter K.

The variation of transverse velocity for different injection parameter k =
3. 5, 6: when elastico-viscous parameter T, = -0.4 cross-viscous parameter 7, = 2,
Reynolds number R = 0.05, magnetic field m;, = 5 is shown in fig (8) In this
figure, at k= 5. 6 the transverse velocity decreases first then increases and start
decreasing rapidly thereafter. At k = 3, The transverse velocity decreases
throughout the gap-length. It is also evident from this figure that the transverse
velocity increases with an increases in injection parameter k throughout the gap-

length.
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The variation of axial velocity for different injection parameter k = 3, 5,
6. when elastico-viscous parameter 1, = -0.4 cross-viscous parameter 1, = 2,
Reynolds number R = 0.05, magnetic field m; = 5 is shown in fig (9) In this
figure, the axial velocity increases throughout the gap-length. It is also evident
that 1t also increases with an increases in injection parameter k throughout the

gap-length.

The variation of radial velocity for different in Reynolds number R =
0.01, 0.06, 0.09; when elastico-viscous parameter 1, = -0.4 cross-viscous
parameter T, = 2, injection parameter k = 4 magnetic field m; =5 is shown in fig
(10) In this figure, the curve of radial velocity w.r.t. { is parabolic with vertex
upward and the radial velocity increases in the first half and then decreases in
the second half of the gap-length. It is also evident from this figure that the
radial velocity decreases with an increases in Reynolds number R { = 0.0-0.28,
then it begins increases with an increase in Reynolds number R upto £ = 0.72
and then decreases with an increase in Reynolds number R from { = 0.8-0.95.
The value of radial velocity i1s approximately equal at { = 0.28 and { = 0.72 for
all values of Reynolds number R. The point is in the middle of the gap-length
for all values of Reynolds number R.

The variation of transverse velocity for different in Reynolds number R =
0.01, 0.06, 0.09; when elastico-viscous parameter 1, = -0.4 cross-viscous
parameter T, = 2, injection parameter k = 4 magnetic field m;, =5 is shown in fig
(11) In this figure, at R = 0.01, the transverse velocity decreases thoughout the
gap length. At R= 0.06, 0.09, the transverse velocity decreases near the lower
disc then increases and decreases rapidly thereafter. It is also evident from this
figure that the transverse velocity decreases with an increase R upto { = 0.17

and then increases with an increase in R.
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The variation of axial velocity for different in Reynolds number R = 0.01,
0.06, 0.09; when elastico-viscous parameter 1, = -0.4 cross-viscous parameter T,
= 2, injection parameter k = 4 magnetic field m; = 5 is shown in fig (12) In this
figure, the axial velocity increases throughout the gap-length. It is also evident
from this figure that the axial velocity decreases in the first half and it increases

in the second half of the gap-length.

The variation of radial velocity for different magnetic field m, = 1, 10,
15: when elastico-viscous parameter 1, = -0.4 cross-viscous parameter T, = 2,
injection parameter k = 4, Reynolds number R = 0.05 is shown in fig (13). In
this figure, the curve of radial velocity w.r.t. { is parabolic with vertex upward
and the radial velocity increases in the first half and then decreases in the
second half of the gap-length. It is also evident from this figure that the radial
velocity decreases with an increases in magnetic field m, upto = 0.0-0.28, then
it begins increases with an increase in magnetic field m, upto { = 0.72 and then
decreases with increase in magmetic field m, from { = 0.8-0.95. The value of
radial velocity is approximately equal at £ = 0.28 and { = 0.72 for all values of
magnetic field m,. The point of maxima is in the middle of the gap-length for

all values of magnetic field m,.

The variation of transversel velocity for different magnetic field m, = 1,
10, 15; when elastico-viscous parameter 1, = -0.4 cross-viscous parameter T, = 2,
injection parameter k = 4, Reynolds number R = 0.05 is shown in fig (14). In
this figure, the transverse velocity decrease first then increases and decreases
thereafter. It is also evident tranverse velocity decreases with increase in

magnetic field m,.

The variation of axial velocity for different in magnetic field m, = 1, 10,
15; when elastico-viscous parameter 1, = -0.4 cross-viscous parameter T, = 2,

injection parameter k = 4 Reynolds number R = 0.05 is shown in fig (15) In this
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figure, the axial velocity increases throughout the gap-length. It is also
evident from this figure that the axial velocity decreases with increase in

magnetic field m; in the second half of the gap-length.
The transverse shearing stress on the lower and upper disc is

(ti)=0 = -1+R{k-2K(T1+ T5)-m*/3} +R?[-761k?/3150-3/700 +24k* (t1+ 7))
k/10} (1/140)+k?(T1+ T2)/5+m,?k/15-27,{76361k*/47775+{24
K (t1+ T5)/5+m°k/10}  (9/4)+22K*(t1+ 7,)/5+13m,°k/30}-27,  {2K*(t1+ Ty)-
367k?/2940 +22m,%k/39}-551m;? k(1+ 7,)/30+m,*/45],

/5+m12

And
(Tez)z=20 = -1-27Rk/10-2kR(t1+ 7,)+m;°R/6+R*[3061k*3150+2/1575+
24K (T1+ T5) /5+m,*k/10}(5883/420)+k?(1+ T,)/5-

2m,*k/15+27,{199859k*/47775+ {24K(11+ 1))
/5+my*k/10}(27/4)+38K*(T1+ T,)/5+17my*k/30}-27,{613k%/2940+2K*(T1+ T7)-
14m,°k/39} +337m,? k/2100+ m;? k(1+ 7,)/30-7m;*/360].

Respectively.

U \Y
Z Tij = -1.3 Tij = -2 Tij = -2.6 Tij = -1.3 Tij = -2 Tij= -2.6
0 0 0 0 1 1 1
0.1 | 0.061084 0.272359 0.453451 0.724947 1.802216 2.580493
0.2 | 3.107262 3.244516 3.362162 1.648343 3.664370 5.108447
0.3 | 6.886935 6.842518 6.804446 3.621123 6.423730 8.412976
0.4 | 9.782090 9.576825 9.400883 6.245975 9.657036 | 12.056344
0.5 | 10.827963 | 10.560393 | 10.331047 | 8.947225 | 12.749060 | 15.400839
0.6 | 9.720286 9.514972 0.338989 | 11.042045 | 14.962566 | 17.677098
0.7 | 6.808657 6.764160 6.726020 | 11.812569 | 15.509238 | 15.509238
0.8 | 3.075155 3.212326 3.329901 | 10.578534 | 13.621144 | 15.705835
0.9 | 0.097916 0.309137 0.490184 6.770037 8.622317 9.003630
1.0 0 0 0 0 0 0
Table (1): response of radial velocity Table (2): response of transverse
with { at different elastic-viscous velocity with £ at different elastic-
parameter. viscous parameter.
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|
| Z || u=-13 || =-2.
Lo [ o JL o J[ o J 1 1 L
| 0.1 |]-0.032823 || -0.019016 || -0.007181 | | 2.083284 || 1.479642 || 0.0876000 |
| 0.2 || 0111048 || 0.143846 || 0.171958 || 4.420979 || 4.028825 || 3.636670 |
| 0.3 || 0612374 || 0.650098 || 0.682434 || 6.461800 || 6.588706 || 6.715612 |
| 0.4 || 1458224 || 1.482888 || 1.504029 || 7.817407 || 8.403880 || 8.990352 |
| 05 || 2506414 || 2506427 || 2.506439 || 8.266933 || 9.031419 || 9.795906 |
| 0.6 || 3551303 || 3526663 || 3.505544 || 7.755142 || 8.341752 || 8.928362 |
| 07 || 4389634 || 4.351928 || 4.319609 || 6.382758 || 6.509822 || 6.637026 |
| 0.8 || 4.884974 || 4.852187 || 4.824083 || 4.388078 || 3.996161 || 3.604243 |
| 09 || 5029267 || 5.015462 || 5.003630 || 2.119605 || 1.516116 || 0.912626 |
Lol s JI s JI 05 L o [ o J[ o |
Table (3): response of axial velocity || Table (4): response of radial velocity
with ( at different elastic-viscous with ( at different elastic-viscous
parameter. parameter.
| v | w |
|z || ==3 || =5 || w=7 || w=8 || w=5 || w=7 |
Lo gL v Jf 2 JL o Jf o JL o |
| 0.1 || 1.037118 || 0.999511 || 0.802352 || 0.099332 || 0.059883 || 0.020434 |
| 0.2 || 1.206587 || 1.340820 || 1.246189 || 0.424966 || 0.331259 || 0.237552 |
| 0.3 || 1.479395 || 1.965678 || 2.241624 || 0.973451 || 0.865667 || 0.757883 |
| 0.4 || 1.800817 || 2.750108 || 3.575751 || 1.694298 || 1.623828 || 1.553358 |
| 05 || 2.096254 || 3.521447 || 4.946640 || 2.506544 || 2.506505 || 2.506466 |
| 0.6 || 2.277552 || 4.076089 || 5.998275 || 3.315464 || 3.385865 || 3.456264 |
| 0.7 || 2.277552 || 4.197728 || 6.356143 || 4.028732 || 4.136464 || 4.244196 |
| 0.8 || 1.917407 || 3.375869 || 5.663195 || 4.571151 || 4.664830 || 4.758508 |
| 0.9 || 1.192468 || 3.615884 || 3.615884 || 4.897138 || 4.936579 || 4.976021 |
(o[ o J[ o J[ o [ 5 ] s J[ 5 |
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Table (5): response of transverse Table (6): response of axial velocity

velocity with € at different cross- with C at different cross-viscous
Viscous parameter. parameter.
v | [w |
z ks kes ke k=3 k=5 |[k=6 |
0 0 0 0 1 1 1

0.1 1.441270 ||2.204012 ||2.517366 |[0.841930 ||0.849284 ||0.860335

0.2 2.777479 ||4.499410 |(5.309626 ||0.738775 ||0.795300 ||0.842035

03 |[3.842519 |[6.436419 |[7.730562 |[0.679640 |[0.819216 ||0.921788

04 |[4519018 |[7.700113 |[9.329642 |[0.649546 |0.891150 ||1.060498

0.5 4.739853 ||8.114036 |[9.856876 ||0.630447 ||0.972879 1.207145

0.6 4.488070 ||7.637820 |]9.257867 ||0.602350 |[1.020847 ||1.303076

0.7 3.794879 ||6.357331 ||7.656552 ||0.544515 |]0.989384 ||1.286595

0.8 2.735546 ||4.466462 ||5.324080 ||0.436692 ||0.834033 ||1.097715

09 [[1.423100 |[2.240303 |[2.633390 |[0.263390 |[0.260370 ||0.514913

|

E 10 10 10 10 10

|

Table (7): response of radial velocity||Table (8): response of transverse

with injection. velocity with injection.

w | U |
z || k=3 || k=5 || k=6 |/ R=001 || R=0.06 || R=0.09 |
o Jl o JL o Jl o JL o J[ o J[ o |

0.1 || 0072123 || 0.107222 || 0.120388 || 2.102290 || 1.773154 | | 1.543200 |

0.2 |[2.0.284701 | | 0.443707 || 0.512431 || 3.809710 || 3.606568 || 3.443329 |

0.3 || 0.618525 || 0.995008 || 1.169717 || 5.066212 || 5.149262 || 5.160683 |

0.4 || 1.040197 || 1.708392 || 2.030924 || 5.832238 || 6.154601 || 6.316958 |

0.5 || 1.507084 || 2.506552 || 2.999698 || 6.084908 || 6.483750 || 6.702499 |

0.6 || 1.972360 || 3.301387 || 3.964558 || 5.818043 || 6.104375 || 6.273069 |

0.7 || 2.389935 || 4.007186 || 4.817696 || 5.041985 || 5.083501 || 5.133683 |

0.8 || 2.719089 || 4.552416 || 5.471381 || 3.783202 || 3.573899 || 3.508065 |

0.9 || 2.98575 || 4.889250 || 5.870523 || 2.086663 || 1.793772 || 1.693272 |
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(ol 8 JI s JI 6 J[ o J[ o J[ o

Table (9): response of axial velocity Table (10): response of radial
with injection. velocity different Reynolds number.
Y, || W |

z || rR=001 || R=006 || R=009 || R=001 || R=006 |[ R=0.09 |
o Jl ¢+ JL 2 Jp 2 Jl o J[ o J[ 0o |

0.1 || 0.887852 || 0.832946 || 0.804672 || 0.108129 || 0.086429 || 0.071536 |
0.2 || 0.785358 || 0.763283 || 0.790949 || 0.407278 || 0.356531 || 0.320374 |
0.3 || 0.690367 || 0.772200 || 0.925297 || 0.855022 || 0.797936 || 0.753929 |

0.4 || 0.600359 || 0.830712 || 1.151772 || 1.404152 || 1.368351 || 1.333619 |

0.5 0.512526 0.902180 1.397593 2.004339 2.006197 1.991444
0.6 0.423872 0.945099 1.579331 2.603798 2.641372 2.646785
0.7 0.331307 0.916075 1.609524 3.150956 || 3.205593 3.222259
0.8 0.231750 0.772914 1.403543 3.596087 3.641708 3.657231
0.9 0.122233 0.477731 0.886495 3.892889 3.911311 3.917549
1.0 0 0 0 4 4 4

Table (11): response of Transverse
velocity with different Reynolds
number

Table (12): response of axial velocity
with different Reynolds number

U | v |

|

z || m=1 || m=10 || m=15 || m=1 || m=10 || m=15 |
(o [ o [ o [ o 1 J[ & [ 1 |
| 0.1 || 1.0872438 || 1.752882 || 1.58733 || 0.910303 || 0.673590 || 0.526663 |
| 0.2 || 3672795 || 3.592213 || 3.477583 || 0.871905 || 0.489365 || 0.290839 |
| 0.3 || 5132934 || 5158497 || 5.191992 || 0.873426 || 0.418651 || 0.228314 |
| 04 || 6.066779 || 6.188827 || 6.359439 || 0.896292 || 0.427239 || 0.277027 |
| 05 || 6370446 || 6.528991 || 6.752092 || 0.916450 || 0.477107 || 0.378110 |
| 06 || 6.020021 || 6.138271 || 6.304088 || 0.906273 || 0.528350 || 0.477148 |
| 0.7 || 5066240 || 5.086140 || 5.112483 || 0.836590 || 0.541239 || 0.525571 |
| 0.8 || 3.625624 || 3.540440 || 3.420000 || 0.678796 || 0.478355 || 0.482126 |
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| 09 || 1.867916 || 1.746874 || 1.579445 || 0.406979 || 0.306742 || 0.314353 |

Loff o Jp o JL o JL o J[ o J[ o |
Table (13): response of radial velocity Table (14): response of transverse
with different m; velocity with different m;
|
4 m =1 m; =10 m; =15
0 0 0 0
0.1 0.092891 0.085203 0.074653
0.2 0.371995 0.353370 0.327499
0.3 0.816018 0.794436 0.764186
0.4 1.380947 1.367083 1.347504
0.5 2.008279 2.009068 2.010065
0.6 2.633150 2.648395 2.669717
0.7 3.192098 3.214565 3.245932
0.8 3.630111 3.649083 3.675393
0.9 3.906611 3.914336 3.924931
1.0 ||4 4 4

Table(15): Response of axial velocity with different m;
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Fig(3):response of axial velocity with ¢ at different elastico-
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Chapter No. 3

FLOW OF A NON- NEWTONIAN SECOND-ORDER FLUID OVER AN
ENCLOSED TORSINALLY OSCILLATING DISCS IN THE PRESENCE
OF THE MANETIC FIELD

IIL.1 INTRODUCTION

The phenomenon of flow of the fluid over an enclosed torsionally
oscillating disc (enclosed in a cylindrical casing) has important engineering
applications. The most common practical application of it is the domestic
washing machine and blower of curd etc. Soo® considered first the problem of
laminar flow over an enclosed rotating disc in case of Newtonian fluid. The
torsional oscillations of Newtonian fluids have been discussed by Rosenblat®.
He has also discussed the case when the Newtonian fluid is confined between
two infinite torsinally oscillating discs®”. Sharma & Gupta®” have two infinite
torsionally oscillating discs. Thereafter Sharma & Singh®® extended the same
problem for the case of porous discs subjected to uniform suction and injection.
Hayat*”has considered non-Newtonian flows over an oscillating plate with
variable suction. Chawla’ has considered flow past of a torsinonally oscillating
plane Riley & Wybrow’" have considered the flow induced by the torsinally
oscillations of an elliptic cylinder. Bluckburn’” has considered a study of two-
dimensional flow past of an oscillating cylinder. Sadhna Kahre®" studied the
steady flow between a rotating and porous stationary disc in the presence of

transverse magnetic field.

Due to complexity of the differential equations and tedious calculations
of the solutions of the solutions, no one has tried to solve the most practical
problems of enclosed torsionally oscillating discs so far. The authors have

considered the present problem of flow of a non-Newtonian second-order fluid
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over an enclosed torsionally oscillating disc in the presence of the magnetic
field and calculated successfully the steady and unsteady part both of the flow
functions. The flow functions are expanded in the powers of the amplitude €
(assumed to be small) of the oscillations of the disc. The non-Newtonian effects
are exhibited through two dimensionless parameters 7,(=nu, nu,) and 7,(=nu;
ny ). where gy, po, us are coefficient of Newtonian viscosity, elastic-viscosity
and cross viscosity respectively, n being the uniform frequency of the
oscillation. The Variation of radial, transverse and axial velocities with elastic-
viscous parameter T;, cross-viscous parameter 7> Reynolds number R, magnetic

field m at different phase difference 7 is shown graphically.
II1.2 FORMULATION OF THE PROBLEM

In the three dimensional cylindrical set of co-ordinates (r, #.z) the system
consists of a finite oscillating disc of radius r, (coinciding with the plane z = 0)
performing rotator oscillations of the type rQCos 7 of small amplitude € . about
the perpendicular axis r = 0 with a constant angular velocity £ in an
imcompressible second-order fluid forming the part of a cylindrical casing or
housing. The top of the casing (coinciding with the plane z =z,<r,) may be
considered as a stationary disc (stator) placed parallel to and at a distance equal
to gap length z, from the oscillating disc. The symmetrical radial steady outflow
has a small mass rate ‘'m’ of radial outflow (*-m" for net radial inflow). The inlet
condition is taken as a simple radial source flow along z-axis starting from
radius ro. A constant magnetic field B, is applied normal to the plane of the

oscillating disc. The induced magnetic field is neglected.

Assuming (u. v, w) as the velocity components along the cylindrical

system of axes (r, @, z) the relevant boundary conditions of the problem are:

z=0, u=0, v =r Qe'"(Real Part), w=0,
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Z=2Z u =0, v =0, w =0,

where the gap z, is assumed small in comparison with the disc radius r,. The
velocity components for the axisymmetric flow compatible with the continuity

criterion can be taken as 93059,
U =-¢H'({,1) + (Ra/R,) M({,7)/¢
V =-£G({,7) + (RL/R,) L'({,1)/¢
W =2H({,7).

Where U = u/Qz,, V = v/ Qzo, W=w/ Qz,, & = 1/z5, +{, T are dimensionless
quantities and H({, 7). G({.7), L({.7). M'({.1) are dimensionless function of the
dimensionless variable { = z/z,and T = nt. R,, (=,/2npzyv)), Ry (=L/2apzev,) are
dimensionless number to be called the Reynolds number of net outflow and
circulatory flow respectively. R, (=€z,°v,) be the flow Reynolds number, The

small mass rate *‘m” of the radial outflow is represented by
Zy

m =2ap[ rudz
(3.3)

0

Using expression (3.2) , the boundary conditions (3.1) transform for G, L & H

into the following form:
G (0, 7) = Real(e'®), G (1,7) = 0,
L (0, 7)=0, L(l,t)=0,

H (0, 1) =k, H(l,7)=0,
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H* (0,7) =0, B, )=,
(3.4)

The conditions on M on the boundaries are obtainable form the expression

(3.3) for m as follows:

M(l.7)-M(0.7) =1
(3.5)

which on choosing the discs as streamlines reduces to

M(l,7)=1, M(0,7)=0
(3.6)

Using egs. (1.4) and expression (3.2) in equation (1.8) and neglecting the

squares
& higher powers of R,,/R, (assumed small), we have the following equations in
dimensionless form:

-(1/pzo)(@p )0 )=-nQz, {E0H -(R,/R,NOM' [ §)} + Q2o (H2-2HH -
G)+Q%z,  (R,/R,)(ZHM™§)-Q%7o(R /R, N 2LG/E)H(v,£2/7y) {H " ¢-
(Ru/R)M™"/E)} - (2v2/z0) [n€V2] {(Rw/R,) (OM'" [§)- EOH™""} + €
&H2-HH™) + (R,/R,) (Q¥¢) (H'’M'+H’MV+H'M"""+HM")-
(RL/R2QYENL' G +LG™) -(4va€2%-70) {(Rw/R,) (1/2§)
(H"M™+HM" V" +H "M )-(RL/R,)(12E)2L° G +LG ™)+ (§/4) (H -
G'-2H'H'")} + (0By*Qzy/p){-EH"HR,,/R, (M /§)} .

(3.7)

0 = nQz{EdGHR/R,NIL/E)}-(2Q2:6)(HG-H'G)-  Q2z(R,/R;)
(M G/E)-L27y(Ry /R, N ZHL/E)Hv C/20) 1§67 HR /R NLT/E

) H2valzo)[(n€2/2)  {EAGHRUR,)IL"/E) 1+ (RU/R,)  (%/§)
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(H’L’+HL+HL+H’ L") +(Q%&)(HG’
H G’ )HRw/R)QQIEM G +M”* G*)[+(2vaQ°/zo){E(H’'G**-H’G")
+RLHR,)(UE)(H L +H " LHH’L)+HRm*R) (LIE) M’ G +M’G”)
(6Bo"Qzolp)  {SG+RUR)(LIE)}.
(3.8)

-(1/pzo)(dp /00 )=2nQzed H+4Q°zoHH -2v,QH /24
(2V2/20) {nQoH*+2Q%E (H’'H+G’G*’ )+ Q*(22H HH+2HH”"")-
(Rm/R)2Q°(H "M +H>’M”)+ (RU/R,) 2Q° (L'G”” + L”’G’)}-(2vs

Qzo){EYHH > +G'G* )+ 14H H -(Ri/R,)
(HB BM’3’+H”’M”)+(RL/RZ)(L7G’ ’+L7 BG’)}
(3.9)

where By and o are intensity of the magnetic field and conductivity of
the fluid considered. R (:zozlvl) is the Reynolds number, 7, (=nv,/vy), 72
(=nvs/v;) and €(=Q/n) are the dimensionless parameter, m” = 0By’zo’/u 1 is the

dimensionless magnetic field and R/R .= m/L=1.

For R = R_ = By =0, the differential equations (3.7)-(3.9) are identical
to those obtained by Sharma and Gupta®” (for S; = 1, S, = 0) and differentiating
(3.7) w.r.t ¢ and (3.9) w.r.t & and then eliminating 8%p/d¢.0¢ from the equations
thus obtained. We get

-nQz{EOH”’-(Rn/R,)OM" /E}-20%20 (HH -GG +(R /R, (2Q%Z0/)
(H’M”’+HM>*)-(RU/R,)(2Q%20/§)(LG’+L’G)
(V1Q/z0)}{(Ri/R)(M"1€)- EH"}-(2Va/Z) [(nQ/2){ (Rn/R,)(OM"/E)-
EOHY}-Q%* 2HH>’+H’H +HH"+4G’G””)
+HR/R)(QE)2H > M +H M +2H "M +2H’ M +HM")-
(RUR)(2QYE)2L’G+L G +LG)]-(2vsQ%2o){ (Rm*+R,) (1/€)
(HYM’+2H> M +2H"M” +H M™) (R +R,)(1/¢)

60



(3L’G’+2L" G +LG**")- M HY+3G’ G +2H " H’ ")} + (aB*Qzo/p) -

{EH+(Rm/R)(M™’/§)}=0
(3.10)

On equating the coefficients of ¢ and 1/ ¢ from the equation (3.8) & (3.10), we

get the following equations:

G’=RAG+2€R(HG’-H’G)-1:0G’’-2€ 74(HG’**-H**G’)-2€
TZ(H’G’ ’H’ ’G’)+mZG
(3.11)

L= RAL+2€R(M’G+HL)-1,dL"’-2€
T (H L+H " L+HL +H' L +2M’ G +2M** G*)-2€
T(HL+H’L+H’L+2M”° G’ +M’G’)y+m’L
(3.12)
H"=ROH+2€R(HH"""+GG")-110H"-2€
T (P H +HH2H " H*+4G°G”")-2€
T (H’H"+2H"H+3G’G”’)+m’H”’
(3.13)

MV=ROM+2eR(H’M"’+HM’”’-LG’-L’G)-1;0M"-2¢€

T.QH M +HYM +2H M’ +2H’M"+HM"-4L°G>*-2L°G’-
2LG’)-2€ To(H'"M +2H "M +2H "M’ +H’'M"-3L°G*-2L° G-
LG>>)+m’M”’

(3.14)

111.3 SOLUTION OF THE PROBLEM

Substituting the expressions
G(¢,7) =% €"Gn({, 1)
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L((, T) = Z EN LN ((’ T)
H((! T) = Z EN HN ((’ T)

M((, T) = Z EN I\/IN ((r T)
(3.15)

into (3.11) to (3.14) neglecting the terms with coefficient of € (assumed
negligible small) and equating the terms independent of € and coefficient of €,

we get the following equations:

Go’’= R 0Gy/dt -T1 8Gy’’/dT + M*Gy

(3.16)

Gln = R 661/67—2R(H0’G0’—HOGO’)—Tl aGl,,/aT-ZTl(Ho,Go,”-H()“Go’)-
2T2(H0’G0”- Ho“Go’)‘i‘ 1’1’12G1

(3.17)

Lo’=R dLy/0t -T1 OLy”’/0T + m2L0
(3.18)

Ll” =R 6L1/61-2R(I\/I0’G0’-H0L0’)- T1 6L1”/61-
2T1(H0777L0+H0£ 9L0’+H0’L09,+H0L0999

+2Mo”Go’+2Mo’Go”) - 2T2(H0’”L0+H0”L0,+H0,LO
“+2M0”G0,+M0’G0”)+ m2L1
(3.19)

HoV=RaHy>’/0t-T,0Hy /dT+m?Hy”’
(3.20)

H," = R 9H;>’/0t+2R(HoHo °+GoGo’)- 71 dH, /-
2T1(HO’HOiV+HOH0v+2HO’ ’HO” ’+
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4GO.GO, ? )- 2T3(3G0.Go. .+H0’Hoiv+2Ho‘ 'Ho‘ ) )+ mzH, "
(3.21)

My "=RaM," /dt-T,0MV/dt+m°M,""
(3.22)

M,"=RdM, " /d7-2R(Hy"M," " +HoM;' " *-Lo’Go-LoGo')- 7:0M,"/d7-21
l(ZHO, N 'MO, )

+Ho"M,'+2H," "M’ ""-4L0' Gy '-2L0 "' Go'-2LoGo """ )+HM " +2H "M ™)-212
(ZHOQ"MOSQ +H()l‘.M0Q+2H09IMO ‘!§-3L09G0' 1-2L0’ QGOQ-LOGO“Q_*_HO‘MOI")_*_ szl
(3.23)

Taking G,({,7) = Gus({)+€'"Gu({)
L(,7) =Los({)+e"Lu({)
H,({,7) = Hys(Q) te* Hol{)

Mn((,r) = Mns({)*ez“Mnt(c)
(3.24)

Complex notation has been adopted here with the convention that only real pats

of the complex quantities have the physical meaning.

Using (6.24) and (6.33), the boundary conditions (6.5) & (6.7) for n = 0,1

transform to
Gu(0)=0, Ge(0)=1, G (0)=0, G(0)=0,
Gos(1) =0, Ge(0)=0, Gi(1)=0, Gy(1)=0,
Hos(0) =k, Hg(0)=0, H(0)=0, H;(0)=0,

Hos(l):k. H(}((]):O. H|s(l):0. Hn(l)=0.
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H'4(0) =0, H(0)=0, H"(0)=0, H"(0)=0,
H'o(1)=0, H'o(1)=0, H"«(1)=0, H"(1)=0,
Loy(0) =0, Lg(0)=0, Lis(0)=0, L;(0)=0,
Lo(1)=0, La(1)=0, Li(1)=0, L,(1)=0,
M’(0) =0, M'5(0) =0, M7 (0)=0, M",(0)=0,
Mg (0) =0, My(0)=0, M (0)=0, M (0)=0,
My(0) =0, M(0)=0, M(0)=0, M;(0)=0,

Mg(1) =0, Mg(l1)=0, M (1)=0, My(1)=0,
(3.25)

I11.4 RESULTS AND DISCUSION

The variation of the radial velocity with { at 7,= 2, ¢ =5, R =5, R,,= 0.05,
R; = 0.049. R, = 2. m = 2 for different values of elastic-viscous parameter 7,= 0,
-0.3 and phase difference 7= n/3, 2a/3 is shown in fig (1). For 7= n/3, the radial
velocity increases with an increase in {near the lower disc, attains its maximum
value at {=0.2then start decreasing, attain its minimum value at {=0.8 and
increases thereafter near the upper disc. It is clear that the radial velocity
increases with an increase in 7, near the lower disc then start decreasing with an
increase in 7, after the point of intersection near the upper disc. For r =2a/3, the
radial velocity increases with an increase in { and start decreasing thereafter at 7
=0 whenever at 7, = -0.3 it decreases first, attains its minimum value at { =
0.1then start increasing, attains its maximum value at { = 0.7and decreases

there after upto the surface of the upper disc. It is also seen from this figure that

the radial velocity increases with an increase in 7, upto the middle of the gap-
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length and decreases thereafter with an increase in 7, upto the surface of the

upper disc.

The variation of the transverse velocity with {at 7,=2, § =5, R =5, R~
0.05.R; = 0.049, R, = 2, m = 2 for different values of elastic-viscous parameter
7,= 0, -0.3 and phase difference 7= n/3, 2a/3 1s shown in fig (2). For 7= a/3, the
transverse velocity decreases with an increase in {. It is observed from this
figure that velocity decreases with an increase in 7, throughout the gap-length.
It is also seen that transverse velocity is maximum at lower disc minimum at the
upper disc. For 7 =2a/3, the transverse velocity increases with an increase in {
whenever it start decreasing near the upper disc. It is also observed that the
transverse velocity decreases with an increase in 7, throughout the gap-length

and i1s minimum at lowe disc.

The variation of the axial velocity with { at 7,= 2, £ =5, R = 5, R,= 0.05,
R; = 0.049. R, = 2, m = 2 for different values of elastic-viscous parameter 7,= 0,
-0.3 and phase difference 7= n/3, 2a/3 is shown in fig (3). For 7= a/3, the axial
velocity decreases with an increase in {, attains its minimum value in the middle
of the gap length approximately and increases thereafter upto the surface of the
upper disc. It is clear from this figure that the axial velocity decreases with an
increase in 7; upto the middle of the gap-length from the lower disc
approximately whenever its behavior is reversed thereafter. For 7= 2a/3, the
axial velocity increases with an increase in { near the lower disc then start
decreasing upto (= 0.65 and start increasing thereafter upto the upper disc 7,= 0
whenever at 7,= -0.3, the axial velocity increases with an increases in { upto
= 0.4 and decreases thereafter. It is also evident from this figure that the axial

velocity decreases with an increase in 7 throughout the gap-length.
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The variation of the radial velocity with {at 7,= -2, § =5.R = 5, R~
0.05,R; = 0.049, R, = 2, m = 2 for different values of cross-viscous parameter 1
»= 0. 15 and phase difference 7= a/3. 2n/3 i1s shown in fig (4). For = n/3. the
graph of the radial velocity is parabolic with vertex upward with maximum
value at {=0.5. It is seen from this figure the radial velocity increases with an
increase in 7, throughout the gap-length. For v =2a/3, the radial velocity
decreases with an increase in (. attain its minimum value at { = 0.6 and
increases thereafter in case of 7,= 0 whenever the graph of velocity 1s parabolic
with vertex upward with maximum value at { = 0.5 in case of 7,= 15. It is also
observed from this figure that the radial velocity increases with an increase in 7,

throughout the gap-length.

The variation of the transverse velocity with { at 7,= -2, § = 5R= 5, R,,= 0.05,
R; = 0.049,. R, = 2, m = 2 for different values of cross-viscous parameter 7,= 0,
15 and phase difference 7= n/3. 2n/3 is shown in fig (5). For 7= n/3. the
transverse velocity decreases with an increase in {, throughout the gap-length. It
is evident from this figure that the transverse velocity is being overlapped
throughout the gap-length for all the values of 7,. For t=2n/3, the transverse
velocity increases with an increase in { throughout the gap-length and is also

being overlapped for both values of ;.

The variation of the axial velocity with { at 7,= -2, § = 5,R= 5, R,,= 0.05,
R; = 0.049, R, = 2, m = 2 for different values of cross-viscous parameter 7,= 0,
15 and phase difference 7= n/3, 2a/3 is shown in fig (6). For 7= n/3, the axial
velocity increases with an increase in { near the lower disc attain its maximum
value in the middle of the second half and again increases upto the upper disc at
7= 0 whenever at 7,= 15, the axial velocity decreases with an increase in (.

attain the its minimum value at {=0.7approximately and start increasing, attain
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its value at {=0.7 approximately and again decreases upto the upper disc at 7,=
0 whenever at 7,= 15. the graph of the axial velocity is parabolic with vertex
upward with maximum value {=0.5. It is also seen from this figure that the

axial velocity increases with an increase in 7, throughout the gap-length.

The variation of the radial velocity with {at 7,= -2, § = 5, 15= 10, R,,=
0.05.R; = 0.049, R, = 2, R = § for different values of magnetic field parameter
m = 10, 15 and phase difference 7= n/3, 2a/3 i1s shown in fig (7). For t= n/3, the
radial velocity increases with an increase in { near the lower disc attain its
maximum value at { = 0.2 then start decreasing, attains its minimum value at {
= 0.8 and increase upto the surface upper disc. It is evident from this figure that
the radial velocity increases with an increase in m near the lower disc while its
behavior is reversed after the point of intersection of both branches. For 7
=2n/3, the graph of the radial velocity is just reversed to that graph at 7 =n/3. It
is also seen from this figure that the radial velocity decreases with an increase
in m near the lower and upper discs while it increases with an increase in m in

the middle two two quarters.

The variation of the transverse velocity with {at 7,= -2, § = 5, o= 10,
R,= 0.05, Ry = 0.049, R, = 2, R = 5 for different values of magnetic field
parameter m = 10, 15 and phase difference 7= n/3, 2n/3 1s shown in fig (8). For
7= m/3, the transverse velocity decreases with an increase in magnetic field
parameter m throughout the gap-length. It is also clear that the transverse
velocity is maximum at lower disc and minimum at the upper disc. For 7= 2a/3,
the transverse velocity increases with an increase in ¢ first and then start
decreasing upto the surface of the upper disc. It is also clear from this figure that
the velocity increases with an increase in m up to { = 0.7 whenever it decreases
with an increase in m after the point of intersection of both braches near the

upper disc.
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The variation of the transverse velocity with {at 7,= -2, & = 5, 1= 10,
R,= 0.05, R; = 0.049, R, = 2, R = 5§ for different values of magnetic field
parameter m = 10, 15 and phase difference = n/3, 27/3 is shown in fig (9). For
7= n/3, the axial velocity decreases with an increase in { upto middle of the gap-
length approximately and increase in { upto the surface of the a upper disc. It is
evident from this figure that the axial velocity decreases with an increase in m
throughout the gap-length. For 7 = 2a/3, the graph of the radial velocity is
increase { = 0.4 approximately and then decreases upto the surface of the upper
disc. It 1s seen from this figure that the axial velocity increases with an increase
inm upto { = 0.6 whenever it decreases with an increase in m after the point of

intersection near the upper disc.

The variation of the radial velocity with {at 7,= -2, § = 5,1,= 10, R~
0.05,R; = 0.049, R, = 2, R = 5 for different values of Reynolds numberR = 2, 6
and phase difference t= /3, 2a/3 1s shown in fig (10). For 7= n/3, the graph of
the radial velocity is parabolic with vertex downward with minimum value at {
= 0.5 in case R =2 whenver the graph of the radial velocity at R = 6 is just
reversed to that of graph at R = 2. It is observed from this figure that the radial
velocity increases with an increase in R throughout the gap-length. For 7= 2a/3,

the behavior of the radial velocity is same to that of at 7= n/3.

The variation of the transverse velocity with {at 7,= -2, £ = 5, 1,= 10,
R,=0.05,R; =0.049, R, = 2, R = 5 for different values of Reynolds number R =
2, 6 and phase difference 7= n/3. 2a/3 is shown in fig (11). For = a/3. the
transverse velocity decreases with an increase in { . It is clear from this figure
that the transverse velocity increases with an increase in R throughout the gap-
length. The transverse velocity is maximum at lower disc and minimum at the
upper disc. For T = 2n/3, the transverse velocity increases with an increase in (

Jt 1s also seen from this figure that the transverse velocity is being overlapped
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for all the values of R. The transverse velocity is minimum at lower disc and

maximum at the upper disc.

The variation of the axial velocity with ¢ at 7,= -2, ¢ =5, 7,= 10, R,=
0.05, R_.=0.049, R, =2, R = 5 for different values of Reynolds number R =2, 6
and phase difference = n/3, 27/3 is shown in fig (12). For = /3, axial velocity
increases with an increase in ¢, attain its maximum value at { = 0.7 and
decreases upto surface of the upper disc at R = 2 whenever at R = 6, the axial
velocity increases upto ¢ = 0.1 then start decreasing, attains its minimum value
at ¢ = 0.7 and increases upto the surface of the upper disc. It is clear from this
figure that the axial velocity decreases with an increases in R throughout the
gap length. For T =2x/3, the axial velocity decreases with an increase in { upto
¢ = 0.25 then start increasing, attains its maximum value at ¢ = 0.8 and
decreases upto the upper disc at R = 2 whenever at R = 6, the axial velocity
increases with an increase in { upto ¢ = 0.6 and decreases upto surface of the
upper disc. It is evident this figure that the axial velocity increases with an

increase R throughout the gap-length.

T=1/3 T=2n/3
4 7.=0 7.=-0.3 7.=0 7.=-0.3
0.0 0.000000 0.000000 0.000000 0.000000
0.1 0.019381 0.015124 0.000669 -0.008994
0.2 0.021618 0.020329 0.005575 -0.007345
0.3 0.016271 0.018487 0.009415 -0.001144
0.4 0.008792 0.012601 0.101728 0.005785
0.5 0.009135 0.005437 0.009842 0.011343
0.6 -0.003127 -0.001016 0.007701 0.014573
0.7 -0.006020 -0.005392 0.005245 0.015155
0.8 -0.006629 -0.006879 0.003108 0.013016
0.9 -0.004771 -0.005096 0.001474 0.008060
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1.0 0.000000 0.000000 0.000000 0.000000
Table (1) variation Radial velocity U
T=1/3 T=271/3
{ 71=0 71=-0.3 71=0 7= -0.3
0.0 2.500000 2.500000 2.500000 2.500000
0.1 2.332912 2.481212 -1.624245 -1.608388
0.2 2.097773 2.341571 -0.998594 -0.951595
0.3 1.828391 2.122754 -0.564612 -0.486259
0.4 1.546827 1.855166 -0.275867 -0.174522
0.5 1.266489 1.560127 -0.095709 0.016203
0.6 0.994486 1.251759 0.004676 0.113724
0.7 0.733409 0.938600 0.047957 0.141723
0.8 0.482676 0.624997 0.052156 0.120520
0.9 0.239562 0.312313 0.031973 0.067901
1.0 0.000000 0.000000 0.000000 0.000000
Table (2) variation Transverse velocity V
T=7/3 7= 271/3

4 71=0 71=-0.3 71=0 71=-0.3
0.0 0.000000 0.000000 0.000000 0.000000
0.1 -0.020437 -0.014122 0.003737 0.014449
0.2 -0.055658 -0.043344 0.005411 0.039925
0.3 -0.083135 -0.071888 0.001375 0.060294
0.4 -0.094955 -0.089908 -0.005540 0.069388
0.5 -0.091106 -0.093274 -0.011525 0.066937
0.6 -0.075289 -0.082472 -0.14114 0.055642
0.7 -0.52612 -0.061297 -0.012779 0.039334
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0.8 -0.028586 -0.035669 -0.008623 0.022031
0.9 -0.008952 -0.012698 -0.003675 0.007625
1.0 0.000000 0.000000 0.000000 0.000000
Table (3) variation axial velocity w
T=1/3 T=271/3
{ 7,=0 7= 15 =0 7= 15
0.0 0.000000 0.000000 0.000000 0.000000
0.1 0.009095 0.021820 -0.002802 0.008488
0.2 0.016642 0.040748 -0.005683 0.015256
0.3 0.022458 0.055866 -0.008276 0.020290
0.4 0.026355 0.066363 -0.010273 0.023546
0.5 0.028148 0.071534 -0.011428 0.024928
0.6 0.027661 0.070778 -0.011552 0.024319
0.7 0.024734 0.063598 -0.010514 0.021606
0.8 0.019226 0.049595 -0.008241 0.016689
0.9 0.011015 0.028466 -0.004720 0.009499
1.0 0.000000 0.000000 0.000000 0.000000
Table (4) variation Radial velocity U
T=7/3 7= 271/3
4 =0 7= 15 7,=0 7= 15
0.0 2.500000 2.500000 -2.500000 -2.500000
0.1 2.332013 2.337302 -2.200005 -2.190833
0.2 2.138674 2.145357 -1.914615 -1.902344
0.3 1.922525 1.928038 -1.642790 -1.631929
0.4 1.686208 1.689064 -1.383199 -1.376860
0.5 1.432440 1.432040 -1.134551 -1.134287
0.6 1.163999 1.160506 -0895314 -0.901238

71




0.7 0.883698 0.877977 -0.663901 -0.674610
0.8 0.594373 0.587980 -0.438664 -0.451159
0.9 0.298864 0.294095 -0.217923 -0.227482
1.0 0.000000 0.000000 0.000000 0.000000
Table (5) variation of Transverse velocity V
=7/3 T=21/3

{ 7,=0 7= 15 =0 7= 15
0.0 0.000000 0.000000 0.000000 0.000000
0.1 0.014847 -0.004646 -0.000766 0.056482
0.2 0.020154 -0.033140 0.005697 0.1000013
0.3 0.017647 -0.078639 0.017446 0.130735
0.4 0.009480 -0.132504 0.032033 0.148739
0.5 -0.001824 -0.184615 0.046588 0.154142
0.6 -0.013431 -0.223677 0.0570906 0.147122
0.7 -0.022281 -0.237540 0.062538 0.127922
0.8 -0.025165 -0.213500 0.056878 0.096824
0.9 -0.018816 -0.138613 0.037250 0.054109
1.0 0.000000 0.000000 0.000000 0.000000

Table (6) Variation of Axial velocity W
T=7/3 7= 2m1/3

4 m =10 m=15 m =10 m=15
0.0 0.000000 0.000000 0.000000 0.000000
0.1 0.015938 0.033323 -0.021138 -0.033708
0.2 0.022353 0.039273 -0.021606 -0.026780
0.3 0.020279 0.028033 -0.011398 -0.007892
0.4 0.013005 0.011043 0.002092 0.009297
0.5 0.004058 -0.004372 0.014280 0.020631
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0.6 -0.003729 -0.014753 0.022714 0.026123
0.7 -0.008458 -0.018977 0.026241 0.026848
0.8 -0.009160 -0.017047 0.024272 0.023513
0.9 -0.005853 -0.009750 0.016099 0.015663
1.0 0.000000 0.000000 0.000000 0.000000
Table (7) Variation of Radial velocity R
T=1/3 7=27/3
4 m =10 m =15 m =10 m =15
0.0 2.500000 2.500000 2.500000 2.500000
0.1 2.473640 2.372010 -1.382090 -0.951500
0.2 2.279813 1.980891 -0.621527 0.098088
0.3 1.998898 1.525220 -0.131262 0.314663
0.4 1.682168 1.103490 0.127873 0.463619
0.5 1.361051 0.756462 0.300526 0.466883
0.6 1.052834 0.492271 0.339199 0.398727
0.7 0.764716 0.302109 0.306424 0.302200
0.8 0.496833 0.169548 0.226888 0.199235
0.9 0.244528 0.075472 0.119573 0.098303
1.0 0.000000 0.000000 0.000000 0.000000

Table (8) Variation of Transverse velocity V
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Chapter No. 4

HEAT TRANSFER IN THE FLOW OF A NON-NEWTONIAN SECOND-
ORDER FLUID OVER AN ENCLOSED TORSIONALLY OSCILLATING
DISCS WITH UNIFORM SUCTION AND INJECTION IN THE
PRESENCE OF THE MAG‘\’ETIC FIELD

VL1 INTRODUCTION

The phenomenon of flow of the fluid over an enclosed torsionally
oscillating disc (enclosed in a cylindrical casing) has important engineering
applications. The most common practical application of it is the domestic
washing machine and blower of curd etc., Soo® has considered first the
problem of laminar flow over an enclosed rotating disc in case of Newtonian
fluid. Sharma and Agarwal’” have discussed the heat transfer from an enclosed
rotating disc in case of Newtonian fluid. Thereafter Singh K. R. and H.G.
Sharma’™ have discussed the heat transfer Singh K. R. and H.G. Sharma ™ have
discussed the heat transfer from an enclosed rotating disc in case of Newtonian
fluid. Thereafter in the flow of a second-order fluid between two enclosed
rotating discs. The torsional oscillations of Newtonian fluids have been
discussed by Rosenblat®®. He has also discussed the case when the Newtonian
fluid is confined between two infinite torsionally oscillating discs® Sharma &
Gupta®” have considered a general case of flow of a second-order fluid
between two infinite torsionally oscillating discs. Thereafter Sharma & K. R.
Singh’ have solved the problem of heat transfer in the flow of non-Newtonian
second-order fluid between torsionally oscillating plane Riley & Wybrow’"
have considered the flow induced by the torsional oscillations of an elliptic
cylinder. Sadhna kahre®" studied the steady flow between a rotating and porous

stationary disc in the presence of transverse magnetic field.
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Due to complexity of the differential equations and tedious calculations
of the solutions, no one has tried to solve the most practical problems of
enclosed torsionallly oscillating discs so far. The authors have considered the
present problem of heat transfer in the flow of a non-Newtonian second-order
fluid over an enclosed torsionally oscillating discs with uniform suction and
injection in the presence of the magnetic field and calculated successfully the
steady and unsteady part both of the flow and energy functions. The flow and
energy functions are expanded in the powers of the amplitude € (assumed to
be small) of the oscillations of the disc. The non-Newtonian effects are
exhibited through two dimensionless parameters 7, (=nu>/ g;) and To( =nus/py),
where puy, p». us are coefficient of Newtonian viscosity, elastic-viscosity and
cross-viscosity respectively. n being the uniform frequency of the oscillation.
The variation of temperature distribution with elastic-viscous parameter 1,
cross —viscous parameter 7, (based on the relation 7, =a 7, where a = -0.2 as for
5.46% poly-iso- butylenes type solution in cetane at 30°C (Markowiz™®)
Reynolds number R, magnetic field m, suction parameter k at different phase

difference 7 is shown graphically.
VL2 FORMULATION OF THE PROBLEM

In the three dimensional cylindrical set of co-ordinates (r, 8, z) the system
consists of a finite oscillating disc of radius r, (coinciding with the plane z = 0)
performing rotator oscillations of the type rQ2Cost of small amplitude ¢ , about
perpendicular axis r = 0 with a constant angular velocity € in an incompressible
second-order fluid forming the part of a cylindrical casing or housing. The top
of the casing (coinciding with the plane z = z,< r,) may be considered as a
stationary disc (stator) placed parallel to and at a distance equal to gap length z,
from the oscillating disc. The symmetrical radial steady outflow has a small

mass rate ‘m’ of radial outflow (‘-m’ for net radial inflow). The inlet condition
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is taken as a simple radial source flow along z-axis starting from radius ry A
constant magnetic field By is applied normal to the plane of the oscillating disc.
The induced magnetic field is neglected. The lower disc z = 0 is maintained at

constant temperature T, while the upper disc z = z, at constant temperature T),.

Assuming (u, v, w) as the velocity components along the cylindrical

system of axes (r, 8, z) the relevant boundary conditions of the problem are:

z=0, u=0, v = 1()'"(Real part), w=w, T=T,
Z =2, u=10, v=0, w=wp, T=T,
(6.1)

where the gap z, is assumed small in comparison with the disc radius r,. The
velocity components for the axisymmetric flow compatible with the continuity

criterion can be taken as 040560
U= &I’(q;T)J“(RnV/R?) MQ((:T)/§~
V =§¢G'({,0)HRYR,) L(,7)/¢.

W = 2H(,7).
(6.2)

and for the temperature, we take

T = Ty + (v, QICH{P(, 1)+, 7))
(6.3)

where U = w/Qz, W = w/Qz,, &= r/Qz,, {,T are dimensionless quantities and H(
¢,1). G(,1). L({,7), M'({,7). ¢p({,T), W({,r) are dimensionless function of the
dimensionless variables {=z/z, and t = nt. R,,(=m/2apz v ), R; (=L/2n pz 4v,)

are dimensionless number to be called the Reynolds number of net outflow and
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circulatory flow respectively. R, (=Qzy’/v,) be the flow Reynolds number. The

small mass rate ‘m” of the radial outflow is represented by
Zy

m =2ap[ rudz
(6.4)

0

Using expression (6.2) and (6.3), the boundary conditions (6.1) transform for G,

L & H into the following form:

G (0, 1) =Real(e'™), G (1,7) =0,

L(0,7)=0, L) =0,
H (0,7) =k, H(l.7)=0,
H (0,7) =0, H (1,7)=0,

¢p0,7)=1VE=S, ¢(l,7)=0.

W (0,7)=0, WY(l.1)=0
(6.5)

where E [=Qv,/{C(T,-Ty)}] is the Eckert number and k [=wy/2Qz] is the

suction

parameter.

The conditions on M on the boundaries are obtainable form the expression

(6.4) for m as follows:
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M(l.7)-M(0.7) =1
(6.6)

which on choosing the discs as streamlines reduces to

M(l.7) =1, M(0,7)=0
(6.7)

Using egs. (1.4) and expression (6.2) in equation (1.8) and neglecting the

squares
& higher powers of R,,/R, (assumed small), we have the following equations in
dimensionless form:

-(1/pzo)@p/0E) Q2o {EIH (R, /R, )OM' /€)} + Q2o (H2-2HH -
G2)+Q°2) (Ru/R,)(ZHM " £)-L22o(R1 /R, N 2LG/E ) H(v, /) {H" -
(Ru/R )M 18)} - (2va/20) [n€2/2] {(Rw/R,) (AM™'/&)- EOH "} + °
EH"2-HH") + (R,/R,) (Q¥€) (H "M +H "M +H’M " +HM™)-

(R /R,)(2QYENL'G LG )]-(4v;2%-20) {(Ra/R,) (1/2€)
(HM'+HM* " +H "M )-(RU/R, )N 1/28)(2L° G +LG ")+ (€/4) (H 2
G™-2H'H"")} + (0B¢*Qzy/p) {-EH +HR /R, )M /§)} .

(6.8)

0 = Q20 {EIGHRL/R, )AL/ &)} (292228 ) (HG'-H'G)- 2°2y(Ro/R,)
(2M'G/E) -7(Ry /R, )(ZHL /) Hv, 2/ 20) 4G +Ry /R, )L /€)} +
(2v2/20)[(n€2/2) {£0G™ " HR/R,NAL" /) } + (Ri/R,) (Q/E)
(H”L+H' " L+HL +H'L") HQYE)HG ™ H'G ) HR /R, )2QYE
MG +M G H2v3Q%/ o) {E(H'G " -H"G") +HRy+R,)(1/&

J(H L +H LAH L) HR,, +R,)(1/E)(2M G +M G )-(a By’ Qz/p)
{EGHR/R,)L/E)} .
(6.9)
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-(1/pz0)(0p/0)=2nQzodH+4Q°2oHH’ -2v1QH* /25~ (2V-/20)
(nQOH”’+2Q°¢* (H’H>’+G’G")+ Q°(22H’HH’+2HH’"’)-
(Rm/R.)2Q%(H M’ +H>’M>)+ (RU/R,) 2Q° (L'G”” + L’ G’)}-(2v3
Q%lz){EHH’ +G’ G+ 14H'H”-(R/R))
(HM>+H M) +RUR,)(L’G+L°G)}

(6.10)
pC(AT/Ot+udT/ar+waT/dz) =  K{a°T/ar*+(1/r) aT/or+d°T/az*}+d
(6.11)
where
b Zfijdij
(6.12)

C, is the specific heat at constant volume, @ be the viscous-dissipation
function, ¥ is the mixed deviatoric stress tensor, K is the thermal conductivity,
p is the density of the fluid; B and o are intensity of the magnetic field and

conductivity of the fluid considered.

Differentiating (6.8) w.r.t ¢ and (6.10) w.r.t { and then eliminating 9%p/a¢.0¢&

from the equation thus obtained. We get

-nQz{EOH”’-(Rn/R,)OM" /E}-2Q%2,¢ (HH -
GG)+(Rm/R)(2Q%20/§) (H'M’+HM”’)-
(RUR)(2Q%2/8) (LG +L G)-(V1€/z0){ (Rm/R)(M™/E)- EHM}-(2,/2)
[(Q/2){(Ru/R,)(AM"/§)-EH"}-Q2E 2H’H> +H’H +HH"+4G’G"”)
+HR/R)(QE)2H M +H M +2H "M+ 2H M +HM")-
(RUR)(2QYE)2L’G+L G +LG)]-(2vsQ%2o){ (Rm*+R,) (1/€)
(HYM’+2H > M”>+2H"M”’ +H’M")-
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(RL+R,)(1/6)3L°G’ 2L’ G’ +LG**)- E(H’HY+3G° G +2H " H’ )}

0i°Q2z¢/p) - {EHHR /R, )M /§)} =0
(6.13)

On equating the coefficients of ¢ and 1/ ¢ from the equation (6.9) & (6.13). we

get the following equations:

G"=RgG+2 € R(HG'-H'G)-1,0G" -2 € Ty(HG"-H'G')-2 € 1
H(H'GUHTG)tm’G

(6.14)

L"=RIL+2 € R(M'G+HL)-7,dL"-2 € T
(HL'+H"L+HL " +H'L"+2M'G " +2M"G") -2 €1
J(H'L+H LHHL 42M G MG ) +m2L
(6.15)

H¥=RgH+2 € R(HH'"+GG’)-1\gH"-2 € 1
(H'HY+HH"+2H"H'"+4G’G™")-2 €1
»(H'H+2H’H'+3G’'G*")y+m’H"’
(6.16)

M*=RaM+2 € R(H'M""+HM""'-LG'-L'G)-t,dM™-2 € 1
{(ZH'"MV7+H"M'+2H"M """ +2H'MY+HMY-4L’G""-2L""G’-
2LG")-2 e (HMM'+2H" "M +2H"M "'+ H'MY-3L°G™'-2L"'G’-
LG )rmM™
(6.17)

where R(=nzy/v,) is the Reynolds number, 7,(=nv,/v,), To(=nvy/v,) and €
(=€2/n) are the dimensionless parameter, m? = gBy’z,"/u, is the

dimensionless magnetic field and R,,/R; =m/L =~ 1.

Using (6.3). (6.12) in (6.11) and equating the coefficient of &, we get
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W =eRP,[0W/€-2H’ W+2HW’-H*"*+G *-1(H’ 0H*+G’0G’)-2€ T,
(H’H, ,2+H’G,2HH’ ’H”’+HG’G’ ,)'36 TZ(H’H’ ’2+H,G,2)],

AP+ =€RP,[0p/€+(Rm/R,)2M°W+2H ¢ - 12H>*+(Ri/R,)2H "M -

(RU/R)2L’G’-11{12H’0H’-(R/R)(H’OM”’+M”’dH*)+(R/R;)

(G’AL+L’0L’)} -2€ 1. {(12H"*+12HH’H”’+(R/R,) M’ G**-

HH "M’ -H*?M’-

HHM’*"}HRU/R,)(HL’G*+3H’L’G’+3LG’H”*+HG’L"")} -€

T{(Rn/R)(BM’G*%-6H H "M )+24H"*+6(R/R,)(H’LG’+H’L’G")}]
Where P,=u;C,/K is the Prandtl number.

For Rn=R_=B(=0, the differential equations (6.8)-(6.10) are identical to those
obtained by Sharma & Gupta®” (for S;= 1, S,=0), Sharma & Singh®® (for S; =1,
S,=0) and for Rp,=R_=By=0,the differential equations (6.8)-(6.10),(6.18), (6.19)
are identical to those obtained by Sharma & Singh™ (for S;= 1, S,=0).

V.3 SOLUTION OF THE PROBLEM
Substituting the expressions

G, 1) =X €"Gn((,7)

LG 1) =X € " Ln((,7)

H(¢,7) =X € " Hn (S, 7)

M@, 1) =% € Mn((,7)

$@. 1) =X € $n (S, 7)

Y((,1)=Y €"Wn (1)
(6.20)
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into (6.14) to (6.19) neglecting the terms with coefficient of € (assumed
negligible small) and equating the terms independent of € and coefficient of €,

we get the following equations:

Go”’=R 0Gy/0T -11 0Gy’/0T + mZGo
(6.21)

Gl” = R aGllaT-ZR(Ho,Go,-HoGo’)-Tl aGl"/6T—2T1(H0’G0”’—H0"GO’)—
2T2(H0’G0”-

Ho*Go')+ m'Gy
(6.22)

Lo’= R dLo/dT -11 0Ly /0T + mPL,
(6.23)

Ll” =R 6L1/6T—2R(I\/I0’G0’—H0L0’)— T1 6L1”/OT—
2T1(H0777L0+H0‘ 5L05+H05L0,,+H0L0,,,

+2M0”G0,+2M0,G0’,) - 2T2(H0,”L0+H0,,L0,+H0,L0
”+2M0”G0’+M0,G0”)+ m2L1
(6.22)

Ho""=RaHy>*/07-110H,"/dT+m’Hy”
(6.25)

H," = R 9H,>’/0t+2R(HoHo *+GoGy’)- 71 dH,"/7-
2T1(H0’Hoiv+HoHov+2Ho’ ’HO” 7+

4GO’GO) 7)_ 2T2(3GO’GO,,+HO,HOIV+2H0, ,H0¢9,)+ m2H199
(6.26)

Mo =RaM,’’/0T-T10 My /dT+M* My’
(6.27)
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M,*=RAM,"/0T-2R (Ho' My™ +HoMy""*-Lo'Go-LoGo')- Ti0M, /721
l(ZHov ’ wMo‘ L)

FH"M, +2H, "My *-4L’ Gy -2y "G -2LyGo ") FH M +2H " M)-275
(2Ho"My’* +Ho"Mo'+2Ho "My “**-3L’Go -2 Go'-LoGo”**+H o' Mo )+
m’M,

(6.28)

‘po’,z RP]a‘]’Os
(6.29)

W, "=RP,[d%¥,-2H"V1+2HWo'-Ho -Gy ?-1)(H""dH " +Go'0Go ),
(6.30)

4Potpo’ =RP10P0,
(6.31)

4'P, +¢o, ’=RP,[6¢| +(R,,,/R,)2M0"P0+2Ho¢o’- ]21'10.2+(R|11/R7)2I'ID' 'Mo“'
(Ri/R,)2Ly' Gy - 1, {(12Hy 0H -(Re/R, )(H "My M "dHy ") HR /R, )G’
Lo} ] (6.32)

Taking G,({,7) = G,({)+e"G ()
L.(¢,7) =Lo({)+e" " Lu({)
H.({,7) = Hu()+e* Houl({)
M,({,7) = M)+ ™, ({)
Ga({,7) =Pus(()He*  Pul()

ll" n((,r) =‘pns(( )+e2h‘|"nt(c)
(6.33)
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Complex notation has been adopted here with the convention that only real pats

of the complex quantities have the physical meaning.

Using (6.24) and (6.33), the boundary conditions (6.5) & (6.7) for n = 0,1

transform to

Ge(0) =0, Ggl0)=1, Gi(0)=0, G(0)=0,
Gp(1) =0, Ge(0) =0, Gi(1) =0, Gyu(1)=0,
Ho(0) =k, Hg(0) =0, H,(0)=0, H,(0)=0,
Hoi(1) =k, Hg(1) =0, Hi(1)=0, H,(1)=0,
Ho(0)=0, H',(0)=0, H,(0)=0, H(0)=0,
H'o(1)=0, H'o(1)=0, H"(1)=0, H(1)=0,
Lo(0) =0, Ly(0)=0, Liy(0)=0, L,(0)=0,
Los(1) =0, Lg(1)=0, Lis(1)=0, L;(1)=0,
M’(0) =0, M’(0) =0, M"4(0)=0, M"(0)=0,
Mu(1) =0, M7(1)=0, M'(1)=0, M"(1)=0,
My(0) =0, Mg(0)=0, M;,(0)=0, M (0)=0,
My(0) =0, My(0)=0, M, (0)=0, M, (0)=0,
My(1)=0, Mg(1)=0, M (1)=0, My(])=0,
Was(0) =0, Wo(0) =0, W(0)=0, W, (0)=0,
Po(1)=0, Wo(1)=0, W, (1)=0, Y¥,(1)=0,
$0(0) =0, Pa(0)=0, ¢(0)=0. ¢,(0)=0,

Gos(1) =0, @al1)=0, i(1)=0, ¢pu(1)=0, (6.34)
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Applying (6.33) & (6.34) in egs. (6.21) to (6.32), we get
Gos(¢) = G1s({) = 0,
Goi(Q) = {1-(e"2Sinh f)}eS$+(e 12Sinh f) e /¢,
where f = {(iR+m?)/(1+it)}*= A+iB,
where A = [[(m*+R11)*+(m*+R1,)*+(R-m’1) 3 4/{2(1+1,%}] "2,
B = [[(M*+R7y)*+(R-m’7y)’}%(m* +R1y)]{2(1+7,° 3",
Go(¢, ) = Real{e* Gu(Q)},
= (As+As5)Cost-(A4+Ag)SInT,
where
A,=e*(Cos’BSinhA+ CoshASin’B)/2(Sinh’A+Sin’B)},
A,=e*(SinBCosBSinhA-CosBCoshASinB)/2(Sinh?A+Sin’B)},
As=e45{(1-A;)CosB{+A,SinB{},
As=e4%{(1-A)SinB{+A,CosB(},
As=e ~4S{A,CosB{+A,SinB},

Ag=e ~4S{A,CosB{-A;SinB(},
G1.(¢) = C1e/S+ Coe TS +RK[ase S {¢ —(1/2f)+ae~/S{¢ —(1/2F)}],

Where a;=1-(e"/2Sinhf),
a,= e'/2Sinhf,
C.=-C{C,+(Rk/2f)(az-a1)},
C,=-(Rk/2Sinhf)(a;e"+a e ™-(a,Sinhf/f)},

97



G({, T)= Go(¢, )+€ Gi({, 7).
Mot($)= M(¢)=0,
Mos() = Are™Im?+ Age ™™ [mP+Agl+Ay
M’0s(0) = Are™/m-Aze "™ Im*+Ag
Where A; = (e™-1)/ (e"-1),
A, =m?(e™-1)/{(e™(m-2)-e™(m+2)},
As = -( Ar- Ay)/m,
Aq = (Ar+ A)/m?.
Mis(¢)= Cse™ /m?+ Cge ™™ /m*+(RK-7:km?)[ C1e™¢(2m{-5)/2m>+
Cse ™™ (2m{+5)/2m°]+C7{+Cg
where Cs = {m?(e™-1)(D1+D,-D3)+m(e ™+m-1)(D,-D,}/4-e™(m+2)+e™(m-2)},
Cs = {Cs(e™1)-m(D3.D4)}(e™-1),
C; = -(Cs/m)+(Ce/m)-D;,
Cs = -(Cs/m?)-(Ce/m?)-D;
D: = (Rk-t:km®)(5/2m*)(C,-C»),
D, = -(Rk-t:km?)(3/2m*)(C1+Cy),
D; = -(Rk-1:km?)(1/2m3){C.e™(2m-5)+ C.e™(2m+5)},
D, = (Rk-t:km?)(1/2m?){Ce™(2m-3)- C,e™(2m+3)},
M(¢, )= Mo(¢, 7)+€ M((, 7).

Hot({)= Hw(¢) = 0,
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Hos(¢) =k

H1s(¢) = C1e%5/d*+ Coe =% [d*+ C3l+Cut(Z1-FZ,)[{1-
(e'/2Sinhf}2e?/</(16fSinh*f)]

where d = {2iR+m?)/(1+2i7)}*? = C+iD,
where C=[[m?+4R7y)+{ [m*+4R7y)*+[2R-2m%t ) }2)/{2(1+47,5) Y2,
D=[[m*+4R7,)*+{ [2R-2m%t,)?} 2 [m*+4R7))]/{2(1+47,2) 1>
Z, =2RI{(1+it,)(4F-d%)},
Z,=(871+67, )/{(1+2it;)(4F*-d%)},
C1={d(Z1o- Zo-Z+Zs+Cy(e*-1)},
Co=Z/{4-e°(d+2)+e(d-2)},
C3=-{(C1/d)- (Co/d)+Zs-Z¢},
Cs=-{(C1/d?)+(Co/d*)+Z5-Z,},
Z3 = Z4[{1-(e"/2Sinhf) }*/4-fe*'/16fSinh?f],
Z,= Zo[f{1-(e"/2Sinhf)}*/4-fe*/16fSinh?f],
Zs = Z4[{1-(e'/2Sinhf) }*/2+e*'/8Sinh?f],
Zo = Z,[P{1-e'12Sinhf)}?/2+f*e*/8Sinh?f],
Z, = Z1[e*{1-e'/2Sinhf)}?/4f-1/16fSinhf],
Zs = Z,[fe*"{1-e"/2Sinhf)}*/4-f/16fSinh?f],
Zo = Z1[e*"{1-e"/2Sinhf)}?/2+1/8Sinhf],
Z10= Zo[FPe¥{1-e"2Sinhf)}?/2-F/8fSinh?f],

Z11 = dX(e-1)(Z5-Z4+Zs-Zs-Z7+Zs)-d(€%-d-1) Z10-Zo-Z6+Zs),
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Ha(¢, 7) = Real{e*"Hy({)},
= (A81+A89)C052T-(A32+A90)Sin2T,

where

Az = AA*-4B°-C*+D?,

A1, =8AB-2CD,

Ass= 2R(A1s-T1AW){ (Ar-TiA) +(T1 Ars+ Aw)},

Ase= -2R(AssT1+A){ (Asa-T1Aw) +(t1 A+ A},

A= (871 +672)(A1a-2T1A) {(A13-2T1A10) +(2T1 A1+ Aw)’},
Asg= -(871 +672)( 2T1A1+ A){(A13-2T1A10) +(2T1 A1+ Awr)},
Aso=[A{(1-A1)*-A}+2BA(1-A)J{4(A*+B%)},
Aoo=-[B{(1-A1)*-As"}+2AA(1-Ar) | {A(A*+B%)},
A,;=Sinh?ACos’B-Cosh’ASin?B,
A,,=2SinhACosBCoshASinB,

Ags= €2 (A1 C0s2B+A,SiN2B)/(Az*+Ax),

Ags= €2 (A21Sin2B-AyCos2B)/(Ax*+Ax),

Aos= (AA+BA)I{16(A*+B?)},

Ass= (AA2-BA)/{16(A*+B?)},

A27=Aus (Arg-Aas)-Ass(AzotAse),

Azs=Aus (Arg-Aas)+Ars(Azo-As),

Bi=(1-A1)*A,
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B,=-2(1-A))A,,

X1= (A%-B%)(A17Az-A1gAzs)-2AB(A1gAz7 +A17Az),
Xz = 2AB(A17Az7-A1sAos)+ (A*-B?)(ArgAz7 +A17Az),
Aoo=(X1A15+XoA16)/ (Ass +Ass’),
As0=(X2A15-X1Ase)/(Ars +As),

Az1=Aus {(B1/2)+(A23/8)}-Ase{(B2/2)+(A24/8) },
Az2=Aus {(B1/2)+(A23/8)}-Ass{(B2/2)+(A24/8) },

X3 = (A%B%)(A17Aq-A1gAs)-2AB(A1sAs1 +A17Az),
Xa= 2AB(A17A31-A1sAz)+ (A*-B?)(ArsAa1 +A17A),
Asz=(XsArs+XaAse) (Ass +As6"),

Asi=(XsAr5-XsAse) (Ars +Ass’),
Ags=e*(A1C052B-ASin2B),
Azs=e*(AxC0s2B+A14Sin2B),
Agr=(AA-BAR)[16{(AA-BA,)+(BAs-AA) ],
Azg=-(BAx+AAR)/[16{(AA-BA»)*+(BA1-AA) ],
Azo=A15(As5-Az7)-Ar6(Ass-Ass),
As0=A16(As5-Az7)-A1s(Azs-Ass),

Xs = (A*B®)(A1rAs9-A18Au0)-2AB(A1gAs +A17A),
X = 2AB (A1rAse-AigAso)+ (A*-B?) (AsgAge +ArrAx),
Au=(XsA1s+Xo6A16)/ (Ass’+Ass),
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As=(X6A15-X5A16)/ (Ars’+As6"),
Au;=e**(B,C0s2B-B,Sin2B)/2,
A=e**(B,C0s2B+B;Sin2B)/2,
Aus=Ao1/{8(Ax*+A2)},

Ass=-Aool {8(Axn"+A2)},
Au7=Aas(AsztAus)-Ass(AsatAus),
Aug=Aas(AsztAus)-Ass(AsatAus),

X7= (A™-B")(A17As-AssAug)-2AB(AssAar +ArrAsg),
Xg= 2AB (Ar7Ay-AsgAsg)+ (A-B?) (ArgAsr +AsrAs),
Ase=(X7A15+XsAse) (Ass +As67),
Aso=(XsA15-X7A16)/(Ass +Ass”),
As;=(C?-D?)(e°CosD-1)-2CDe"SinD,
As,=2CD(e°CosD-1)- (C*-D?)eSinD,
As;=C(e°CosD-C-1)- D(e“SinD-D),
As,=D(e°CosD-C-1)- C(e“SinD-D),

Ass= Ag7-AoetAs1-Azs-Ase+ Ay,

Ase= Aog-AzotAsz-Azs-AntAsy,

As7= Agg-Ag7-AsstAg,

Asg= Aso-Agg-AsstAgy,

Aso= As1Ass-AspAse- AszAsr+AssAsg,
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AGO: A52A55'A51A56' A54A57+A53A581
Ags=4-e“{(C+2)CosD+DSinD}+e*{(C-2) CosD-DSinD},

Ags=-e “{DCosD-(C+2)DSinD}+e*{(C-2)SinD+DCosD},
Asr=(AsoAss+AsoAss) (Aes +Ass”),

Ass=(AsoAss-AssPAss) (Ass +Ass”),

Ago=CAs7-DAsg+Ag7(€ cosD-1)+ Agge™SinD,
A70=DAs+CAsg+As;(ecosD-1)+ Agge“SinD

Arn={Aso(e°cosD-1)+As, e°SinD}/{(e°cosD-1)*+e*Sin’D},

Az ={As(e°cosD-1)-Ag e°SinD}/{(e°cosD-1)*+e*°Sin’D},
A73=-[{(CA71+DA7,-CAs7-DAgg)/(C*+D?) }+Ag1-Asgl,
A74=-[{(CA7-DA71-CAgs-DA¢7)/(C*+D°)}+As-Ad],
Ass={An(C*D?)+2CDA.}/{(C*-D*)+4C°D%,

Ars={Ar(C*-D?)-2CDA; }/{(C*D?)+4C*D7},
Ar={Ae:(C*-D?)+2CDAs}{(C*-D?)+4C°D%,
Azs={Aes(C>-D)+2CDAs}{(C*-D?)+4C°D%,

Azg=-(ArstArr+Azr-Ayg),

Ago=-(Azs+Azs+Azg-Agp),

Ag1=e % (A75C0SD{-A7SIiNDE)+ e = (A77C0SDI+AzsSIND)+ A3l +Ass,
Ag=e % (A76C0osDI+ASIND)+ e ~CS (A75C0SDI-A77SINDY)+Aqal +Ago,
Ags= Ags-(A*B%) A +2ABAs,
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Ass= Are-(A*-B?)Asg-2ABAY,

Ags=e 24 (A19C0s2BJ-ASin2BY),

Agg=e 24 (A,,C0s2B{+A15SiN2B7),
Agr=e24(1=9(A5;C0s2B(1-7)-AssSin2B(1-0)},
Agg=e241=9) (A35C0s2B(1-0)+A3;Sin2B(1-0)},
Ago=Ag3(Ags-Ag7)-Asa(Ass-Asg),
Ago=Ags(Ags-Ag7)+Ags(Ags-Ass),

H(¢, T)=Ho({, 7)+€H1({, T)= €H4({, 7)
Los(¢)=Lot(¢)=L1s({) = 0

Lu(Q) = Cse/$+ Cee /S+{aze ™+ aze™ N} (mP+2mf)+ {ase~M+%+
age MY (mP-2mf)+(7/2f) {ase”S+ age ™%)- {ase/ S+ age ~/°)/4F,

Where
Cs=-[Ce+{(as:a7)/m*+2mf) }+{(as+as)/(m*-2mf)}-{(as+as)/(4F)}],

C6:[[3.3{e (m+f) -ef}+{a7e'(m+f)_ef}]/(m2+2mf)+[a4{e-(m-f)_ef}+a6{e(m-f)_
e"J1(mP-2mf)+(ase™-ase )/2f+agSinhf/2F]/(2Sinhf),

a,=1-(e"/2Sinhf),
a,=e'/2Sinhf,

a3={2RC a;/m(1+ity) }-{4(t1+1,)Cia:f/(1+iT.})-
{(47,+27,)Cra /m(1+ity}),

as=-{2RCar/m(1+ity)}-{4(11+1,)Cra f/(1+it,})-
{(41,+27,)Cra/m(1+ity}),
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as={2RCsar/(1+it1)}-{411+27,)Coas P/ (1+iT1),

a={2RCa/m(1+it1) }-{4(11+72)Craxf/(1+iT.})-
{(47,+27,)Cra,f/m(1+it}),

a7=-{2RCoax/m(1+i7y) }-{4(71+72)Coarf/(1+iT1})-
{(47,+27,)Coaf/m(1+ity}),

ag={2RC32/ (1+it1)}-{471+275)Cad '/ (L +iT1}),
L1(¢, r)=Real{e"" Lu({)},
= (B47+Bs1+BsstBsg-Bes) COST-(Bag+Bsy+Bsg+Bgo-Bes)Sin,
Bs=1/ (1+T12),
B,=-1:/(1+7,%),

Bs=(2RC1/m){B3(1-A1)+BsAs}-4(71+72)C1{(1-A1) (AB3-
BB,)+Ax(AB,+BBs)}-(471+27,) Co/mp(A*-B){Bs(1-Ar)+BaAs}-
2AB{B4(1-A1)- BsA2},

Be=(2RC1/m){B4(1-A1)-B3A2}-4(11+72)C1{(1-A1) (AB4-BB3)+Az(ABs-
B B4)}- (4T1+ 2T2)C1/m} [2A B{ Bg(l-A1)+ B4A2}+(A2- Bz){ B4(1-A1)-
B3Az}],

B7=-(2RCo/m){B3(1-A1)+BsAs}-4(1t1+72) Co{(1-Ar) (AB3-
BB.)+Ax(ABy+BBs)}+ (471+272)Co/ MH(A™B ) Bs(1-A1)+BaAo}-
2AB{B4(1-A1)- BsAx}],

Bs=-(2RCo/m){B4(1-A1)-BsAz}-4(71+72)Co{(1-A1) (AB4+BB3)+Ax(ABs-
B B4)}+ {(4T1+ 2T2)C2/m} [ZAB{ Bg(l-A1)+ B4A2}+ (Az- Bz){B4(1-A1)-
B3Az}],
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Bo=2RC3{Bs(1-A1)+BsA}-4(11+27,)C3[(A%-B*){B3(1-A1)+BsAs}-
(2AB){B4(1-Ay)-

BaA2},

B10=2RC3{Ba(1-A1)+B3As}-4(T1+27,)C3[2AB){B3(1-Ar)+BaA}+(A
B2){B4(1-Ay)-

BaA2},

Bllz (2 RCllm){ B3A1- B4A2}+4(T1+T2)C1{A{ BgAl- B4A2}- B(B4A1+ BgAg)}-
{(47,+27,)Co/mYH{B3A1-B.AL)(A%-B)-2AB{B,A+B:A}],

Blg=(2RC1/m){B4A1+ BgA2}+4(T1+T2)C1{B{BgA1-
B4A2}+A( B4A1+ BgAz)}- {(4T1+ 2T2)C1/m} [{ BgAl- B4A2)2AB+(A2-
B%)(B4A1+B3AL}],

B1s=-(2RCo/m){B3A1-BsAx}+4(11+72) Co{ A{ B3A1-BiA} -
B(B4A1+B3sAx) 1+ {(411+212)Co/mMH{BsAs-BsA) (A*-B)-
2AB{BsA+B3A}],

814:-(2 RCZ/m){B4A1+ 83A2}+4(T1+T2)C2{B{ BsAs-
BaAs}+A(BAI+BsA)}- {(471+215)CoMH{BaA1-BsA2) 2AB+H(A’-
BZ)(B4A1+ BsAz}],

B1s=2RC3{B3A1-B,A}-4(11+72)C3{(A%-B%)(B3A1-B,A}-
2AB(BsA1+B3AY)],

B16=2RC3{B4A1+B3A,}-4(T1+72)C3{(B3A1-BsA}2AB+(A*-
B%)(B:A1+B3AY)],

Y1=BsCosB(e ™*4)-")-BeSinB(e ™4 -e"),
Y ,=BsCosB(e ™+4)-")+BsSinB(e M+4)-e),
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Y5=B15CosB(e ~M*+4-e")+B,,SinB(e ~ (M4 +e"),
Y ,=B14CosB(e~(M*+4-e")-B;SinB(e ~M*+4)+e?),
B17=(Y1+Y3),

B1s=(Y2+Yy),

Ys=(e~(M~4-e”)(B,CosB- BsSinB),
Ye=(e~(M~4-e”)(BgCosB- B;SinB),

Y= B1:CosB(e ™ A-e™)+ B,,SinB(e ™ 4 +e?)
Ys= B1,C0sB (e ™ 4-)-B,;SinB(e ™ D+eh),
B1o=(Ys+Y7),

B2o=(Ys+Ys),

By =(m?+2mA)/{(m*+2mA)*+4m°B?},
By=-2mB/{(m*+2mA)*+4m?B?},
Bos=(m*-2mA)/{(m*-2mA)*+4m’B?},
Bos=2mB/{(m?+2mA)*+4m?B?},

Bas=e” (BsC0SB- B1,SinB)- e” (B15CosB+B1SinB),
Bas=e” (B1sC0sB+B,SinB)- ™ (B1sC0sB-B1sSinB),
B27=(AB,s+BBys)/{2(A’+B?)},

Bas=(AB2s-BB2s) [{2(A*+B%)},
B,g=B15SinhACosB-BsC0sASInhB,

B30=B1SinhACosB+B5CosASInhB,
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Ba1={B2y(A*B?)+2B3AB}[2{(A*-B*)*+4A°B}],
B3,={Bay(A*-B?)-2BAB}[2{(A*-B*)*+4A°B}],
B33=B17B21- B1sB2o,

B34=B1sB21+ B17B2,

B3s=B19B23-B20B24,

B3s=B20B23+B19B2a,

B37={(B33+ Bss+Bo7+ B31) SinhACos B+(Bg4+ Bss+Bogt B32)COSAS inh B}/{2

Sinh’ACos’B+ Cos?A Sinh?B)},

B3s={(B34+B3s+B2s+Bs;) SINhAC0SB-(B3zs+B3s+B27+Bs1)
CosASinhB}/{2(Sinh?ACos’B+ Cos’A Sinh’B)},

B39=B21(Bs+B13)-B22(Bs+B14),
B10=B22(Bs+B13)+B21(Bs+B14),
B41=B23(B7+B11)-B24(Bst+B12),

B42=B24(B7+B11)+B23(Bs+B12),

VL4 RESULTS AND DISCUSSION

The variation of the temperature distribution with (atR=7.P =6, =35, and e
=0.02, k =15,m = 10, E =5 for different values of 7,= 1, 1.2, 3 when 7 = /3 and
27/3 1s shown 1n fig (1) and fig (2 ) respectively. From fig (1) and fig (2), the

graph of the temperature variation is parabolic with vertex downwards. It 1s also
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clear from these figures that the temperature is minimum at the middle of the
gap-length and remains negative throughout the gap-length except near the
surface of the lower disc. It is seen from fig (1) that temperature increases with
an increase in elastic-viscous parameter 7 in the first half and being overlapped
in the second half of the gap-length. It is observed from fig(2) that the
temperature decreases with an increase in 7, in the middle of the gap-length and

is being overlapped thereafter.

The variation of the temperature distribution with { at 7,=5,P =6, =5,
€ =0.02,k =15,m = 10, E = 5 for different values of R = 1, 1.5, 2 when 7 = /3
and 277/3 is shown in fig (3) and fig (4) respectively. From fig (3) and fig (4),
the graph of the temperature variation is parabolic with vertex downwards. It is
also evident from these figures that the temperature is minimum at the middle of
the gap length and remains negative throughout the gap-length except near the
surface of the lower disc. It is also. It is also clear from these that temperature

decreases with an increase in Reynolds number R throughout the gap-length.

The variation of the temperature distribution with { atR =7, 7,=5,P =6,
=5.€ =0.02. k =15, E = 5 for different values of m= 1, 10, 20 when 7 = /3 and
2r/3 is shown in fig (5) and fig (6) respectively. From fig (5) and fig (6). the
graph of the temperature variation is parabolic with vertex downwards. It is also
observed from these figures that the temperature is minimum at the middle of
the gap-length and remains negative throughout the gap-length except near the
surface of the lower disc. It is also seen from fig (5) that the temperature
increases with an increase in magnetic field parameter m and start overlapping
near the upper disc and from fig (6), temperature decreases with an increase in
magnetic field parameter m n the first half and being overlapped in the second

half of the gap-length.
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The variation of the temperature distribution with  atR =7, 7,=5,P = 6,
{ =5,e =0.02. k =15, E =5 for different values of Suciton parameterk = 1, 2, 3
when 7 = /3 and 27/3 is shown in fig (7) and fig (8) respectively. It is observed
from fig (7) and fig (8), that the temperature decreases, attains its minimum
value at the middle of the gap length approximately and increases thereafter
upto the surface of the upper disc for all values of suction parameter k. It is alos
evident from these figure that temperature decreases with an increase in

suction parameter k throughout the gap-length.

The variation of the nusselt number Nu, with fatm =10,R=7,7,=5,P
=6,& =5, € =0.02, E =5, t=n/3 for different values of Suciton parameter k
=1,3,7 is shown in fig (9). It is seen from this figure that the Nusselt number
decreases with an increase in & throughout the gap-length. It is also observed
from this figure that Nusselt number decreases with an increase in suction

parameter k throughout the gap-length.

The variation of the Nusselt number Nu, with §atm = 10,R =7, 7,=5,P
=6,& =5, € =0.02, E =5,7=n/3 for different values of suction parameter k
=1,3,7 is shown in fig (10). It is clear from this figure that the Nusselt number
increases with an increase in & throughout the gap-length. It is also evident from
this figure that Nusselt number increases with an increase in suction parameter k

throughout the gap-length.
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Chapter No. 5

HEAT TRANSFER IN THE FLOW OF A SECOND-ORDER FLUID
THROUGH A CHANNEL WITH POROUS WALLS UNDER A
TRANSVERSE MAGNETIC FIELD

- LT AT A Eet A

V.1 INTRODUCTION

The heat transfer in the flow of an electrically conducting fluid between
porous boundaries is of practical interest in problems of gaseous diffusion etc.
Terrill and Shrestha’¥ have discussed the problem of steady laminar flow of an
incompressible viscous fluid in a two dimensional channel when the walls are of
different permeability and studied the effects of magnetic field when the fluid is
electrically conducting™. The problem of flow of a second-order fluid with heat
transfer in a channel with porous walls has been considered by Agrawal™,
Sharma & Singh’® have studied the numerical solution of the flow of second-

order fluid through a channel with porous walls under a transverse magnetic

field.

The purpose of the present paper is an attempt to study the heat transfer in
the flow of a second-order fluid through a channel with porous walls under a
transverse magnetic field by regular perturbation technique. The second-order
effects on the temperature profile are illustrated graphically for different values
of the Hartman and Reynolds number. The results are also obtained for the

Newtonian fluid by taking the second-order parameter to be zero.
V.2 FORMULATION OF THE PROBLEM

The heat transfer in the steady two dimensional flow of an incompressible
second-order fluid in a channel, of width 2h consisting of two porous walls

(coinciding with the plane y = + h) of equal permeability is considered. The
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whole system of the channel is constructed in such a manner that its bottom and
top becomes perfectly insulted and does not transmit the heat. A constant
magnetic field H, is applied normal to the axis of the channel. The induced
magnetic field has been neglected in the flow since the magnetic Reynolds
number is small. A uniform suction V is applied to the both the walls of the
channel. Let us choose with x and y axes respectively in a plane parallel and
perpendicular to the channel walls. Let u and v be the components of the

velocity in x and y directions respectively.
Following Terrill and Shrestha™ a stream function

W (x,8) = (hU-Vx) f(§)
(5.1)

Where U is the entrance velocity and &(= y/h) is the dimensionless distance
while 2h is the distance between the channel walls. In non-dimensional form the

velocity field by Terril and Shrestha’ is taken as:
U (x, &) = (U-Vx/h) £ (§)

v (§) =VF(®)
(5.2)

Where dash denotes differentiation with respect to & The expression (5.2)
suggests that u is a function of x and &, while v is a function of & only. Using

this fact. the constitutive equation (1.4) the equation of continuity and

momentum equations can be written as:

ogu/gx + (1/h)(agv/ g¢) =0
(5.3)

ugu/ ax + (v/h) av/ a&= -(1/p) ( ap/ ax)H(vi/h*)( ( @*u/ d& ) +va[(1/h7])
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(9% 0&3){udul dx+(vih)( avl 3&)}+(2/h?)( al 3¢)
{(0ul 3x)(dv/ 8&))}]+(va/h?)(0/0X)(duldé)?
- teHo?aulp (5.4)

vov/ 9&=-(1/p)( dp/ 3E)+(v1/h)( 8Vl AE2)+v,[(2/h)( 8%/ EA){(vih)( av/ 9E)}
+2( 819x){(du/ dx)(Au/ 3)}]+(4/h*){(du/d%)(8°u/ OE))+(dvI 9E)(d°VI OED)- -
9%10x 0E{udu/dx+(v/h) du/dE}]+(vsh))[40/10E(dvI E)*+ 010E(AuldE)?]

(5.5)

pC,(UdT/ax+vAT/ dy)=k(8°T/ax*+ 0°TIdy*)+d
(5.6)

where p is the density, u. is the magnetic permeability, o is the electric
conductivity, vy ( = u1/p) is the kinematic viscosity, v, (=u2/p) is the kinematic
elastic-viscosity, vs (= us/p) is the kinematic coefficient of cross-viscosity, ¢, is
the specific heat at constant volume, k is the thermal conductivity and & =y/h is

the dimensionless distance.
The viscous dissipation function @ is given by

b = fijdij
(5.7)

Where ' is the mixed deviatoric stress tensor.
The boundary conditions are,
u(x, £1) =0, (u/ 9¢)£=0=0,
v (x,0) =0, v(x,1) =V, v(x, -1) =-V

T(x, 1)=Ty, T(x-1)=T4
(5.8)
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Substituting (5.2) in equation (5.4) and (5.5) and eliminating p from the

obtained equation, we get

Y+ RECO- )+ (FF—F V) - S2 £ =0,
(5.9)

where R (= Vh/v,) is the suction Reynolds number, 7, (=v,V/hv,) is an elastic-
viscous parameter governing the effects of elastic-viscosity of the fluid and S[-

eHoh(a/u1)¥?] is the Hartmann number.

Equation (5.6) together with equation (5.2) suggests the form of the temperature

distribution asO follows:

T = T+ (W) $E)+H(UN)-(h)F PE(NC,).
(5.10)

Using equation (5.10) in equation (5.6) and equating the coefficient of (U/V-
x/h)* and terms independent of (U/V-(x/h)’> on both sides of the resulting

equation, we obtain

¢’ -2RPf ¢’ +2W + 8RPP%+ 8R*Pr, £ £ = 0,
(5.11)

1’ -RPf > +4RP f” +2RPF’*+2R°Pr,(ff - 1%)=0.
(5.12)

Where p = uic/k is the Prandtl number, 7,=2u%/(h%) is the second-order

parameter.

The expression of the temperature distribution in the dimensionless form can be

expressed as:

T = (T-T)NT-T)=E(p+2 ),
(5.13)
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where {[=(U/V-x/h)] is the dimensionless distance and E(=v;V/{(T:-T.1)hC}]

is the Eckert number.

V.3 SOLUTION OF THE PROBLEM
Assuming the relationships 7:=-R 71(t;>0) and S* = RS;?eqn. (5.9) becomes

FY4R (£ £-f £7°)-R 74(f F'-£ ¥)-RS,%f =0
(5.14)

For small values of the suction Reynolds number R, we can develop a regular
perturbation scheme fo solving egns. (5.11), (5.12) & (5.14) by expanding f, -

and — in powers of R. Substituting

(&)= X R (§)
(5.15)

$(€)=X R"Pn (§)
(5.16)

PY(E)= X R"Pn (§)
(5.17)

eqgns. (5.11), (5.12) & (5.14)and equating the like powers of R on the two sides

of the resulting equations, we obtain the following sets of equations:
foiVZO
fliv+f0’ fO’ "fOfO’ 29 7, (fO fOV'fO,fOiv)'Slsz, =

fziv+fla fO’ "fO‘ fl’ "fl‘ foaaa_ 7, (fl fOV'fO,flv' flcfoiv_ fO‘ fliv)'slzfl” =0
(5.18)

Yo=0
Y1 =2Pfy o'+ 4Pyofy +2Pfy %=0

137



o= 2P(Fy o'+ Wi AP (o Yoo 7)1 42P To(foo fy -
fotfy*2)=0
(5.19)
$o”’+21)o =0,
b1’ -2Pfy o’ +21h1+8PFy**=0,

¢2”—2P(f1 ¢)0’+ fl ¢)0,)+2 1,02V+16P fo ,f1,+8 To fo fo, fo,”:()
(5.20)

Boundary condition (5.8) can be rewritten as:
f,(0) = f’(1) = £,°(0) = 0 Vn
fo()=1,f(1)=0=1
én (1) =0 Vn, ¢po(1)=1/E = w(say),
$n(1)=0,0> 1, Pu(+1) =0 Vn

The solution of equation (5.18), (5.19), (5.20) subjected to the boundary

condition (5.21) is given as follows:
fo(§) = (1/2)(3¢- &),
f1(§) = -(1/280)( £™-3 £°+2 £)-5,°/40)( £>-2 £°+ §),

f,(£) = (1/1293600)(14 £*'-385 £°+198 &7+876 £3-703 &)-( 71/280) {(3¢'-
983+68)+5,%(£7-383+28)}-5,%({1/100800)(15& *+108¢ '-54°-276£°+207¢)
+(S:%/8400)(5¢7-218°+278%-11¢)}.

PYo(§) =0,
P1(§) = (3/2)P(1-87),
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Yo(§) = 3P*{383/280-¢%/56-£5/10+&%/4-(3/2)E?)  -P{(9/280) (1- &%)
+(S:4/10) (1+2 £°-38%)}-(3/5)P1, (1- £°%)

$o(§) = (W/2)($+1),
$1(§) = (WP/40)(10 §°~ £°-9¢) - (P/2) (21 §°+ £°-6¢"-16)

$,(8)=P?[29¢1°/840-51°%/140+37£°/20-98%/2-1149&2/280+(w/40)
(1391£/2520-9&3/2+99&°/20-15¢ /14 + 5¢°/72)]-P[11/168-33&2/280+11 &*
/140-38%/140-38%/280+&°/168-S,%(2£2/5-13 £%/280+ £°/5-7&%/20-57/280)
+ 7,(3-38%/5-3 £8/10+12&°/5-98%/2)-w{(71£/100800- £%/840+3£°/5600-
£/ 20160) +S,%(19/8400- £'/1680 + £°/400- £°/240)}].

V.4 RESULTS AND DISCUSSIONS

(1) The values of the functions f, f; and f; are identical to those obtained by

Sharma and Singh’®

(11) For 7, = O the results are in good agreement with those obtained by Terril

and Shrestha’.
(1i1) For S = 0 the results are matching with those obtained by Agarwal™.

The variation of the temperature profile atP =04, { =04, E=1.S, = 1,1, = -1
for R = 0.01, 0.1, 1.0 is represented in fig (1). It is evident that for R = 0.1,
temperature increases with & upto & = 0.7 approximately and thereafter
decreases very slowly and attains its value 1 at the boundary wall & = 1. At the
R = | the temperature graph is parabolic with vertex upward and attains its
maximum value at the middle of the wall gap-length with minimum at the
boundary wall £ = -1. At R = 0.01, Temperature increases linearly throughout
the wall gap-length with minimum at the boundary wall £ = -1 and maximum
at £ = 1 It 1s also clear from this figure that the temperature increases with an

increase in suction Reynolds number R.
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The variation of the temperature profileat P =04, 7 =04, E=1,§, = 1,
R =1, for, =0, 0.1, 1.0 is represented in fig (2). It is evident from this figure
that temperature graph is approximately parabolic with vertex upward and
attains its maximum value at the middle of the wall gap-length with minimum at
the boundary wall § = -1. It is also observed from this figure that the
temperature decreases with an increase in cross-viscous second-order parameter

T>.

The variation of the temperature profileat P =04, (=04, E=1,R = 1,
7> = -1 for §;= 0, 1, 2 is represented in fig (3). It is seen from this figure that the
temperature graph i1s approximately parabolic with vertex upward and attains its
maximum value at the middle of the wall gap-length with minimum at the
boundary wall £ = -1. It is also observed from this figure that the temperature

decreases with an increase Hartman number S;.

'3 R=0.01 R=0.1 R=1.0

1 1 1 1
0.9 0.955038 1.005515 2.019143
0.8 0.909943 1.009024 2.949132
0.7 0.864639 1.009624 3.769926
0.6 0.819024 1.006305 4.469361
0.5 0.772992 0.998043 5.042745
0.4 0.726434 0.983871 5.491384
0.3 0.679251 0.962928 5.820534
0.2 0.631358 0.934501 6.037138
0.1 0.582687 0.898046 6.147726

0 0.533196 0.853207 6.156709
-0.1 0.482865 0.799824 6.065293
-0.2 0.431702 0.737937 5.871103
-0.3 0.379738 0.667787 5.568581
-0.4 0.327028 0.589804 5.150090
-0.5 0.273648 0.504598 4.607647
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-0.6 0.219688 0.412934 3.935044
-0.7 0.165246 0.315694 3.130129
-0.8 0.110425 0.213835 2.196891
-0.9 0.055318 0.108314 1.146950
-1.0 0 0 0
Table (1) Variation of the temperature T* With & for different values of Reynolds
Number (R).
'3 7,=0.0 7,=0.1 7,=1.0
1 1 1 1
0.9 1.718003 1.687889 1.416863
0.8 2.380152 2.323254 1.811173
0.7 2.979798 2.900785 2.189671
0.6 3.509659 3.413688 2.549956
0.5 3.962914 3.854930 2.883082
0.4 4.333768 4.218007 3.176152
0.3 4.617650 4.497361 3.414766
0.2 4.81116 4.688561 3.585181
0.1 4.911904 4.788322 3.676084
0 4.918309 4.794469 3.679909
-0.1 4.829472 4.705890 3.593651
-0.2 4.645125 4.522527 3.419146
-0.3 4.365696 4.245408 3.162812
-0.4 3.992474 3.876713 2.834858
-0.5 3.527816 3.419832 2.447984
-0.6 2.975341 2.879370 2.015638
-0.7 2.340001 2.260988 1.549873
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-0.8 1.627911 1.571013 1.058932
-0.9 0.845811 0.815697 0.544671
-1.0 0 0 0

Table (2) Variation of the temperature T* with & for different values of

b

=1
=00
R = 0.01

At X-nxis & ‘
At Y-axis T
=
~

SN
-

-1.5 -1 -0.5 o 0.5 1 1.5

Fig (1) Variation of the temperature T With & for different values of
Reynolds Number IR.
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£ $1=0.0 S1=1.0 S1=20

1 1 1 1
0.9 2.028834 2.019143 1.990070
0.8 2.969391 2.949132 2.888353
0.7 3.801313 3.769926 3.675765
0.6 4512168 4.469361 4.340941
05 5.096872 5.042745 4.880362
0.4 5.556177 5.491384 5.297007
0.3 5.894664 5.820534 5.598143
0.2 6.118587 6.037138 5.792790
0.1 6.233877 6.147726 5.889271

0 6.244537 6.156709 5.893224
-0.1 6.151622 6.065293 5.806305
-0.2 5.952888 5.878581 5.625747
-0.3 5.643168 5.568581 5.344817
-0.4 5.215413 5.150090 4.954122
-0.5 4662322 4.607647 4.443624
-0.6 3.978358 3.935044 3.805099
-0.7 3.161936 3.130129 3.034707
-0.8 2.217447 2.196891 2.135222
-0.9 1.156793 1.146950 1.117422
-1.0 0 0 0

Table (3) Variation of the temperature T* with & for different values of Hartman
Number (S1)
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(=2}

Tz=0
At X-axis § =01
At Y-axis T =1

==]

1 1

1.5 -1 -0.5 0 0.5 1 1.5

Fig(2) Variation of the temperature T* with & for different values of 1,
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-20 -
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-60 At X-axis
At Y-axis
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-80

-100 /
-120 /

-140

-160

-180

Fig(1) variation of temperature distribution (T-Ty)/(T,-T}) at different
elastico-viscous parameter T, at T=7/3.
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Chapter No. 6

HEAT TRANSFER IN THE FLOW OF A NON-NEWTONIAN SECOND-
ORDER FLUID OVER AN ENCLOSED TORSIONALLY
OSCILLATING DISCS WITH UNIFORM SUCTION AND INJECTION

OF THE MAGNETIC FIELD
Rinal b2, 2 o

T

VL1 INTRODUCTION

The phenomenon of flow of the fluid over an enclosed torsionally
oscillating disc (enclosed in a cylindrical casing) has important engineering
applications. The most common practical application of it is the domestic
washing machine and blower of curd etc., Soo®" has considered first the
problem of laminar flow over an enclosed rotating disc in case of Newtonian
fluid. Sharma and Agarwal”” have discussed the heat transfer from an enclosed
rotating disc in case of Newtonian fluid. Thereafter Singh K. R. and H.G.
Sharma’® have discussed the heat transfer Singh K. R. and H.G. Sharma ™ have
discussed the heat transfer from an enclosed rotating disc in case of Newtonian
fluid. Thereafier in the flow of a second-order fluid between two enclosed
rotating discs. The torsional oscillations of Newtonian fluids have been
discussed by Rosenblat®®, He has also discussed the case when the Newtonian
fluid is confined between two infinite torsionally oscillating discs® Sharma &
Gupta®” have considered a general case of flow of a second-order fluid
between two infinite torsionally oscillating discs. Thereafter Sharma & K. R.
Singh™ have solved the problem of heat transfer in the flow of non-Newtonian
second-order fluid between torsionally oscillating plane Riley & Wybrow™
have considered the flow induced by the torsional oscillations of an elliptic
cylinder. Sadhna kahre®" studied the steady flow between a rotating and porous

stationary disc in the presence of transverse magnetic field.
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Due to complexity of the differential equations and tedious calculations
of the solutions, no one has tried to solve the most practical problems of
enclosed torsionallly oscillating discs so far. The authors have considered the
present problem of heat transfer in the flow of a non-Newtonian second-order
fluid over an enclosed torsionally oscillating discs with uniform suction and
injection in the presence of the magnetic field and calculated successfully the
steady and unsteady part both of the flow and energy functions. The flow and
energy functions are expanded in the powers of the amplitude € (assumed to
be small) of the oscillations of the disc. The non-Newtonian effects are
exhibited through two dimensionless parameters 7, (=nu,/ i) and 7,( =nus/u,),
where pu,. o, p; are coefficient of Newtonian viscosity, elastic-viscosity and
cross-viscosity respectively, n being the uniform frequency of the oscillation.
The variation of temperature distribution with elastic-viscous parameter T,
cross —viscous parameter 7, (based on the relation 7, =a r, where a = -0.2 as for
5.46% poly-iso- butylenes type solution in cetane at 30°C (Markowiz*®)
Reynolds number R; magnetic field m, suction parameter k at different phase

difference tis shown graphically.
VL2 FORMULATION OF THE PROBLEM

In the three dimensional cylindrical set of co-ordinates (r, 8, z) the system
consists of a finite oscillating disc of radius r, (coinciding with the plane z = 0)
performing rotator oscillations of the type rQ2Cost of small amplitude ¢ . about
perpendicular axis r = 0 with a constant angular velocity Q in an incompressible
second-order fluid forming the part of a cylindrical casing or housing. The top
of the casing (coinciding with the plane z = z,< r,) may be considered as a
stationary disc (stator) placed parallel to and at a distance equal to gap length z,
from the oscillating disc. The symmetrical radial steady outflow has a small

mass rate ‘m’ of radial outflow (‘-m’ for net radial inflow). The inlet condition
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IS taken as a Sll'llplC radial source tlow along Z-axis startmg from radius ry A
constant magnetic field B, is applied normal to the plane of the oscillating disc.
The induced magnetic field is neglected. The lower disc z = 0 i1s maintained at

constant temperature T, while the upper disc z = z, at constant temperature T,,.

Assuming (u, v, w) as the velocity components along the cylindrical

system of axes (r. 6, z) the relevant boundary conditions of the problem are:
z=0; u=0, v =r()"(Real part), W =W, T=T,

Z = Zo, u=20, v=10, w=w, T=T,

(6.1)

where the gap z, is assumed small in comparison with the disc radius r,. The
velocity components for the axisymmetric flow compatible with the continuity

criterion can be taken as %0300
U=- f}l’({,r)+(Rnl/RZ) M’({'T )/f'
V = £G°(¢,0HR/R,) L, 7)/E,

W =2H({,7).
(6.2)

and for the temperature, we take

T= T1,+(V| Q/C‘,) {¢((,T)+€hp((ﬂ')}
(6.3)

where U = u/Qz,W = w/Qz,, &= 1/Qz,. {,T are dimensionless quantities and H(
{,1), G({, ). L({,7). M*({,7). ¢p({,7). ¥({,r) are dimensionless function of the
dimensionless variables {(=z/z, and 7 = nt. R ,(=m/2npz (v ), R, (=L/2x pz v,)

are dimensionless number to be called the Reynolds number of net outflow and
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circulatory flow respectively. R, (=Qz,°/v,) be the flow Reynolds number. The

small mass rate ‘m’ of the radial outflow is represented by
9

m =2ap[ rudz
(6.4)

0

Using expression (6.2) and (6.3), the boundary conditions (6. 1) transform for G,

L & H into the following form:

G (0, 7) = Real(e™), G (1, 1) = 0,

L (0,7)=0, L(l,7)=0,
H (0,7) =k, H(l.7)=0,
H* (0,7)=0, H’ (1,7)=0,

$(0.7)=1/E=S, ¢(1.7)=0,

¥ (0,7)=0, P(l,7)=0
(6.5)

where E [=Qv/{C(T,-Ty)}] is the Eckert number and k [=w/2Qz] is the

suction
parameter.
The conditions on M on the boundaries are obtainable form the expression

(6.4) for m as follows:
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M(l,7)-M(0,7)=1
(6.6)

which on choosing the discs as streamlines reduces to

M(l,7) =1, M(0,7)=0
(6.7)

Using eqgs. (1.4) and expression (6.2) in equation (1.8) and neglecting the

squares
& higher powers of R,/R, (assumed small), we have the following equations in
dimensionless form:

-(1/pzo)(0p/0§)=nQz, {EOH -(R/R,)NOM' /§)} +€2*2,& (H"*-2HH -
G+ Q%2 (Ro/R,)(ZHM " 8)-022(Ry /R, N(2LG/E ) H(v1Q/7p) {H T ¢-
(Ru/R )M /§)} - (2va/2) [n€U/2] {(Ry/R,) (OM™' [§)- EOH™") + €2
E(H-HH™) + (R,/R,) (Q%&) (H"M+H "M +H'M """ +HM")-
(Ry/R)(2Q%/ENL'G +LG ™) J-(4v3€2%-20) {(R,,/R,) (1/2¢)
(H"M™+H'M"""+H""M*")-(R/R,)(1/28)(2L° G +LG ™)+ (§/4) (H™ -
G'2-2H'H"")} + (6B*Qzy/p) {-EH +(R,/R, )M /).

(6.8)

0 = nQ2z {EAGHR /R, NAL/E)} (22,8 )(HG-H'G)- Q°2¢(R./R,)
(2M'G/E) -226(Ry/R)(ZHL /8y Hv, Q/26) 46 HRL/R,)(L /&) +
(2v2/20)[(n€2/2) {€0G™ HRL/R )AL /§) } + (RL/R,) (%/§)
(HL'+H > L+HL +H'L) HQYENHG ™ H G’ ) HRu/R, ) 2QVE
MG MG H2v:Q 20) {EH G -H ' G) HR+R,)(1/E
J(H L +HL+H' L) HR AR ) 1/E)CZM G +M G "")-(6 B " Qz,/p)
EGHRURNLE)] .

(6.9)
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-(1/pzo)(0p /0 )2nQz,0H+4Q°z,HH - 2v, QH "' /7o-(2v2/7y) {nQIH " +2Q%¢
2(H”H""+G’G"")+ Q*(22H’HH*+2HH""")-
(Rp/R,)2QX(H"M’+H M)+ (R1/R,) 2Q% (L’G™" + L’G’)} -(2v;
Q%z,){EMHH" +G°G"")+14H'H""-(R,,/R,)
(H"M*"+H""M"")HR /R )NL'G+L'G")}

(6.10)

pCU@T/at+udT/ar+waT/dz) = K{a*T/ar’+(1/r) dT/9r+d*T/9z*} +P
(6.11)

where

P = 7'd;
(6.12)

C, is the specific heat at constant volume, @ be the viscous-dissipation function,
7', is the mixed deviatoric stress tensor, K is the thermal conductivity, p is the
density of the fluid; B and ¢ are intensity of the magnetic field and conductivity

of the fluid considered.

Differentiating (6.8) w.r.t { and (6.10) w.r.t { and then eliminating 9°p/d{.0&

from the equation thus obtained. We get

-nQz{EIH " -(R,/R,)IM" £} -2Q220(HH -GG} HR,,/R,)(2Q%7/§)
(H'M"+HM"")-(R; /R, )(2Q%2/§ LG +L'G)-(v,Q/7) {(R,,/R, )(M*/
§)- EHM}-(2v2/20) [(n€/2) {(Rw/R,NOM™/E)-EOH™ } -QE
(2H'H’+H'H*+HH"+4G G"") HR,/R, (/¢

)}2H' "M +H"M'+2H "M ""+2H 'M"+HM")-(R1 /R, }(2Q¥¢
J2L'G™+L""G™+LG """ )-(2v3Q%70) {( R R, )(1/§)
(H¥M'+2H"""M " +2H "M +H'M"™)-(R +R, )(1/&
)3L'G"+2L"G+LG ")~ §H'H"+3G'G'+2H"'H""")} + (B
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OIQZO/p) = {EH +(Rlll/R7 )(M ’ ’/f)} =0
(6.13)

On equating the coefficients of & and 1/ ¢ from the equation (6.9) & (6.13), we

get the following equations:

G"'=R9G+2 € RHG-H'G)-1dG"-2 € 1(HG "-H"G')-2 € T
(H'GVH Gy +m*G

(6.14)

L"=RAL+2 € RM'G+HL)-1,dL"-2 € 1
J(H”L+H L+HL " +H'L”+2M’G+2M”’'G’) -2 €1
J(HL+H L+H' L +2M G +M’G’)+m>L
(6.15)

H"-R@H+2 € R(HH " +GG)-1,dH"-2 € T
(H'HY+HH*2H "H""+4G’G™)-2 € T
J(HHY2H"H ' +3G°G”)+m?H "
(6.16)

M¥-RIM+2 € R(H'M""+HM""-LG"-L'G)-1,dM™-2 € T
(2H "M +HYM +2H "M +2H'M*+HM"-4L’G"*-2L""G -
2LG'"")-2 € (H¥M'+2H "M "+2H "M+ H'M*-3L'G""-2L"'G -
LG " )+mM”
(6.17)

where R(=nzy/v,) 1s the Reynolds number, 7,(=nv,/v,), T.(=nvy/v,) and €
(=/n) are the dimensionless parameter, m*> = gBy’z,’/y; is the

dimensionless magnetic field and R, /R; =m/L ~ 1.
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Using (6.3), (6.12) in (6.11) and equating the coefficient of &, we get
P*'=eRP[9W/ € -2H"W+2HW -H"*+G -1, (H'dH " +G"9G")-2
€7, (HH " +H'G”HH "H""+HG'G™")-3 € 1o(H'H "*+H G™?)],

4¥Y+¢p’=eRP [d¢/ € +HR,/R,)ZM WP +2H¢ -
12H"+(R,/R;)2H "M "'~ (R /R;)2L'G -1, {12H dH '~(R,/R, )(H""0
M*™M"VgH")HR/R,) (G'9L+L'9L’)} -2 €1
({(12H*+12HH'H""+HRW/R,)(2M’G"2-HH'""M"*-H*?M -
HH""M""")HR/R)HL'GH3H'L’'G’+3LG'H"+HG'L"")}-€ T
2{(RW/R,(BM’G™-6H'H "M )+24H"¥+6(R /R, )(HLG'+H'L'G")} ]

Where P,=y,C,/K is the Prandtl number.

For R,,=R;=B,=0, the differential equations (6.8)-(6.10) are identical to those
obtained by Sharma & Gupta®” (for S,= 1, S,=0). Sharma & Singh®® (for S, =1,
S,=0) and for R,,=R,; =B,=0.the differential equations (6.8)-(6.10),(6.18), (6.19)
are identical to those obtained by Sharma & Singh™ (for S,= 1, S,=0).

VI3 SOLUTION OF THE PROBLEM

Substituting the expressions

G =X €VGn((,7)
L({7) =X €MLn({,D)
H({,7) =X €“Hn((,1)
M({,1) =X €My ({,7)
P 1) =X €ENpn (1)

Y1) =X ENPn((T)
(6.20)
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into (6.14) to (6.19) neglecting the terms with coefficient of € (assumed
negligible small) and equating the terms independent of € and coefficient of €,

we get the following equations:

Go”’=R 0Gy/0T -11 0Gy’/0T + mZGo
(6.21)

Gl” =R aG1/aT-2R(Ho’G0,-HOG0,)- T1 aGl"/6T—2T1(H0’G0”’—H0"GO’)—
2T2(H0’G0”-

Ho*Go')+ m'Gy
(6.22)

Lo”’=R dLo/d1 -11 dLy /0T + mPL,
(6.23)

Ll” =R 6L1/6T—2R(I\/I0’G0’—H0L0’)— T1 6L1”/OT—
2T1(H0777L0+H0‘ 5L05+H05L0,,+H0L0,,,

+2M0”G0,+2M0,G0’,) - 2T2(H0,”L0+H0,,L0,+H0,L0
”+2M0”G0’+M0,G0”)+ m2L1
(6.22)

Ho""=RaHy>*/07-110H,"/dT+m’Hy”
(6.25)

H," = R 9H,>’/0t+2R(HoHo *+GoGy’)- 71 dH,"/7-
2T1(H0’Hoiv+HoHov+2Ho’ ’HO” 7+

4GO’GO) 7)_ 2T2(3GO’GO,,+HO,HOIV+2H0, ,H0¢9,)+ m2H199
(6.26)

Mo =RaM,’’/0T-T10 My /dT+M* My’
(6.27)
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MliV:RaMl"/aT-ZR(Ho’Mo’"l‘HoMo’”-Lo’Go-LoGo,)- TlaMliV/aT-
2T1(2H0’ ’ ,Mo’ ’

+Ho"Mo’+2Hy "My’ >*-4L’Go™-2Lo" Go’-2LoGo” ) +HoMo " +2Ho Mg™)-27,
(2Ho’>Mg” +Ho"Mo’+2He My ¢**-3Lo’Go™’-2L”* Go’-LoGo’ > +Ho Mo ™) +
m’M;
(6.28)
Wy ’= RP;0Y,,
(6.29)

Y,’=RP,[0W¥1-2Hy’ Wo+2HoWy’-Hy’ 2-Go* %71 (Ho”* dHo’ "+Go’0Go’),
(6.30)

4‘P0+¢)0’ ’=RP16‘PO,
(6.31)

4W1+¢po” =RP[0¢1+(Ri/R;)2Mo” Wo+2Hogho’-12Ho “+(Rm/Rz)2He "My -
(RL/RZ)ZL()’G()’- Tl{(leo’aHo’-
(Rm/Rz)(Ho’dMo”’+Mg”’0Ho* ) H(RL/R)(Go’dLo’) } ] (6.32)
Taking Gn({, ) = Gns({)+e " G({)

Ln((; T) =|—ns(()+e e I—nt(()

Hn(¢, 7) = Hns(()"'eZiTHnt(()

Mn((; T) = Mns(()"'eZiTMnt(()

®n({, 7) =¢n5(()+32it¢nt(()

Wn(d, 1) =ans(()+32iupnt(()
(6.33)

Complex notation has been adopted here with the convention that only real pats

of the complex quantities have the physical meaning.
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Using (6.24) and (6.33), the boundary conditions (6.5) & (6.7) for n = 0.1

transform to
Go(0) =0, Gg(0)=1, G(0)=0, G;(0)=0,
Go(1) =0, Gg(0)=0, G () =0, Gy(1)=0,
Hy(0)=k. Hy(0)=0, H(0)=0, H,(0)=0,
Ho(1) =k, Ho(l)=0, Hi(1)=0, H;(1)=0,
H'o(0) =0, H'(0)=0, H"(0)=0, H"(0)=0,
Ho(1)=0, H'o(1)=0, H'y(1)=0, H'(1)=0,
Los(0) =0, Lo(0)=0.  Lii(0)=0, L;(0)=0,
Lo(1)=0, Lg((1)=0, Lif(1)=0, L(1)=0,
M, (0)=0, M’(0)=0, M (0)=0, M"(0)=0,
M (1)=0, M'o(1)=0, M (1)=0, M"(1)=0,
My (0) =0, My(0)=0, M, (0)=0, M,;(0)=0,
Me(0) =0, Mg(0)=0, M(0)=0, M(0)=0,
Mo(1) =0, Mg(1)=0, My(1)=0, My(l)=0,
Wo(0) =0, We(0)=0, W (0)=0, W, (0)=0,
Was(1) =0, We1)=0, Wy (1)=0, W, (1)=0,
Dos(0) =0, Pou(0)=0, (0)=0, ¢(0)=0,
Go(1) =0, po(1)=0. (1)=0, ¢ (1)=0, (6.34)

Applying (6.33) & (6.34) in egs. (6.21) to (6.32), we get
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Gos(¢) = G1s(¢) = 0,
Goi(Q) = {1-(e"/2Sinh f)}e < +(ef 12Sinh f) e /%,
where f = {(iR+m?)/(1+i7)}*= A+iB,
where A = [[(M*+R71)*+(M*+R7)*+(R-m’t.)*}4/{2(1+7, 2},
B = [[(m*+R71)*+(R-m?71)}%-(m? +Rt)[/[{2(1+7. 2},
Go(¢, 7) = Real{e""Gu({)},
= (As+As5)Cost-(A4+Ag)SInT,
where
A;=e*(Cos’BSinhA+ CoshASin’B)/2(Sinh’A+Sin’B)},
A,=e*(SinBCosBSinhA-CosBCoshASinB)/2(Sinh?A+Sin’B)},
As=e4%{(1-A)CosBJ+A,SinB(},
As=e4%{(1-A)SinB{+A,CosB(},
As=e ~4S{A,CosB{+A,SinB{},

As=e ~4S{A,CosB{-A;SinB{},
G1.(¢) = C1e/S+ Coe TS +Rk[ase S {¢ —(1/2f)+ae~/S{¢ —(1/2F)}],

Where a;=1-(e"/2Sinhf),
a,= e'/2Sinhf,
C1=-C{C,+(Rk/2f)(az-a1)},
C,=-(Rk/2Sinhf)(a;e"+a,e - (a,Sinhf/f)},
G(¢,7)= Go(¢, T)+€ Gui(J, 7).
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Mot(¢)= Mw(¢)=0,
Mos(¢) = Are™Im?+ Ase ™ /mP+Ag{+A,
M’0s(0) = Are™/m-Aze "™ Im*+Ag
Where A; = (e™-1)/ (e"-1),
A, =m?(e™-1)/{(e™(m-2)-e™(m+2)},
As = -( Ar- Ay)/m,
As = (At Ay)/m?.
Mis(¢)= Cse™/m?+ Cge =™ /m?*+(RK-7:km?)[ C1e™¢(2m{-5)/2m>+
Cse ™™ (2m{+5)/2m°]+C7{+Cq
where Cs = {m?(e™-1)(D1+D,-D3)+m(e ™+m-1)(D,-D,}/4-e™(m+2)+e™(m-2)},
Cs = {Cs(e™1)-m(D3.D4)}(e™-1),
C; = -(Cs/m)+(Ce/m)-Dy,
Cs = -(Cs/m?)-(Ce/m?)-D;
D: = (Rk-t:km®)(5/2m*)(C,-C»),
D, = -(Rk-t:km?)(3/2m*)(C1+Cy),
D; = -(Rk-1:km?)(1/2m®){C.e™(2m-5)+ C.e™(2m+5)},
D, = (Rk-t:km?)(1/2m?){Ce™(2m-3)- C,e™(2m+3)},
M(C, 7)= Mo(¢, T)+€ My((, 7).
Hol(¢)= Hu({) = 0,

Hos(¢) =k
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H1s(¢) = C1e%5/d*+ Coe =% [d*+ C3l+Cut(Z1-FZ,)[{1-
(e'/2Sinhf}?e?/¢/(16Sinh*f)]

where d = {2iR+m?)/(1+2i7)}*? = C+iD,
where C=[[m?+4R7;)+{ [M*+4R7,)*+[2R-2m’7,)*}?1/{2(1+47,>) Y2,
D=[[m?+4R7,)?+{ [2R-2m?7,)?}2-[m?+4R7))[/{2(1+47,%)}]M?
Z, =2RI{(1+it,)(4F-d%)},
Z,=(871+67, )/{(1+2it;)(4F*-d%)},
Ci={d(Z1o- Zo-Z+Zs+Cy(e-1)},
Co=Z11/{4-e"(d+2)+e%(d-2)},
Ca=-{(C1/d)- (Co/d)+Z5-Z¢},
Cs=-{(C1/d?)+(Co/d*)+Z5-Z,},
Z3= Z4[{1-(e"/2Sinhf) }*/4-fe*'/16Sinh?f],
Z4 = Z,[f{1-(e"2Sinhf)}?/4-fe*"/16fSinh?f],
Zs = Z4[{1-(e'/2Sinhf) }°/2+e*/8Sinh?f],
Zo = Z,[P{1-e'/2Sinhf)}?/2+f%e*'/8Sinh?f],
Z, = Z1[e*{1-e'/2Sinhf)}?/4f-1/16fSinhf],
Zs= Zo[fe?{1-e"/2Sinhf)}/4-f/16£Sinhf],
Zo = Z1[e*"{1-e"/2Sinhf)}?/2+1/8Sinhf],
Z10 = Zy[Pe?{1-e"/2Sinhf)}*/2-f/8fSinh?f],

Z11 = dX(e%-1)(Z5-Z4+Zs-Zs- 27+ Zs)-d(€%-d-1) Z10-Zo-Z6+Zs),
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Hy(¢, 7) = Real{e?"Hy({)},
= (Ag1tAgy)C0S27-(AgatAgp)SIN2t,
where
Az = AA*-4B*-C*+D?,
A1, =8AB-2CD,
Ars= 2R(A1s-T1AL){ (As-T1iA) +(T1 Ars+ Aw)},
Are= -2R(A1sT1+As){ (Asa-T1Aw) +(t1 A+ A},
A= (871 +672)(A1a-2T1A) {(A13-2T1A10) +(2T1 A1+ Aw)’},
Asg= -(871 +672)( 2T1A1+ A){(A13-2T1A10) " +(2T1 A1+ Awr)},
Aso=[A{(1-A1)*-A}+2BA(1-A)J{4(A*+B%)},
Aoo=-[B{(1-A1)*-As"}+2AA(1-Ar) | {4(A*+B%)},
A,;=Sinh?ACos’B-Cosh’*ASin?B,
A,,=2SinhACosBCoshASinB,
Ags= €2 (A1 C0s2B+A,SIN2B)/ (Az*+Ax),
Ags= €2 (A21Sin2B-AyCos2B)/(Ax’+Ax),
Aos= (AA+BA)I{16(A*+B?)},
Ass= (AA2-BA)/{16(A*+B?)},
A27=Aus (Arg-Aas)-Ass(AzotAse),
Azs=Aus (Arg-Aas)+Ars(Azo-As),
B:=(1-A1)°AY,
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B,=-2(1-A))A,,

X1= (A%-B%)(A17Az-A1gAzs)-2AB(A1gAz7 +A17Az),
Xz = 2AB(A17Az7-A1sAos)+ (A*-B?)(ArgAz7 +A17Az),
Aoo=(X1A15+XoA16)/ (Ass +Ass’),
As0=(X2A15-X1Ase)/(Ars +As),

Az1=Aus {(B1/2)+(A23/8)}-Ase{(B2/2)+(A24/8) },
Az2=Aus {(B1/2)+(A23/8)}-Ass{(B2/2)+(A24/8) },

X3 = (A%B%)(A17Aq-A1gAs)-2AB(A1sAs1 +A17Az),
Xa= 2AB(A17A31-A1sAz)+ (A*-B?)(ArsAa1 +A17A),
Asz=(XsArs+XaAse) (Ass +As6"),

Asi=(XsAr5-XsAse) (Ars +Ass’),
Ags=e*(A1C052B-ASin2B),
Azs=e*(AxC0s2B+A14Sin2B),
Agr=(AA-BAR)[16{(AA-BA,)+(BAs-AA) ],
Azg=-(BAx+AAR)/[16{(AA-BA»)*+(BA1-AA) ],
Azo=A15(As5-Az7)-Ar6(Ass-Ass),
As0=A16(As5-Az7)-A1s(Azs-Ass),

Xs = (A*B®)(A1rAs9-A18Au0)-2AB(A1gAs +A17A),
X = 2AB (A1rAse-AigAso)+ (A*-B?) (AsgAge +ArrAx),
Au=(XsA1s+Xo6A16)/ (Ass’+Ass),
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As=(X6A15-X5A16)/ (Ars’+As6"),
Au;=e**(B,C0s2B-B,Sin2B)/2,
A=e**(B,C0s2B+B;Sin2B)/2,
Aus=Ao1/{8(Ax*+A2)},

Ass=-Aool {8(Axn"+A2)},
Au7=Aas(AsztAus)-Ass(AsatAus),
Aug=Aas(AsztAus)-Ass(AsatAus),

X7= (A™-B")(A17As-AssAug)-2AB(AssAar +ArrAsg),
Xg= 2AB (Ar7Ay-AsgAsg)+ (A-B?) (ArgAsr +AsrAs),
Ase=(X7A15+XsAse) (Ass +As67),
Aso=(XsA15-X7A16)/(Ass +Ass”),
As;=(C?-D?)(e°CosD-1)-2CDe"SinD,
As,=2CD(e°CosD-1)- (C*-D?)eSinD,
As;=C(e°CosD-C-1)- D(e“SinD-D),
As,=D(e°CosD-C-1)- C(e“SinD-D),

Ass= Ag7-AoetAs1-Azs-Ase+ Ay,

Ase= Aog-AzotAsz-Azs-AntAsy,

As7= Agg-Ag7-AsstAg,

Asg= Aso-Agg-AsstAgy,

Aso= As1Ass-AspAse- AszAsr+AssAsg,
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AGO: A52A55'A51A56' A54A57+A53A581
Ags=4-e“{(C+2)CosD+DSinD}+e*{(C-2) CosD-DSinD},

Ags=-e “{DCosD-(C+2)DSinD}+e*{(C-2)SinD+DCosD},
Asr=(AsoAss+AsoAss) (Aes +Ass”),

Ass=(AsoAss-AssPAss) (Ass +Ass”),

Ago=CAs7-DAsg+Ag7(€ cosD-1)+ Agge™SinD,
A70=DAs+CAsg+As;(ecosD-1)+ Agge“SinD

Arn={Aso(e°cosD-1)+As, e°SinD}/{(e°cosD-1)*+e*Sin’D},

Az ={As(e°cosD-1)-Ag e°SinD}/{(e°cosD-1)*+e*°Sin’D},
A73=-[{(CA71+DA7,-CAs7-DAgg)/(C*+D?) }+Ag1-Asgl,
A74=-[{(CA7-DA71-CAgs-DA¢7)/(C*+D°)}+As-Ad],
Ass={An(C*D?)+2CDA.}/{(C*-D*)+4C°D%,

Ars={Ar(C*-D?)-2CDA; }/{(C*D?)+4C*D7},
Ar={Ae:(C*-D?)+2CDAs}{(C*-D?)+4C°D%,
Azs={Aes(C>-D)+2CDAs}{(C*-D?)+4C°D%,

Azg=-(ArstArr+Azr-Ayg),

Ago=-(Azs+Azs+Azg-Agp),

Ag1=e % (A75C0SD{-A7SIiNDE)+ e = (A77C0SDI+AzsSIND)+ A3l +Ass,
Ag=e % (A76C0osDI+ASIND)+ e ~CS (A75C0SDI-A77SINDY)+Aqal +Ago,
Ags= Ags-(A*B%) A +2ABAs,
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Ass= Are-(A*-B?)Asg-2ABAY,

Ags=e 24 (A19C0s2BJ-ASin2BY),

Agg=e 24 (A,,C0s2B{+A15SiN2B7),
Agr=e24(1=9(A5;C0s2B(1-7)-AssSin2B(1-0)},
Agg=e241=9) (A35C0s2B(1-0)+A3;Sin2B(1-0)},
Ago=Ag3(Ags-Ag7)-Asa(Ass-Asg),
Ago=Ags(Ags-Ag7)+Ags(Ags-Ass),

H(¢, T)=Ho({, 7)+€H1({, T)= €H4({, 7)
Los(¢)=Lot(¢)=L1s({) = 0

Lu(¢) = Cse/ S+ Coe ™/ +{aze ™)+ areM+NY/(m*+2mf)+ {aye ~" 0+
age MY (mP-2mf)+(7/2f) {ase”S+ age ™/%)- {ase S+ age ~/9)/4F,

Where
Cs=-[Ce+{(as:a7)/m*+2mf) }+{(as+as)/(m*-2mf)}-{(as+as)/(4F)}],

C6:[[3.3{e (m+f) -ef}+{a7e'(m+f)_ef}]/(m2+2mf)+[a4{e-(m-f)_ef}+a6{e(m-f)_
e"J1(mP-2mf)+(ase™-ase )/2f+agSinhf/2F]/(2Sinhf),

a,=1-(e"/2Sinhf),
a,=e'/2Sinhf,

a3={2RC a;/m(1+ity) }-{4(t1+1,)Cia:f/(1+iT.})-
{(47,+27,)Cra /m(1+ity}),

as=-{2RCar/m(1+ity)}-{4(11+1,)Cra f/(1+it,})-
{(41,+27,)Cra/m(1+ity}),
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as={2RCsar/(1+it1)}-{411+27,)Coas P/ (1+iT1),

a={2RCa/m(1+it1) }-{4(11+72)Craxf/(1+iT.})-
{(47,+27,)Cra,f/m(1+it}),

a7=-{2RCoax/m(1+i7y) }-{4(71+72)Coarf/(1+iT1})-
{(47,+27,)Coaf/m(1+ity}),

ag={2RC32/ (1+it1)}-{471+275)Cad '/ (L +iT1}),
L1(¢, r)=Real{e"" Lu({)},
= (B47+Bs1+BsstBsg-Bes) COST-(Bag+Bsy+Bsg+Bgo-Bes)Sin,
Bs=1/ (1+T12),
B,=-1:/(1+7,%),

Bs=(2RC1/m){B3(1-A1)+BsAs}-4(71+72)C1{(1-A1) (AB3-
BB,)+Ax(AB,+BBs)}-(471+27,) Co/mp(A*-B){Bs(1-Ar)+BaAs}-
2AB{B4(1-A1)- BsA2},

Be=(2RC1/m){B4(1-A1)-B3A2}-4(11+72)C1{(1-A1) (AB4-BB3)+Az(ABs-
B B4)}- (4T1+ 2T2)C1/m} [2A B{ Bg(l-A1)+ B4A2}+(A2- Bz){ B4(1-A1)-
B3Az}],

B7=-(2RCo/m){B3(1-A1)+BsAs}-4(1t1+72) Co{(1-Ar) (AB3-
BB.)+Ax(ABy+BBs)}+ (471+272)Co/ MH(A™B ) Bs(1-A1)+BaAo}-
2AB{B4(1-A1)- BsAx}],

Bs=-(2RCo/m){B4(1-A1)-BsAz}-4(71+72)Co{(1-A1) (AB4+BB3)+Ax(ABs-
B B4)}+ {(4T1+ 2T2)C2/m} [ZAB{ Bg(l-A1)+ B4A2}+ (Az- Bz){B4(1-A1)-
B3Az}],
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Bo=2RC3{Bs(1-A1)+BsA}-4(11+27,)C3[(A%-B*){B3(1-A1)+BsAs}-
(2AB){B4(1-Ay)-

BaA2},

B10=2RC3{Ba(1-A1)+B3As}-4(T1+27,)C3[2AB){B3(1-Ar)+BaA}+(A
B2){B4(1-Ay)-

BaA2},

Bllz (2 RCllm){ B3A1- B4A2}+4(T1+T2)C1{A{ BgAl- B4A2}- B(B4A1+ BgAg)}-
{(47,+27,)Co/mYH{B3A1-B.AL)(A%-B)-2AB{B,A+B:A}],

Blg=(2RC1/m){B4A1+ BgA2}+4(T1+T2)C1{B{BgA1-
B4A2}+A( B4A1+ BgAz)}- {(4T1+ 2T2)C1/m} [{ BgAl- B4A2)2AB+(A2-
B%)(B4A1+B3AL}],

B1s=-(2RCo/m){B3A1-BsAx}+4(11+72) Co{ A{ B3A1-BiA} -
B(B4A1+B3sAx) 1+ {(411+212)Co/mMH{BsAs-BsA) (A*-B)-
2AB{BsA+B3A}],

814:-(2 RCZ/m){B4A1+ 83A2}+4(T1+T2)C2{B{ BsAs-
BaAs}+A(BAI+BsA)}- {(471+215)CoMH{BaA1-BsA2) 2AB+H(A’-
BZ)(B4A1+ BsAz}],

B1s=2RC3{B3A1-B,A}-4(11+72)C3{(A%-B%)(B3A1-B,A}-
2AB(BsA1+B3AY)],

B16=2RC3{B4A1+B3A,}-4(T1+72)C3{(B3A1-BsA}2AB+(A*-
B%)(B:A1+B3AY)],

Y1=BsCosB(e ™*4)-")-BeSinB(e ™4 -e"),
Y ,=BsCosB(e ™+4)-")+BsSinB(e M+4)-e),
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Y5=B15CosB(e ~M*+4-e")+B,,SinB(e ~ (M4 +e"),
Y ,=B14CosB(e~(M*+4-e")-B;SinB(e ~M*+4)+e?),
B17=(Y1+Y3),

B1s=(Y2+Yy),

Ys=(e~(M~4-e”)(B,CosB- BsSinB),
Ye=(e~(M~4-e”)(BgCosB- B;SinB),

Y= B1:CosB(e ™ A-e™)+ B,,SinB(e ™ 4 +e?)
Ys= B1,C0sB (e ™ 4-)-B,;SinB(e ™ D+eh),
B1o=(Ys+Y7),

B2o=(Ys+Ys),

By =(m?+2mA)/{(m*+2mA)*+4m°B?},
By=-2mB/{(m*+2mA)*+4m?B?},
Bos=(m*-2mA)/{(m*-2mA)*+4m’B?},
Bos=2mB/{(m?+2mA)*+4m?B?},

Bas=e” (BsC0SB- B1,SinB)- e” (B15CosB+B1SinB),
Bas=e” (B1sC0sB+B,SinB)- ™ (B1sC0sB-B1sSinB),
B27=(AB,s+BBys)/{2(A’+B?)},

Bas=(AB2s-BB2s) [{2(A*+B%)},
B,g=B15SinhACosB-BsC0sASInhB,

B30=B1SinhACosB+B5CosASInhB,
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Ba1={B2s(A"-B*)+2Bx0AB}/[2{(A%-B")+4A’B’}],
Bs,={Bao(A*-B%)-2B»AB}[2{(A*B?)*+4A’B%}],
B33=B17B21- B1sB2»,

B34=B1B21+ B17B2,

B35=B19B23-B20Bo4,

B3s=B20B23tB19B24,

Bs7={(B33+B35+B27+B3;)SinhAC0sB+(B34+B3s+Bog+B3,) CosASinhB}{ 2
(Sinh®ACos’B+ Cos”A Sinh’B)},

B38={(B34+ B3st+Bosgt ng) SinhACosB-
(Bas+Bas+B,7+Bs1)CosASInhB}{2(Sinh*?ACos’B+ Cos’A Sinh’B)},

B39=B21(Bs+B13)-B22(Bs+B14),
B40=B22(Bs+B13)+B21(Bs+B1y),
B41=B23(B7+B11)-B24(Bs+B12),
B42=B24(B7+B11)+B23(Bs+B1o),

VI.4 RESULTS AND DISCUSSION

The variation of the temperature distribution with {at R =7, P =6, =5,ande
0.02,k =15.m = 10, E = 5 for different values of ;= 1. 1.2, 3 when 7 = /3 and
27t/3 1s shown in fig (1) and fig (2 ) respectively. From fig (1) and fig (2), the
graph of the temperature variation is parabolic with vertex downwards. It is also
clear from these figures that the temperature is minimum at the middle of the
gap-length and remains negative throughout the gap-length except near the
surface of the lower disc. It is seen from fig (1) that temperature increases with

an increase in ¢lastic-viscous parameter 7 in the first half and being overlapped
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in the second half of the gap-length. It is observed from fig(2) that the
temperature decreases with an increase in 7, in the middle of the gap-length and

is being overlapped thereafter.

The variation of the temperature distribution with { at 7,=5,P = 6. = 5,
€ =0.02. k =15.m = 10, E = 5 for different values of R = 1. 1.5, 2 when 7 = /3
and 27/3 is shown in fig (3) and fig (4) respectively. From fig (3) and fig (4).
the graph of the temperature variation is parabolic with vertex downwards. It is
also evident from these figures that the temperature is minimum at the middle of
the gap length and remains negative throughout the gap-length except near the
surface of the lower disc. It is also. It is also clear from these that temperature

decreases with an increase in Reynolds number R throughout the gap-length.

The variation of the temperature distribution with{ atR =7, 1,=5,P =6,
=35,€ =0.02, k =15, E =5 for different values of m= 1, 10, 20 when t = 7/3 and
271t/3 1s shown in fig (5) and fig (6) respectively. From fig (5) and fig (6), the
graph of the temperature variation is parabolic with vertex downwards. It is also
observed from these figures that the temperature is minimum at the middle of
the gap-length and remains negative throughout the gap-length except near the
surface of the lower disc. It is also seen from fig (5) that the temperature
increases with an increase in magnetic field parameter m and start overlapping
near the upper disc and from fig (6). temperature decreases with an increase in
magnetic field parameter m n the first half and being overlapped in the second

half of the gap-length.

The variation of the temperature distribution with { atR =7, 7,=5,P =6,
{ =5,e=0.02,k =15, E =5 for different values of Suciton parameterk =1, 2, 3
when 7 = /3 and 27t/3 is shown in fig (7) and fig (8) respectively. It is observed
from fig (7) and fig (8), that the temperature decreases, attains its minimum

value at the middle of the gap length approximately and increases thereafter
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upto the surface of the upper disc for all values of suction parameter k. It 1s alos

evident from these figure that temperature decreases with an increase in

suction parameter k throughout the gap-length.

The variation of the nusselt number Nu, with fatm = 10,R=7,7,=5,P
=0,& =35, € =0.02, E =5, r=n/3 for different values of Suciton parameter k
= 1.3, 7 1s shown in fig (9). It is seen from this figure that the Nusselt number
decreases with an increase in & throughout the gap-length. It is also observed
from this figure that Nusselt number decreases with an increase in suction

parameter k throughout the gap-length.

The variation of the Nusselt number Nu, with fatm = 10,R=7,7,=5.P
=6,& =5, € =0.02, E =5, 7=n/3 for different values of suction parameter k
=1,3,7 is shown in fig (10). It is clear from this figure that the Nusselt number
increases with an increase in & throughout the gap-length. It is also evident from
this figure that Nusselt number increases with an increase in suction parameter k

throughout the gap-length.

T=n/3 =27/3
( 1'1:1 T1:1.2 T1:3 T1:l T1:1.2 T1:3
0.0 {[1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 [[-65.224573 |[-63.508105 ||-50.823216 [[-55.365112 ||-57.795642 ||-60.353514
0.2 [[-104.48718 ||-102.76719 ||-93.291983 ([-104.60000 ||-106.38412 ||-103.98665
0.3 [[-131.17531 |[-129.91209 ||-125.65822 [|-136.99527 |[-137.92133 ||-133.58409
0.4 [[-148.36829 ||-147.58761 ||-146.37158 |(|-154.22924 ||-154.56405 ||-150.97275
0.5 [[-154.97601 ||-154.57751 ||-154.39989 (|-158.69024 ||-158.70867 ||-156.58863
0.6 [[-149.56839 |[-149.41786 ||-149.35704 (|-151.32363 ||-151.22287 ||-150.24029
0.7 [[-131.41763 ||-131.39447 ||-131.24821 (|-132.08683 ||-131-97639 ||-131.61004
0.8 [[-100.37714 ||-100.39734 ||-100.22349 [[-100.63293 |[-100.55537 ||-100.45342
0.9 [[-56.540687 |[-56.55853 -56.43993 -56.659944 ||-56.622452 |([-56.618100
1.0 {{0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Table (1) variation of temperature
distribution (T-Tp)/(T,-Tp) at different
elastic-viscous parameter t;

Table (2) variation of temperature
distribution (T-Ty)/(T4-Tp) at different
elastic-viscous parameter t;

T=n/3 T=271/3
{ |R=1 R=1.5 R=2 R=1 R =15 R=2

0.0 | 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 |-6.807930 |-10.632880 |-14.509118 |-8.293030 | -12.547987 | -16.770010
0.2 |-12.794078 | -19.605990 | -26.526349 | -15.367564 |-22.788340 |-30.151436
0.3 | -17.064457 | -26.055892 | -35.212122 |-20.293759 | -29.866305 [-39.372527
0.4 |-19.670820 | -30.024408 | -40.586111 |-23.151638 | -33.933500 | -44.658184
0.5 |-20.627837 |-31.498287 |-42.597465 |-24.016546 | -35.120653 | -46.189183
0.6 |-19.926768 | -30.438433 |-41.172678 | -22.950446 | -33.524558 [ -44.088002
0.7 | -17.545350 | -26.798943 | -36.243541 |-19.997716 | -29.204494 |-38.419903
0.8 |-13.453976 |-20.537097 |-27.759201 |-15.184341 | -22.184447 |-29.201264
0.9 | -7061846 -11.615817 | -15.686263 | -8.519641 12.458753 |-16.410514
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table (3) variation of temperature Table (4) variation of temperature

distribution (T-Ty)/(T4-Tp) at different distribution (T-Ty)/(T4-Tp) at different
Reynolds number R Reynolds number R
=n/3 T=21/3
7 [m=1 m= 10 M =20 m=1 m =10 m=20

0.0 [ 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 |[-55.537515 |-53.838227 |-48.970727 |-56.014093 [ -58.214563 |-63.727949
0.2 [-99.627889 |-97.076999 |-89.842277 |-100.24898 | -102.64438 [-107.89217
0.3 [-131.21446 |-128.71129 |-121.88663 |-131.83270 |-133.60911 |[-136.52111

171




0.4 |-150.23720 |-148.25181 |-143.20599 | -150.82293 | -151.89202 |-152.63983
0.5 |-156.66307 |-155.29437 |-152.18139 |-157.23380 | -157.77939 |-157.27195
0.6 |-150.48558 |-149.64148 |-148.02760 |-151.06036 |-151.29009 | -150.34945
0.7 |-131.71717 |-131.24971 |-130.57927 |-132.28754 |-132.35229 |-131.46825
0.8 |-100.37986 |-100.15209 |-99.960704 |-100.88642 |-100.88179 |-100.26189
0.9 |-56.486635 |-56.398469 |[-56.372249 |-56.808617 |-56.79387 |-56.49193
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table (5) variation of temperature Table (6) variation of temperature
distribution (T-Ty)/(T4-Tp) at different distribution (T-Ty)/(T4-Tp) at different
magnetic field parameter m magnetic field parameter m
T=n/3 T=21/3
{ k=1 k=2 k=3 k=1 k=2 k=3
0.0 | 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 | -1.015145 | -4.788223 | -8.561300 | -5.109762 | -8.902962 | -12.696162
0.2 | -3.184775 | -9.891362 | -16.597950 | -8.304388 | -15.042959 | -21.781530
0.3 | -5.469714 | -14.272684 | -23.075654 | -9.856384 | -18.65864 | -27.535345
0.4 | -7.389866 | -17.451434 | -27.513001 | -10.506919 | -20.605855 | -30.704791
0.5 | -8.556801 | -19.038056 | -29.519311 | -10.519122 | -21.037713 | -31.556304
0.6 | -8.779536 | -18.841103 | -28.902760 | -9.904991 | -20.003926 | -30.102862
0.7 | -8.008123 | -16.811093 | -25.614063 | -8.599570 | -17.439050 | -26.278531
0.8 | -6.259874 | -12.966461 | -19.673048 | -6.541793 | -13.280365 | -20.018936
0.9 | -3.575387 | -7.348464 | -11.121541 | -3.689072 | -7.482272 | -11.275472
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table (7) variation of temperature Table (8) variation of temperature
distribution (T-Ty)/(T4-Tp) at different distribution (T-Ty)/(T4-Tp) at different
suction parameter m suction parameter m
Nuj, Nup
{ |k=1 k=3 k=7 k=1 k=3 k=7
0 -10.061270 |-11.835657 | -15.384432 | 2.371043 4.145431 7.694205
1 -10.469546 | -12.243933 | -15.792708 | 2.387274 4.161661 7.710436
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2 -11.694374 | -13.468761 | -17.017536 | 2.435965 4.210352 70759127
3 -13.735753 | -15.510141 | -19.058915 | 2.517117 4.291504 7.840279
4 -16.593685 | -18.368072 |-21.916847 | 2.630729 4.405116 7.953891
5 -20.268169 | -22.042556 |-25.591331 | 2.776802 4.551190 8.099964
6 -24.759205 | -26.533592 | -30.082366 | 2.955336 4.729724 8.278498
7 -30.066792 |-31.841179 | -35.389954 | 3.166331 4.940718 8.489493
8 -36.190932 | -37.965319 | -41.514094 | 3.409787 5.184174 8.732949
9 -43.131623 | -44.906010 | -48.454785 | 3.686703 5.460090 9.008865
10 |-50.888866 |-52.663254 |-56.212028 | 3.994080 5.768467 9.317242
Table (9) variation of Nusselt number Table (10) variation of Nusselt number
Nu, at different suction parameter k Nu, at different suction parameter k
T=n/3 =27/3
{ |t=l 71=1.2 71=3 71=1 71=1.2 71=3
0.0 | 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 |-65.224573 |-63.508105 |-50.823216 |-55.365112 |-57.795642 |-60.353514
0.2 |-104.48718 |-102.76719 |-93.291983 |-104.60000 |-106.38412 |-103.98665
0.3 |[-131.17531 |-129.91209 |-125.65822 |-136.99527 |-137.92133 |-133.58409
0.4 |-148.36829 |-147.58761 |-146.37158 |-154.22924 |-154.56405 |-150.97275
0.5 |[-154.97601 |-154.57751 |-154.39989 |-158.69024 |-158.70867 |-156.58863
0.6 |-149.56839 |-149.41786 |-149.35704 |-151.32363 |-151.22287 |-150.24029
0.7 |-131.41763 |-131.39447 |-131.24821 |-132.08683 |-131-97639 |-131.61004
0.8 |-100.37714 |-100.39734 |-100.22349 |-100.63293 |-100.55537 |-100.45342
0.9 |-56.540687 | -56.55853 -56.43993 -56.659944 | -56.622452 | -56.618100
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table (1) variation of temperature Table (2) variation of temperature
distribution (T-Ty)/(T4-Tp) at different | distribution (T-Tp)/(To-Tp) at different
elastic-viscous parameter t; elastic-viscous parameter t;
T="/3 T=271/3
{ |R=1 R=1.5 R=2 =1 R=15 R=2
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0.0 | 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 |-6.807930 |-10.632880 |-14.509118 |-8.293030 |-12.547987 | -16.770010
0.2 |-12.794078 |-19.605990 |-26.526349 |-15.367564 |-22.788340 |-30.151436
0.3 | -17.064457 | -26.055892 |-35.212122 |-20.293759 |-29.866305 [ -39.372527
0.4 |-19.670820 [ -30.024408 |-40.586111 |-23.151638 |-33.933500 | -44.658184
0.5 |-20.627837 |-31.498287 |-42.597465 |-24.016546 |-35.120653 |-46.189183
0.6 |-19.926768 |-30.438433 |-41.172678 |-22.950446 |-33.524558 [ -44.088002
0.7 | -17.545350 [ -26.798943 |-36.243541 |-19.997716 |-29.204494 | -38.419903
0.8 [-13.453976 |-20.537097 [-27.759201 |-15.184341 |-22.184447 |-29.201264
0.9 |-7061846 -11.615817 | -15.686263 | -8.519641 |[12.458753 |-16.410514
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table (3) variation of temperature Table (4) variation of temperature
distribution (T-Ty)/(Ta-Tp) at different distribution (T-Ty,)/(T4-Tp) at different
Reynolds number R Reynolds number R
T=n/3 =27/3
{ |m=1 m= 10 M =20 m=1 m=10 m =20
0.0 | 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 |-55.537515 |-53.838227 |-48.970727 |-56.014093 |-58.214563 |-63.727949
0.2 |[-99.627889 |-97.076999 |-89.842277 |-100.24898 |-102.64438 |-107.89217
0.3 |-131.21446 |-128.71129 |-121.88663 |-131.83270 |-133.60911 |-136.52111
0.4 |-150.23720 |-148.25181 |-143.20599 |-150.82293 |-151.89202 |-152.63983
0.5 |-156.66307 |-155.29437 |-152.18139 |-157.23380 |-157.77939 |-157.27195
0.6 |-150.48558 |-149.64148 |-148.02760 |-151.06036 |-151.29009 |-150.34945
0.7 |-131.71717 |-131.24971 |-130.57927 |-132.28754 |-132.35229 |-131.46825
0.8 |[-100.37986 |-100.15209 |-99.960704 |-100.88642 |-100.88179 |-100.26189
0.9 |-56.486635 |-56.398469 |-56.372249 |-56.808617 |-56.79387 -56.49193
1.0 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table (5) variation of temperature Table (6) variation of temperature
distribution (T-Ty)/(T4-Tp) at different distribution (T-Ty)/(T4-Tp) at different
magnetic field parameter m magnetic field parameter m

=7/3

T=21/3
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7 [k=1 k=2 k=3 k=1 k=2 k=3
0.0 [1.000000 |1.000000 |1.000000 | 1.000000 | 1.000000 | 1.000000
0.1 |-1.015145 |-4.788223 |-8.561300 |-5.109762 |-8.902962 | -12.696162
0.2 |-3.184775 |-9.891362 |-16.597950 | -8.304388 | -15.042959 |-21.781530
0.3 |-5.469714 |-14.272684 | -23.075654 | -9.856384 |-18.65864 | -27.535345
0.4 |-7.389866 |-17.451434 |-27.513001 |-10.506919 |-20.605855 |-30.704791
05 |-8.556801 |-19.038056 |-29.519311 |-10.519122 |-21.037713 |-31.556304
0.6 |-8.779536 |-18.841103 |-28.902760 |-9.904991 |-20.003926 | -30.102862
0.7 |-8.008123 |-16.811093 | -25.614063 | -8.599570 |-17.439050 |-26.278531
0.8 |-6.259874 |-12.966461 |-19.673048 | -6.541793 |-13.280365 |-20.018936
0.9 |-3.575387 |-7.348464 |-11.121541 |-3.689072 |-7.482272 | -11.275472
1.0 |0.000000 | 0.000000 | 0.000000 |0.000000 | 0.000000 | 0.000000

Table (7) variation of temperature
distribution (T-Ty)/(T4-Tp) at different

suction parameter m

Table (8) variation of temperature
distribution (T-Ty)/(T4-Tp) at different
suction parameter m
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Fig (3) Variation of the temperature T* With & for different values of Hartman
Number S,.
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Nu, Nup
7 [k=1 k=3 k=7 k=1 k=3 k=7
0 -10.061270 | -11.835657 | -15.384432 | 2.371043 4.145431 7.694205
1 -10.469546 | -12.243933 | -15.792708 | 2.387274 4.161661 7.710436
2 -11.694374 | -13.468761 | -17.017536 | 2.435965 4.210352 70759127
3 -13.735753 | -15.510141 | -19.058915 | 2.517117 4.291504 7.840279
4 -16.593685 | -18.368072 | -21.916847 | 2.630729 4.405116 7.953891
5 -20.268169 | -22.042556 | -25.591331 | 2.776802 4551190 8.099964
6 -24.759205 | -26.533592 | -30.082366 | 2.955336 4.729724 8.278498
7 -30.066792 | -31.841179 | -35.389954 | 3.166331 4940718 8.489493
8 -36.190932 | -37.965319 | -41.514094 | 3.409787 5.184174 8.732949
9 -43.131623 | -44.906010 | -48.454785 | 3.686703 5.460090 9.008865
10 -50.888866 | -52.663254 | -56.212028 | 3.994080 5.768467 9.317242

Table (9) variation of Nusselt number
Nuj, at different suction parameter k

Table (10) variation of Nusselt number
Nu, at different suction parameter k
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Chapter No. 7

Heat transfer in the flow of a non-Newtonian second —order fluid 171
second-order fluid between two enclosed torsion ally oscillating discs with
umform suctlon and 1n_|ectlon in the presence of the magnetlc field.

VIL1 INTRODUCTION

The non-Newtonian effects are exhibited through two dimensionless
parameters 7,(=ny/ u,) and 7o(=nys/ u,). where p,. o, ps are coefficient of
Newtonian viscosity, elastic-viscosity and cross viscosity. n being the uniform
frequency of the oscillation. The variation of temperature distribution with
elastic-viscous parameter 7,, cross-viscous parameter 7, (based on the relation 7
| = at,. where @ = -0.2 as for 5.46% poly-iso- butylenes type solution in cetane
at 30° C (Markowitz*®®) Reynolds number R, magnetic field m, suction

parameter k at different phases difference 7 is shown graphically.
VIL.2 FORMULATION OF THE PROBLEM

In the three dimensional cylindrical set of co-ordinates (r, 8. z) the system
consists of a finite oscillating disc of radius r, (coinciding with the plane z = 0)
performing rotator oscillations of the type rQCost of small amplitude € . about
perpendicular axis r = 0 with a constant angular velocity € in an incompressible
second-order fluid forming the part of a cylindrical casing or housing. . The
symmetrical radial steady outflow has a small mass rate ‘m’ of radial outflow
(*-m’ for net radial inflow). The inlet condition i1s taken as a simple radial
source flow along z-axis starting from radius r, A constant magnetic field B, is
applied normal to the plane of the oscillating disc. The induced magnetic field is
neglected. The lower disc z = 0 is maintained at constant temperature T, while

the upper disc z = z, at constant temperature T,,.
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Assuming (u., v, w) as the velocity components along the cylindrical

system of axes (r, 4, z) the relevant boundary conditions of the problem are:

z=0, u=0, v = r()’"(Real part), w=w, T=T,
z= 2y, u=0, v=rQ(Real part), w=w, T=T,
(7.1)

where the gap z;, is assumed small in comparison with the disc radius r,. The
velocity components for the axisymmetric flow compatible with the continuity

criterion can be taken as 493,00
U = - gH'({,1) HRW/R,) M'({ ),
V = &G({,1)HR/R,) L({,7)/E.
W = 2H({,7).
(7.2)

and for the temperature, we take
T = Tb+(V|Q/C\.){¢((,T)+€2lp({,'t)}
(7.3)

where U = u/Qz,, V= v/ Qz,, W = w/Qz,, &= r1/z,, {,r are dimensionless
quantities and H({,7), G({,7), L({,7), M'({,7), ¢({,T). are dimensionless function
of the dimensionless variables {=z/z, and v = nt. R,(=m/2napz v ), Ry
(=L/2mpzev,) are dimensionless number to be called the Reynolds number of net
outflow and circulatory flow respectively. R, (=Qz,/v,) be the flow Reynolds

number. The small mass rate ‘m" of the radial outflow is represented by
Zy

m =2apf rudz
(7.4)
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Using expression (7.2) and (7.3), the boundary condition (7.1) transform for G,
L & H into the following form:

G (0. 7) = Real(e'). G (1. 1) = Real(e'),

L (0,7)=0, L(l,7)=0,
H (0, 7) =k, H(l.7)=0,
H’ (0,7) =0, H'(1,7) =0,

(0.7)=1/E=S, ¢(1.7)=0,

P (0,7)=0, P{l,7)=0
(7.5)

where E [=Qv,/{C(T,-T},)}] is the Eckert number and k [=wy/2Qz] 1s the

suction
parameter.
The conditions on M on the boundaries are obtainable form the expression
(7.4) for m as follows:

M(L, 7)-M(0,7)=1
(7.6)

which on choosing the discs as streamlines reduces to

M(l,7)=1, M(0,7)=0
(7.7)

Using eqs. (1.4) and expression (7.2) in equation (1.8) and neglecting the

squares

& higher powers of R,,/R, (assumed small), we have the following equations in
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dimensionless form:

-(1/pzo)(0p /0§ )=nQzo{EAH -(R/R, )NOM' [ &)} +€2°2p&(H2-2HH -
G2)+Q22, (Ro/R, ) ZHM " €)-Q22o(Ry /R, ) 2LG/E ) H(v, S/ z0) {H ¢
(Ru/R)M™7/E)} - (2va/z9) [nQ/2] {(Rw/R,) (AM™'[§)- §0H™ ) + &
&H2-HHY) + (R/R,) (Q%§) (H"M'+H"M*'+H’M" " +HM")-
(Ri/R,)(2QYENL'G +LG™") J-(4v3Q%-70) {(Rw/R) (1/2§)
(HM™+H'M"H+H M )-(R /R, )(1/2E)2L'G LG ")+ (§/4) (H -
G™-2H'H""")} + (6B’ Qzy/p) {-EH +HR,/R, (M /§)} .

(7.8)

0 = -nQz, {EdGHR /R, )DL /§)} -(2Q°2:8) (UG -H'G)- Q*2(R,/R,)
(2MG/E)-Q22(Ry /R, )(ZHL /&) H(v,Q/20) {EG ™ +(Ry /R, (L /&
)} H(2v2/zp)[(n€2/2) {§0G™ " HRL/RNAL" /E)} HRL/R,)(Q/E
H L' +H L+HL " +H'L"") HQYE) (HG " -H G ) HRW/R,)2Q/E
MG M G ) H2v:Q¥2o){EH G -H ' G") +(Ry +R, )1/
)HL'+HL+H 'L )HR,+R,)(1/)(2M "G +M G )-(6 Bo*Qz/p)
EGHRL/R,)NL/E)) .

(7.9)

-(1/pze)(@p /30 )=20Qzed H+4Q2eHH -2v, QH " /2-(2v2/25) {nQOH " +2Q28
(H H'"+G'G")+QX(22H HH "+2HH")-
(Ru/R,)2Q2H "M +H" "M )+ (Ri/R,) 2€2 (L'G™* + L"°G")} -(2v;
Q/zg) {8 H™" +G°G")+14H’H -(R,/R,)

(H "M +H "M} R /R, NG +LG"))
(7.10)

pC(@T/at+udT/or+waT/dz) = K{a*T/ar*+(1/r) aT/ar+9°T/0z*} +b
(7.11)
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where

(7.12)

C, is the specific heat at constant volume, & be the viscous-dissipation function,
7' is the mixed deviatoric stress tensor, K is the thermal conductivity. p is the
density of the fluid: B and ¢ are intensity of the magnetic field and conductivity

of the fluid considered.

Differentiating (7.8) w.r.t { and (7.10) w.r.t £ and then eliminating 9°p/d.0¢

from the equation thus obtained. We get

Q2 {EIH " -(RW/R,)IM " [E}-22220(HH -GG HR /R, )(202%20/§)
(H'M 7 +HM™"")-(RU/R N2 2o/ ENLG L G)-(v1€2/2p) {(R/R HM™/
&)- EHY}-(2v2/20) [(nCV2) {(Ra/R, HOM™/E)-EIH ™} -Q7E

(H"H " +H HYHH +4GG™") HR/R, (/€

)2H "M +HYM +2H "M +2H MV +HM")-(R, /R, )(2Q¥§)

(2L°G L G +LG ) ]-(2vsQ%/2) { (R R, )(1/€)
(HYM'+2H"*M""+ 2H "M+ H'M™)-(R, +R,, )(1/&

JAL'G 2L G +LG " )-EH H*+3G G +2H "H ")} + (6B
0°Q7¢/p) {-EHHR, /R, HM"/§)} =0

(7.13)

On equating the coefficients of & and 1/ ¢ from the equation (7.9) & (7.13), we

get the following equations:

G=R3G+2 € RMHG-H'G)-1,dG-2 € 1(HG "-H"G')-2 €T
(G H G +m’G

(7.14)
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L"=RIL+2 € RM'G+HL)-1,dL""-2 € T
(H L +HL+HL " +H'L42M'G ' +2M°G") -2 €1
2(HVL+H"LAH'L"+2M "G +M’G")+m’L
(7.15)

H"= R@H+2 € R(HH"+GG’)-r,dH"-2 €1
(H'H¥+HH"+2H"'H'"+4G'G™")-2 € T
(H'H¥+2H’H’+3G’G"’)+m?*H"’
(7.16)

M*=RaM+2 € R(H'M+HM " "-LG'-L'G)-1,gM™-2 € 7
((2H "M +H"M'+2H "M’ +2H'M*+HM*-4L'G"-2L""G -
2LG'")-2 € To(H¥M'+2H "M +2H "M+ H'MM-3L'G"*-2L"'G’-
LG’“)‘H'I]:'M”
(7.17)

where R(=nzy/v,) is the Reynolds number, 7,(=nv,/v|). T2(=nvy/v,) and €
(=€2/n) are the dimensionless parameter. m? = gB’z,"/u, is the

dimensionless magnetic field and R,,/R; =m/L = 1.

Using (7.3). (7.12) in (7.11) and equating the coefficient of & and independent

term of, we get

= €RP,[9W/ € -2H'W+2HY -H 2+G2-1,(H"dH " +G 9G")-2

€ 7, ('H?+H’G?HH H " +HG'G"")-3 € ro(H'H " +H G ™).
(7.18)

4P+¢= € RP,[d¢p/ € HR/R,)2M " W+2H¢ -

12H?+R,,/R,)2H""M"*- (R\/R,)2L'G -1, { 12H'9H -(R,,/R, )(H '@

MMV aH ") HR/R,) (G'dL'+L'AL’)} -2 €T

({(12H 3+ 12HH ' H " HR,/R,)(2M'G2-HH "M *-H M *-

192



HH’M’>")+R/R,)(HL’G’+3H’L’G’+3LG H’+HG’L"’)} -€
T{(Rn/R,)(BM’G*%-6H’H’M)+24H"*+6(R/R,)(H’LG’+H’L’G’)}]
(7.19)

Where P,=u;C, /K is the Prandtl number.

For Rn=R_=B=0, the differential equations (7.8)-(7.10) are identical to those
obtained by Sharma & Gupta®” (for S;= 1, S,=0), Sharma & Singh®® (for S; =1,
S,=1) and for R,=R_ =By=0,the differential equations (7.8)-(7.10),(7.18), (7.19)
are identical to those obtained by Sharma & Singh™ (for S;= 1, S,=0).

V1.3 SOLUTION OF THE PROBLEM
Substituting the expressions

G(¢,7) =% €"Gn((7)

L(¢ 1) =3 € n((7)

H(¢,7) = X €"Hn (4, 7)

M(¢,7) =% €' My ((,7)

¢ 1)=T € pn(,7)

Y((,1)=Y €"¥n (1)
(7.20)

into (7.14) to (7.19) neglecting the terms with coefficient of € (assumed
negligible small) and equating the terms independent of € and coefficient of €,

we get the following equations:

Go’’= R 0Gy/dt -11 0Gy’’ /9T + M*Gy
(7.21)
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Gl” =R aGllaT-ZR(Ho’Go’-HoGo’)- T1 aGl"/aT-ZTl(Ho,Go’”-Ho”Go’)-
2T2(H0’G0”-

Ho*Go')+ m'Gy
(7.22)

Lo’=R dLy/0t -T1 Ly’ /0T + mZLo
(7.23)

Ll” =R aLllaT-ZR(Mo’Go-HoLo,)- T1 6L1”/6T—
2T1(H0”’L0+H0‘ ’LO’+HO5L077+HOLO777

+2MO”G0’+2MO’GO,,) = 2T2(H0,,,L0+H0,,L0,+H0,L0
"+2M0’ ’Go’+M0’G0’ a)_|_ m2L1
(7.24)

HoiV:Ra Hy’/0t-110 HoiV/aT+m2H0’ ’
(7.25)

H," = R 9H,>’/0t+2R(HoHo **+GoGy’)- 71 dH,"/d7-
2T1(H0’Hoiv+ H0H0V+2Ho’ "Hy>”’+

4G0’G07 ,)_ 2T2(3G0’G099+H09H0|V+2H09 9H0G99)+ mZHl,,
(7.26)

Mo '=RaM,’*/0T-T10My 1dT+M* My’
(7.27)

M,=RAM;>*/d7+2R(Ho’Mo”>+HoMg >’ Lo’ Go-LoGo’)- 1M, "/d7-
27,(2Hy> "My’

+Ho"Mo’+2Ho " Mg>>*-4Lo’ Gy’ -2L0" Go’-2LoGo’ > )+HoMo " +2Ho Mo ™) -
27,(2Ho> " Mo™” +Ho"Mo’+2Ho My ¢>-3Ly’Go>-2Lo " G-
LoGo’”>+Ho Mo™)+ m*M; (7.28)
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Wo''=RP,3W,,
(7.29)

7= RP[0';-2Hy Wt 2HoWo -y 2-Go -1 (Ho "0H, 4Gy 9G),
(7.30)

4o tpo” =RP.3Wo.
(7.31)

4y 1 +¢0' ‘=RP,[6¢ | +(Rm/Rz )2M0Q‘P0+2H0¢0" 1 2}'!()'2'*'(Rm/rRr. )ZHO' 'M()"‘
(Ri/R,)2Ly"Gy’- 7 {(12H'dH -(R/R, )(Hy "My "+ M dH,y ") HR /R (G0
Lo} ] (7.32)

Taking G,(,7) = Gus({) "G ()
Lu(¢,7) =Lus({)+e"Lo(Q)
H.(¢,1) = Huo({) +e* HalQ)
M,({,7) = Mu(Q)+e2 ™, ({)
Pul(,7) =Pusl{) > Pul()

Wall,T) =W )+ W (Q)
(7.33)

Complex notation has been adopted here with the convention that only real parts

of the complex quantities have the physical meaning.

Using (7.24) and (7.33). the boundary conditions (7.5) & (7.7) for n = 0, 1

transform to
Gp(0) =0, Gp(0)=1, G(0)=0, G(0)=0,

Go(1) =0, Gu(0)=0, G (1)=0, Gy(1)=0,
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Ho(0) =k, He(0) =0, H(0)=0, H,«(0)=0,
Ho(1) =k, He(1)=0, H(1)=0, H;(1)=0,
H’(0)=0, H'(0)=0, H*(0)=0, H’(0)=0,
H%(1)=0, Ha(1)=0, H%(1)=0, Ii{l)=0,
Ly(0)=0, Ly0)=0, L. (0)=0, Lify) =D,
Lo(1)=0, Lg(1)=0, L (1)=0, L;(1)=0,
M’(0) =0, M’(0) =0, M’ (0)=0, M’(0)=0,
M’(1)=0, M’o(1)=0, M’ (1)=0, M’(1)=0,
My(0) =0, Mp(0)=0, M4(0)=0, M;(0)=0,
My(0) =0, Mp(0)=0, M5(0)=0, M(0)=0,
My (1) =0, M(1)=0, M, (1)=0, M,(1)=0,
Wo(0)=0, We(0)=0, WY(0)=0, W¥(0)=0,
Po(1)=0;, We(1)=0, Yi(1)=0, Wi(1)=0,
$0s(0) =0, ¢pa(0)=0, ¢1s(0)=0, ¢:(0)=0,
$os(1) =0, pa()=0, ¢ (1)=0, ¢u(1)=0, (7.34)

Applying (7.33) & (7.34) in egs. (7.21) to (.32), we get
Gos(¢) = Gi1s({) =0,
Gu(Q) = CiefS+ Cief5,

Where C, = (1-e)/2Sinh f)

Cz = 1-C|,
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f = {(iR+m?)/(1+i7)}**= A+iB,
A = [(m*+R1y)+(M*+Rr) +(R-m?r1) }{2(1+7, 1",
B = [[(M*+R7y)*+(R-m’z;)*}-(m” +Rz)[{2(1+7,°}]™,
Go(¢, 7) = Real{e""Gu({)},
Go(¢, ) = Go(¢, ) + € Ga({, 7) = Real(e'™ Gu(¢)}
Mor(¢) = My ({)=0
Mos(Q) = Are™SIm?+ Age ™S Im?+Asl + Au,
M’0s(¢) = Are™/m- Aze ™ /m+As,
Where A; = Ay(e™-1)/(e™-1),
A, = m?(e™-1)/{4+e™(m-2)-e™(m+2)},
Az = -(Ar+A,)/m,
Aq = (Ar+AL)Im?.
Yas = Xs1+(X26/2RP)),
Y37 = Xus+(X22/2RP)),
Yas = -Xsp+(Xo5/2RP)),
Y0 = Xag-(X21/2RP)),
Y 40 = Xs-(X25/2RP)),
Y1 = Xs1+(X26/2RP)),
Y42 = Xas—(X21/2RP)),

Y43 = -Xys-(X22/2RPy),
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Y 44 = Y3€C0827-Y 40€SIn2t,
Y45 = Y33€C0s27-Y 41€Sin2t,
Y6 = Y37€C0S27-Y 4,€SIN2T,
Y47 = Y30€C0S27-Y 43ESIN2T,
Y 48 = {Xos5+ Xp6)/IQ} €C0S27-{X76-X25)/Q €Sin2rt,
Y 49 = {X25-X26 )/Q} €C0827-{X26+X25)/Q E€Sin2t,
Yso = {Xo1+ X2, )/Q} €Cos27-{X;,-X51)/Q €Sin2t,
Y51 = {X22-X21 )/Q} €C0s27-{ X+ X51)/Q €Sin2t,
Ys, = Y5€C0s27-Y31ESIN2T,
Ys3 = Y,7€C0s27-Y 3,€SIN27,
Ys4 = Y3€C0s27-Y 33€SIN27,
Ys5 = Y,9€C0s27-Y 34ESIN27,
Ys6 = Y30€C0s27-Y 35€Sin27,

VI1.4 RESULTS AND DISCUSSION

From fig(1) to fig(4), it is clear that the temperature decreases continuously with

increase in ¢ for all the values of elastic-viscous parameter 1, Reynolds number

R at phase difference T = /3 and 0 both.

The variation of the temperature distribution with { at £ =5, € =0.02, k =
1, R=7,m=10, P =6, E =5 for different values of 7; = 3, 4 ,5 when phase

difference T = /3 and 0 is shown in fig (1) and fig (2) respectively. It is clear

from fig (1) that the temperature increases with an increase in t; throughout the

gap-length whenever this behaviour is reversed in fig (2).
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from fig (1) that the temperature increases with an increase in 7, throughout the

gap-length whenever this behaviour is reversed in fig (2).

The variation of the temperature distribution with { at £ =35, € =0.02, k
=1, ,=3.m=10, P=6, E =5 for different values of R = 2, 3, 4 when phase
difference t = /3 and 0 is shown in fig (3) and fig (4) respectively. It is evident
from fig (3) that the temperature increases with an increase in Reynolds number
R throughout the gap-length. It is seen from fig (4) that the temperature
increases with an increase in Reynolds number R near the lower and upper disc
whenever in the middle of the gap-length this trend of variation of temperature

with R changes frequently.

The variation of the temperature distribution with { at § =5, € =0.02, k
=1,1,=3, P=6, E=35,R =7 for different values of m = 1, 8, 15 when phase
difference t = 7/3 and 0 is shown in fig (5) and fig (6) respectively. It is seen
from fig (5) that the temperature decreases continuously with an increase in . It
is also observed from fig (5) that the temperature decreases with an increase in
magnetic field parameter m near the lower and upper disc but in the middle of
the gap-length the branches of the temperature graph are very closed to each
other whenever their trend of variation of temperature with magnetic field
parameter m is approximately similar to that of near the lower and upper disc. It
is evident from fig (6) that die m = 1, 8 temperature decreases continuously
with an increase in { whenever for m = 15 temperature increases near the lower
disc and decreases thereafter upto the surface of upper disc. It is also clear from
this figure that the behaviour of temperature for different values of magnetic

ficld parameter m is just reversed to that fig (5).

The variation of the temperature distribution with {at ¢ =5. € =0.02, m

=10, 7,=3. P=6. E=5,R =7 for different values of k = 1. 2. 3 when phase
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difference T = n/3 and 0 is shown in fig (7) and fig (8) respectively. Atk = 1,
the temperature decreases throughout the gap-length whenever atk = 2 and k =
3. it increases near the lower disc and decreases rapidly thereafter upto the
surface of the upper disc. It is also clear from fig (7) that the temperature
increases with an increase in suction parameter k throughout the gap-length in

fig (8), the behaviour of the temperature is similar to that of fig (7).

The variation of the Nusselt number Nu, with & at E=5,7,=5, m = 10,
R=7,P=6, € =0.02. §,= 5, t = n/3 for different values of suction parameter
k =1, 3.5 1s shown in fig (9). It is seen from this figure that the Nusselt number
decreases with an increase in ¢ for all the values of k. It is also evident from this
figure that Nusselt number decreases with an increase in suction parameter k

throughout the gap length.

The variation of the Nusselt number Nu, with £ at E=5,7,=5, m = 10,
R=10,P =6, € =002, & =35, T = n/3 for different values of suction
parameter k = 1, 3, 5 is shown in fig (10). It i1s clear from this figure that the
Nusselt number increases with an increase in & for all the values of k. It is also

observed from this figure that Nusselt number increases with an increase in

suction parameter k throughout the gap length.

T=7/3 =0

( T1:3 ’l'1:4 1,'1:5 T1:3 1,'1:4 ‘l'1:5

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0.968509 0.968509 0.980498 0.996076 0.964325 0.970621

0.2 0.935000 0.935000 0.946522 0.954568 0.902526 0.910906

0.3 0.883913 0.883913 0.892623 0.889206 0.820106 0.829575

0.4 0.812628 0.812628 0.819084 0.808085 0.725491 0.736101

0.5 0.722827 0.722827 0.727551 0.713782 0.625122 0.636649

0.6 0.615324 0.615324 0.618742 0.606725 0.521453 0.533340

0.7 0.488578 0.488578 0.491888 0.486714 0.412581 0.424382
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0.8 | 0.340294 0.340294 0.345492 0.351409 0.293043 0.304244
0.9 0.172566 0.172566 0.179658 0.193232 0.156277 0.164810
1.0 |0.000000 0.000000 0.000000 | 0.000000 0.000000 0.000000
Table (1) variation of temperature Table (2) variation of temperature
distribution (T-Tp)/(Ts-Tp) at different distribution (T-Tp)/(Ts-Tp) at different
elastic-viscous parameter t elasticO-viscous parameter T
T =m/3 =0
{ 71=3 T1=4 T1=5 71=3 T1=4 T1=5
0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.834784 0.892147 0.918727 0.951933 0.964325 0.970621
0.2 |0.721537 0.813781 0.855260 0.894243 0.902526 0.910906
0.3 |0.635979 0.744163 0.791034 0.821796 0.820106 0.8299575
0.4 |0.558557 0.669559 0.716339 0.735955 0.725491 0.736101
0.5 0.476417 0.582464 0.627234 0.639469 0.625122 0.636649
0.6 0.383708 0.479966 0.522402 0.533610 0.521453 0.533340
0.7 0.281206 0.362904 0.401886 0.417359 0.412581 0.424382
0.8 0.175553 0.236260 0.268192 0.288555 0.293043 0.304244
0.9 0.077759 0.110196 0.129091 0.147049 0.156277 0.164810
1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table (3) variation of temperature Table (4) variation of temperature
distribution (T-Ty)/(T4-Tp) at different distribution (T-Ty)/(T4-Tp) at different
Reynolds number R Reynolds number R
T =m/3 =0
{ m=1 m=38 m=15 m=1 m=8 m=15
0.0 1.000000 1.000000 1.000000 | 1.000000 1.000000 | 1.000000
0.1 0.982854 0.976766 0.911736 | 0.981948 0988950 | 1.033528
0.2 0.948199 0.942952 0.883227 | 0.939399 0.946571 | 0.995134
0.3 0.893605 0.889640 0.852853 | 0.878626 0.883420 | 0.915020
0.4 0.819975 0.816478 0.799494 | 0.801946 0.804705 | 0.818469
0.5 0.728594 0.725358 0.721344 | 0.709738 0.711693 | 0.716547
0.6 0.619974 0.617091 0.619036 | 0.601956 0.604447 | 0.611948
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0.7 |0.493599 0.490560 0.489310 | 0.478647 0.482927 | 0.502840
0.8 |0.348183 0.343768 0.329261 | 0.339429 0.345832 | 0.379723
0.9 |0.182832 0.177244 0.150939 | 0.181974 0.188063 | 0.220365
1.0 | 0.000000 0.000000 0.000000 | 0.000000 0.000000 | 0.000000
Table (5) variation of temperature Table (6) variation of temperature
distribution (T-Ty)/(Ta-Tp) at different distribution (T-Ty,)/(Ta-Tp) at different
magnetic field parameter m magnetic field parameter m
T =m/3 =0
{ k=1 k=2 k=3 k=1 k=2 k=3
0.0 | 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 |0.968509 1.051032 1.133554 | 0.996076 1.077954 1.159831
0.2 | 0.935000 1.082812 1.230625 | 0.954568 1.094126 1.233685
0.3 |0.883913 1.077343 1.270773 | 0.889206 1.068056 1.246907
0.4 0.812628 1.032661 1.252693 0.808085 1.010188 1.212291
0.5 0.722827 0.951572 1.180317 0.713782 0.923628 1.133474
0.6 0.615324 0.835356 1.055389 0.606725 0.808828 1.010931
0.7 0.488578 0.6820085 0.875438 0.786714 0.665565 0.844415
0.8 0.340294 0.488107 0.635919 0.351409 0.490968 0.630527
0.9 0.172566 0.255088 0.337661 0.193232 0.275110 0.356987
1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Table (7) variation of temperature Table (8) variation of temperature
distribution (T-Tb)/(Ta-Tb) at different distribution (_T-Tb)/(Ta-Tb) at different
suction parameter m suction parameter m
NuUj Nup
{ k=1 k=3 k=5 k=1 k=3 k=5
0.0 -3.152272 | -4.926532 -6.700793 | 25.522789 | 27.378542 29.234295
0.1 -3.282830 | -5.057090 -6.831350 | 25.732852 | 27.588605 29.444358
0.2 -3.674503 | -5.448763 -7.223023 | 26.363043 | 28.218796 30.074549
0.3 -4.327291 | -6.101551 -7.875811 | 27.413360 | 29.269113 31.124866
0.4 -5.241195 | -7.015455 -8.789715 | 28.883805 | 3.0739558 32.595311
0.5 -6.416213 | -8.190474 -9.964734 | 30.774377 | 32.630129 34.485882
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0.6 |-7.852348 |-9.626608 -11.40087 | 33.085075 | 34.940828 | 36.796581
0.7 |-9.549597 |-11.32386 -13.09812 | 35.815901 | 37.671654 | 39.527407
0.8 |-11.50796 |-13.28222 -15.05648 | 38.966854 | 40.822607 | 42.678360
0.9 -13.72744 | -15.50170 -17.27596 | 42.537933 | 44.393686 46.249439
1.0 -16.20804 | -17.98229 -19.75956 | 46.529140 | 48.384893 50.240646
Table (9) variation of Nusselt number Table (10) variation of Nusselt number

Nu, at different suction parameter k Nuy, at different suction parameter k

Summary and Discussions

MHD is the study of the motion of the electrically conducting fluids in
the presence of electric and magnetic fields. When a conducting fluid is under
the influence of the electro-magnetic field, it behaves differently than without
electromagnetic field. This i1s mainly because of Lorentz force, which is a cross
product of electric field and magnetic field (Sir Flemming’s right hand law).
Even without the external electric field. flow pattern is altered due to the
presence of strong magnetic field. Magnetic field and the motion of the
conducting fluid particles generate electric current. This current and magnetic
field interact with each other, and change the flow motion, with a chain
reaction, all three fields (velocity, magnetic, electric) are interconnected and

reveal very unique features.

Heat transfer is that science, which seeks to predict the energy transfer,
which may take place between material bodies as a result of temperature
difference. In the simplest of the terms. the discipline of heat transfer is
concerned with only two things: temperature and flow of heat. Temperature
represents the amount of thermal energy available, whereas heat flow represents

the movement of thermal energy from one place to another place.
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In our present problem. we here study the flow pattern of an
incompressible second-order fluid between two parallel infinite discs in the
presence of transverse magnetic field when one is rotating (called rotor) and
other is at rest (called stator). A uniform injection is applied to the stator
forming the subject matter of the paper. The Rotor coincides with the plane z =
0 and the stator coincides with the plane z = d. Here the dimensionless
parameters T;(uo/pd®), Ta(uo/pd’) govern the effects of elastic-viscosity and
cross—viscosity, while the effect of the injection are governed by a non-
dimensional parameter k (=w,/2dQ) where w, 1s the uniform suction velocity

(negative for injection).

Chapter IT RESULTS AND CONCLUSION

The variation of radial velocity for different elastic-viscous parameter 7, =
-1.3, -2, -2.6; when cross-viscous parameter 7, = 10, injection parameter k = 5
Reynolds number R= 0.05, magnetic field m; = 5 is shown in fig (1). In this
figure. the curve of radial velocity w.r.t ¢ is bell shaped with maximum at
¢ = 0.5 approximately. It is also evident from this from this figure that the
radial velocity decreases with increase in 1, from { = 0.0-0.28, then it begins
increase with increases in 1, upto { = .72 and then decreases with increase in 1,
from C = 0.8-0.95. The value of radial velocity is approximately equal at {

=0.28 and { — 0.72 for all values of t, The point of maxima is in the middle of

the gap length for all values of elastic-viscous parameter T,.

Due to complexity of the differential equations and tedious calculations of
the solutions of the solutions, no one has tried to solve the most practical
problems of enclosed torsionally oscillating discs so far. The authors have
considered the present problem of flow of a non-Newtonian second-order fluid
over an enclosed torsionally oscillating disc in the presence of the magnetic

field and calculated successfully the steady and unsteady part both of the flow
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functions. The flow functions are expanded in the powers of the amplitude €
(assumed to be small) of the oscillations of the disc. The non-Newtonian effects
are exhibited through two dimensionless parameters 7,(=nuz nu;) and 72(=nus
nu ), where py, ps, s are coefficient of Newtonian viscosity, elastic-viscosity
and cross viscosity respectively, n being the uniform frequency of the

oscillation.

Chapter III. RESULTS AND DISCUSION

The variation of the radial velocity with { at 7,= 2, & =5.R =5, R,,= 0.05,
R; = 0.049, R, = 2. m = 2 for different values of elastic-viscous parameter 7,= 0,
-0.3 and phase difference 7= n/3, 2a/3 is shown in fig (1). For 7= n/3, the radial
velocity increases with an increase in {near the lower disc, attains its maximum
value at {=0.2then start decreasing, attain its minimum value at {=0.8 and
increases thereafter near the upper disc. It is clear that the radial velocity
increases with an increase in 7, near the lower disc then start decreasing with an
increase in 7, after the point of intersection near the upper disc. For T =2a/3. the
radial velocity increases with an increase in { and start decreasing thereafter at 7
=0 whenever at 7, = -0.3 it decreases first, attains its minimum value at { =
0.1then start increasing, attains its maximum value at { = 0.7and decreases
there after upto the surface of the upper disc. It is also seen from this figure that
the radial velocity increases with an increase in 7; upto the middle of the gap-
length and decreases thereafter with an increase in 7, upto the surface of the

upper disc.

The authors have considered the present problem of heat transfer in the
flow of a non-Newtonian second-order fluid over an enclosed torsionally
oscillating discs with uniform suction and injection in the presence of the

magnetic field and calculated successfully the steady and unsteady part both of
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the flow and energy functions. The flow and energy functions are expanded in
the powers of the amplitude € (assumed to be small) of the oscillations of the
disc. The non-Newtonian effects are exhibited through two dimensionless
parameters 7, (=ny/ pi) and 7o =nps/py), where py. po, ps are coefficient of
Newtonian viscosity, elastic-viscosity and cross-viscosity respectively, n being
the uniform frequency of the oscillation. The variation of temperature
distribution with elastic-viscous parameter 7,. cross —viscous parameter 7,
(based on the relation 7, =a 7,, where a = -0.2 as for 5.46% poly-iso- butylenes
type solution in cetane at 30°C (Markowiz*®*) Reynolds number R, magnetic
field m, suction parameter k at different phase difference 7 is shown

graphically.
Chapter VI. RESULTS AND DISCUSSION

The variation of the temperature distribution with { at R =7, P =6.{ = 5.
and e =0.02,. k =15.m = 10, E = 5 for different values of 7,= 1, 1.2, 3 whent =17
/3 and 27t/3 1s shown in fig (1) and fig (2 ) respectively. From fig (1) and fig (2),
the graph of the temperature variation is parabolic with vertex downwards. It is
also clear from these figures that the temperature is minimum at the middle of
the gap-length and remains negative throughout the gap-length except near the
surface of the lower disc. It is seen from fig (1) that temperature increases with
an increase in elastic-viscous parameter 7 in the first half and being overlapped
in the second half of the gap-length. It is observed from fig(2) that the
temperature decreases with an increase in 7, in the middle of the gap-length and

is being overlapped thereafter.

The variation of the temperature distribution with { at 7,=5,P =6, =5,
€ =0.02. k =15.m = 10, E = 5 for different values of R = 1, 1.5. 2 when 7 = /3

and 27/3 is shown in fig (3) and fig (4) respectively. From fig (3) and fig (4).

206



the graph of the temperature variation is parabolic with vertex downwards. It is
also evident from these figures that the temperature is minimum at the middle of
the gap length and remains negative throughout the gap-length except near the
surface of the lower disc. It is also. It is also clear from these that temperature

decreases with an increase in Reynolds number R throughout the gap-length.

The purpose of the present paper is an attempt to study the heat transfer in
the flow of a second-order fluid through a channel with porous walls under a
transverse magnetic field by regular perturbation technique. The second-order
effects on the temperature profile are illustrated graphically for different values
of the Hartman and Reynolds number. The results are also obtained for the

Newtonian fluid by taking the second-order parameter to be zero.
Chapter V. RESULTS AND DISCUSSIONS

(1) The values of the functions f;, f; and f, are identical to those obtained by

Sharma and Singh™®

(11) For 7, = 0 the results are in good agreement with those obtained by Terril

and Shrestha™.
(i11) For S = 0 the results are matching with those obtained by Agarwal’.

The variation of the temperature profile atP =04, =04, E= 1,5, = 1.1, = -1
for R = 0.01, 0.1, 1.0 is represented in fig (1). It is evident that for R = 0.1,
temperature increases with ¢ upto & = 0.7 approximately and thereafter
decreases very slowly and attains its value 1 at the boundary wall § = 1. At the
R = | the temperature graph is parabolic with vertex upward and attains its
maximum value at the middle of the wall gap-length with minimum at the
boundary wall § = -1. At R = 0.01, Temperature increases linearly throughout

the wall gap-length with minimum at the boundary wall £ = -1 and maximum
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at & =1 It is also clear from this figure that the temperature increases with an

increase in suction Reynolds number R.

The variation of the temperature profile at P =04, =04, E=1,§, = 1,
R =1, for; =0, 0.1, 1.0 is represented in fig (2). It is evident from this figure
that temperature graph is approximately parabolic with vertex upward and
attains its maximum value at the middle of the wall gap-length with minimum at
the boundary wall & = -1. It is also observed from this figure that the
temperature decreases with an increase in cross-viscous second-order parameter

T2.

The variation of the temperature profile at P =04,7 =04, E=1,R = 1,
7> = -1 for §;= 0, 1. 2 1s represented in fig (3). It is seen from this figure that the
temperature graph is approximately parabolic with vertex upward and attains its
maximum value at the middle of the wall gap-length with minimum at the
boundary wall & = -1. It is also observed from this figure that the temperature

decreases with an increase Hartman number S,.

The authors have considered the present problem of heat transfer in the flow of
a non-Newtonian second-order fluid over an enclosed torsionally oscillating
discs with uniform suction and injection in the presence of the magnetic field
and calculated successfully the steady and unsteady part both of the flow and
energy functions. The flow and energy functions are expanded in the powers of
the amplitude € (assumed to be small) of the oscillations of the disc. The non-
Newtonian effects are exhibited through two dimensionless parameters 7, (=nu./
i) and 7o( =nps/py). where py. po. s are coefficient of Newtonian viscosity,
elastic-viscosity and cross-viscosity respectively. n being the uniform frequency
of the oscillation. The variation of temperature distribution with elastic-viscous

parameter 7,. cross —viscous parameter 7, (based on the relation 7, =a 7, where
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a = -0.2 as for 5.46% poly-iso- butylenes type solution in cetane at 30°C
(Markowiz*®) Reynolds number R; magnetic field m, suction parameter k at

different phase difference 71s shown graphically.
Chapter VI. RESULTS AND DISCUSSION

The variation of the temperature distribution with { at R=7,P =6, =35,
and € =0.02, k =15.m = 10, E =5 for different values of r,= 1, 1.2, 3 whent =1
/3 and 27/3 is shown in fig (1) and fig (2 ) respectively. From fig (1) and fig (2),
the graph of the temperature variation is parabolic with vertex downwards. It is
also clear from these figures that the temperature is minimum at the middle of
the gap-length and remains negative throughout the gap-length except near the
surface of the lower disc. It is seen from fig (1) that temperature increases with
an increase in elastic-viscous parameter 7 in the first half and being overlapped
in the second half of the gap-length. It is observed from fig(2) that the
temperature decreases with an increase in 7; in the middle of the gap-length and

1s being overlapped thereafter.

The non-Newtonian effects are exhibited through two dimensionless
parameters 7;(=nu/ u;) and T(=nus/ u;), where p,. po, ps are coefficient of
Newtonian viscosity, elastic-viscosity and cross viscosity. n being the uniform
frequency of the oscillation. The variation of temperature distribution with
elastic-viscous parameter 7,, cross-viscous parameter 7, (based on the relation 7
| = AT, where ¢ = -0.2 as for 5.46% poly-iso- butylenes type solution in cetane
at 30° C (Markowitz’®*) Reynolds number R, magnetic field m, suction
parameter k at different phases difference 7 is shown graphically.

Chapter VII. RESULTS AND DISCUSSION
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From fig(1) to fig(4), it is clear that the temperature decreases continuously with
increase in { for all the values of elastic-viscous parameter 7,, Reynolds number
R at phase difference t = 7/3 and 0 both.

The variation of the Nusselt number Nu, with fatE=5,7,=5,m=10,R
=10,P =6, € =0.02,& =5, v = n/3 for different values of suction parameter
k =1, 3. 5 is shown in fig (10). It is clear from this figure that the Nusselt
number increases with an increase in ¢ for all the values of k. It is also observed

from this figure that Nusselt number increases with an increase in suction

parameter k throughout the gap length. e e % % %
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