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Abstract 

Cloud computing is a relatively new idea in which clients' usage of shared server 

capacity is constantly adjusted on the fly. Cloud computing is also known as utility 

computing. Customers are provided with these materials in an enhanced, more cost- 

effective, and readily accessible state upon request. Cloud computing, which is one 

of the primary trends in the information technology sector in the current day, has 

gained speed and begun to revolutionize the way in which businesses construct and 

provide IT solutions. 

The reduction in operating expenses is the most compelling argument for 

utilising cloud computing. These considerations may persuade Information and 

Communication Technology (ICT) companies to host their private data and mission- 

critical applications in cloud environments. Because of the complicated nature of the 

underlying cloud infrastructure, cloud environments are confronted with a significant 

variety of issues, including cyber-attacks, root-kits, malware instances, and 

misconfigurations, all of which present themselves as a serious threat to cloud 

environments. Because of these dangers, the cloud's overall trustworthiness as well 

as its reliability and accessibility have taken a noticeable hit. 

          When developing a model for cloud services, security is the first priority. On the 

other hand, a number of serious issues have shown that cloud systems do not provide the 

same level of security as one might anticipate they would. In addition, there is a lack of 

understanding regarding the provision of safe services using a cloud model, which is 

necessary in order to overcome such obstacles. This demonstrates the significance of 
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the fact that what constitutes the risk in the cloud model. One of the most significant 

dangers posed by a cloud model is that of cost-effectiveness. In most cases, cloud 

service providers cut costs by sharing infrastructure with several virtual machines that 

cannot be trusted. This sharing has also resulted in a number of difficulties, including 

the occurrence of co-location attacks. Cloud service providers protect their customers 

from attacks that take advantage of co-location by implementing the idea of isolation. 

Because of this, it is impossible for a guest VM to disrupt the operation of its host 

machine or the operation of any other guest VMs that are operating on the same system. 

Isolation of this kind is one of the primary pillars upon which the main public cloud 

providers have built their security infrastructure. 

         On the other hand, such conceptual barriers are not completely impenetrable. 

Numerous earlier research have shown how co-resident virtual machines (VMs) can 

be made vulnerable to assaults by leveraging shared file systems, cache side- channels, 

or by compromising the hypervisor layer with rootkits. These vulnerabilities have been 

demonstrated. Because an attacker can use one virtual machine (VM) to control or 

access other VMs running on the same hypervisor, the potential for cross-VM assaults 

is still present. As a result, numerous strategies for the strategic placement of virtual 

machines are developed in order to take advantage of co-residency. 

        While it is easy to see how co-location attacks could use shared memory and disc, it 

is not yet possible to demonstrate fine-grained cross-VM network-channel assaults. 

That's despite the fact that it's technically possible to do so. It is challenging to use 

current network-based attacks, such as ARP spoofing and DNS poisoning, against 

VMs since they take advantage of vulnerabilities in networking technologies. Virtual 
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machines can be compromised by exploiting these vulnerabilities. Most discussions 

of network-related issues revolve around the fact that, in comparison to non- 

virtualized settings, cloud providers isolate co-located virtual machines (VMs) further. 

This is because the attacker and the victim are typically placed on different virtual 

network segments. However, it has been demonstrated that this is not always enough 

to safeguard a vulnerable VM from having its traffic manipulated. 

 

           When a malicious virtual machine (VM) crosses the security perimeter of the 

cloud model, it can adversely affect the security and privacy of other co-located VMs. 

This thesis gives a complete method and empirical analysis on the development of co- 

location attacks. The development of co-location assaults, as opposed to the attacks 

themselves, is the subject of this thesis. In this case, it is crucial that the cloud service 

provider be able to securely send the data by limiting who can access it. 

 

Impersonation and privilege escalation are two novel attack models in leading 

cloud models that successfully breach the security perimeter of cloud models. The 

work that is presented in this thesis has the primary contribution of introducing these 

attack models, as well as proposing countermeasures that stop attacks of this kind. 

 

The impersonation and mirroring attack models are disclosed to be used in this 

thesis as the revealed attack model. This experimental arrangement is able to take 

advantage of the network channel provided by the cloud architecture and successfully 

redirects the network traffic generated by other co-located VMs. The primary 
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contribution that comes from using this attack model is the identification of a 

vulnerability in the modern design of network clouds that can be exploited by an 

adversary. Previous research has also utilised ARP poisoning and spoofing to abuse 

the network channel. All of these attacks have been thwarted, though, because current 

cloud service providers use stronger security measures than were standard in earlier 

architectures. In order to trick the cloud model's security perimeter, impersonation 

uses regularly occurring network devices that are already in use. 

 

   The 'privilege escalation' attack is the other contribution that has been presented 

as part of this thesis. With this exploit, we see how a non-root user can gain control 

of the management domain and elevate their privileges by using the RoP approach 

across the network channel. This gives the attacker the ability to compromise other 

co-located VMs without being explicitly granted access to them. In conclusion, a 

countermeasure approach that can stop any and all attacks of this kind has been 

offered, and it involves directly amending the open source code of the cloud. 
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Chapter-1 
 

Introduction 
Introduction 

 

The way businesses create and distribute IT solutions has been completely 

transformed by cloud computing. It is becoming the de facto standard for operating 

IT systems in businesses of all sizes. It has clearly progressed as a technology, with 

major players like Amazon, Microsoft, Oracle, and Google investing in the 

development of extensive cloud infrastructure for the purpose of providing services 

to customers. When and how to make the transition from on-premises to cloud- based 

IT infrastructure is a key concern for many businesses today. Cloud Industry Forum 

(CIF) [1] released a survey in 2016 indicating that 63 percent of UK businesses intend 

to move their whole IT infrastructure to the cloud within the next several years. CIF 

surveyed 250 senior IT experts and corporate decision makers in the UK and found 

that 78% of companies there are open to cloud computing. Since the initial study 

was done in 2016, its growth rate has averaged 53%, and by the end of 2018, 

analysts expected it to reach 85% [2]. 

Cost savings, adaptability, and the ability to activate resource allocation on 

demand, all thanks to virtualization technology, are three major advantages of service 

provisioning via cloud computing. Another perk of using cloud services is that 

businesses no longer have to invest heavily in their own IT infrastructure, instead 

only paying for the resources they actually utilise. [3–6]. Despite these 

benefits, Cloud computing introduces novel obstacles not seen in traditional 
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distributed systems, which necessitate considerable and in-depth study to identify 

and quantify real security and operational issues. 

Significance of the study 
 

Security is a critical issue for clients who are considering making the switch 

from traditional computing to cloud computing [4]. When users outsource 

their data storage to a cloud provider, they cede control over their data and 

network to the cloud provider rather than keeping physical possession of the 

data or the network themselves [17], [18]. As a result of the disparity between 

server and client processing power and reliability, the cloud is vulnerable to a 

number of risks [19]. Whether through network channel exploitation or 

privilege escalation, these dangers can put data availability and 

confidentiality at risk [20]. 

Security Problems in Cloud computing 
 

Thanks to the cloud's standardised infrastructure and data storage methods, it 

may be equipped with cutting-edge security measures. Because of the shared nature 

of the cloud's underlying infrastructure, its supplier can put extra effort into keeping 

data safe. Cloud computing's unique properties allow it to overcome a number of 

known shortcomings of conventional architectures, but its widespread 

implementation could usher in a host of previously unanticipated risks [7]. 

The CIA trinity of confidentiality, integrity, and availability defines cloud 

security, which is an essential feature of cloud service delivery platforms. 
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However, significant challenges towards guaranteeing security are presented by the 

inherent qualities of cloud platforms, such as elasticity, dynamicity, and scalability. 

To be elastic, a system must be able to "autonomously supply and de-provision 

resources in response to variations in workload" [8] so that "at any given time, the 

available resources fit the present demand as nearly as possible." It is challenging 

to deliver safe cloud services due to the dynamic nature of resource distribution 

necessitated by client needs. Because cloud service providers employ the insecure 

return- oriented programming (ROP) method to integrate more resources [9,15]. 

Multiple virtual machines and apps using the same physical infrastructure produces 

complex interactions. A threat actor can compromise other co-located VMs by 

using this sharing to perform side or network channel assaults. When this happens, 

other VMs in the same data centre may be at risk of having their data or resources 

compromised[9]. By centralising various tasks, cloud computing environments 

maximise the efficiency of their hardware. This, however, renders  them more 

susceptible to dangers such hardware and software failures, unexpected load swings, 

and network attacks [9,10], as well as those stemming from unpredictable demands 

on resources. Assorted heterogeneous platforms may deliver services in the cloud, 

and VMs share hardware. When it comes to computing, "the cloud" refers to a 

network of remotely located servers rather than a single physical location. Virtual 

machine (VM) infrastructure is vulnerable to exfiltration and assaults such 

distributed denial of service. The TCP/IP stack's built-in flaw [10] is the primary 

cause of these kinds of assaults. Several new cross-VM attacks that use 

polymorphism and metamorphism techniques to remain undetected have also been 
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released recently. Assist attacks on VMs [11, 13] are possible because of the ease 

with which information about a victim's virtual machines may be gathered and 

abused under an IaaS cloud paradigm. 

Research Methodology 
 

In order to determine where the weaknesses are in the current network and hypervisor 

architecture of the cross-VM cloud computing model, this thesis proposes an analysis 

approach and conducts an in-depth analysis of large-scale cloud computing 

environments. A variety of cross-virtual machine attacks that take advantage of the 

network architecture [30] and hypervisor [29] have already been discovered, though. 

The cloud platform's security perimeter, however, currently prevents such attacks. 

By offering cutting-edge service models or network layers, cloud service providers 

are constantly improving the security of their customers' infrastructure. Most issues 

arise from the fact that cloud providers use more isolation between co-resided VMs 

than in non-virtualized situations, which is the topic of this article. Because of this, 

virtual networks are often partitioned into "attacker" and "victim" zones. Threats can 

enter this secluded area as well. In the cloud architecture, malicious VMs can get 

through this isolation and start an assault. The privacy of the client or the disclosure 

of sensitive information could be jeopardised if a security flaw of this type were not 

patched. 

Statement of Problem 

According to research into cloud computing's security issues, virtualization allows 

numerous VMs to share the same physical infrastructure, which opens the door to  
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attacks including cross-VM network channel attacks and privilege escalation. An  

attacker with low privileges can gain control of additional co-located VMs through a 

privilege escalation attack, and sensitive customer data can be compromised 

through a network channel assault. 

Research Questions of the Study 
 

The primary objective of this study is to understand the effects of virtualization on 

cloud computing network channel vulnerabilities and to propose a mitigation 

approach for cloud security. These sub-goals constitute a more nuanced and targeted 

version of the overall aim. 

Research the cloud computing model's network architecture and its constituent parts 

to craft a zero-day attack model that takes advantage of a hole in the cloud computing 

model's network architecture. How many different parts of the network contribute to 

making the cloud more secure? is one of the fundamental research topics related to 

this objective. What does the structure of a network look like, and which parts of it 

regulate data transmission? 

Examine the pros and cons of using return-oriented programming (RoP) and similar 

techniques to exploit the hypervisor and gain root access to a non-root VM. 

With this objective in mind, some major research questions are: 

 

🞽 How can isolation in the cloud best be supported by which domain properties? 

 

🞽 How may ROP's unique insights aid in exploiting the hypervisor's domain 

isolation properties? 

🞽 When assessing the viability of the suggested method, what criteria and tools 
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should be used? 

🞽 In what ways might proposed countermeasures close potential security holes in 

the architecture? 

Propose a mitigation strategy after assessing the overall approach using real-world 

scenarios gleaned from the literature review. 

Objectives of the Study 
 

 The main objective of the research study is to suggest the appropriate methods 

and parameters to evaluate the proposed approach with the help of introducing 

two innovative attack models in leading cloud models. 

 Second objective is to suggest a solution or a way to counteract various attacks 

by directly altering the cloud model's open source code. 

Research Design 

This work uses a systematic approach to experimental systems research, with 

iterative development based on quantitative evaluation of functioning systems. 

Examine the cloud's network and hypervisor architecture to find potential weak 

spots. We create two zero-day attacks—TAP impersonation and mirroring and 

privilege escalation—to repeatedly test and disclose vulnerabilities in the 

architecture's network and hypervisor components. These architectures are studied 

using a large-scale analysis in order to make them more generally effective. 

Research Tools and Techniques 
 

The examination of a variety of conventional attack techniques was used to 

identify the attack strategies that are being suggested. While planning the proposed 
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attack tactics that will be employed, it is important to gain insight into the network 

and hypervisor architecture for the deployment setups, therefore it is useful to 

investigate existing attack strategies such as ARP spoofing, IP spoofing, poisoning, 

and Row Hammer attacks. This is because the proposed attack strategies will 

eventually be used. The investigation of these various assault techniques is motivated 

by the utilisation of numerous baseline attack models that are not only useful for 

diagnostic purposes but also for determining the degree to which they are accurate. 

The process of determining a definitive attack strategy begins with an investigation 

of the conventional techniques of attack, which is then followed by the presentation 

of a new model. After that, the new model is tested out on a live network and 

hypervisor architecture, and then it is put through additional examination through 

experimental methods for update and re-design. Following this iterative method and 

conducting more evaluations within the network and hypervisor architecture allows 

one to create a complete set of attack strategies. In order to determine whether or not 

the proposed attack techniques are viable options, a comprehensive experimental 

research is carried out. 

In addition, the methodology that we use in our research is based on a quantitative 

analysis of real-world scenarios conducted in a real-time context. On a large scale 

experimental setup, a quantitative analysis of two major IaaS providers is carried 

out. The first is an open source cloud platform known as OpenStack, while the second 

is a commercial cloud known as Oracle Ravello System. When performing the 

evaluation, multiple co-located virtual machines from a variety of categories are 

employed as a representative subset of the issues. The evaluation of the suggested 
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model makes use of the real-time network traffic generated by the co- 

located virtual machines (VMs), which operate using a variety of deployment 

configurations. 

 

Scope of the Research Work 
 

The following are some of the significant contributions that the work that is 

described in this thesis makes: 

The architectural understanding of a network system that is required to build a 

cross-VM attack using a mix of TAP Impersonation and Mirroring, as well as to 

conduct a probe on both a public and a private cloud computing model in order to 

determine whether or not it is feasible. When it comes to cloud computing, where 

multiple Virtual Machines (VMs) might share the same underlying physical 

computer, data privacy and security is a primary concern for both the cloud 

computing service providers and their end users. It is well known that multi-tenant 

virtualized cloud environments are vulnerable to side channel attacks. These kinds 

of attacks have been attempted to be mitigated by the security perimeter of cloud 

computing by limiting interaction between virtual machines using common 

hardware. In spite of this, there is now a hole in the model of cloud computing's 

network architecture that has to be investigated. By taking use of the best possible 

slice of the existing code (the RoP), we were able to design and implement a novel 

attack (privilege escalation), which we then put through its paces in an actual attack 

and evaluate empirically for efficacy. An untrusted third party can gain control of the 

tool stack (root domain) by executing ROP, connecting to the root domain through a 

malicious network channel, and then using the root domain's access privileges to 
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steal the tool stack. The number of network channels an adversary 

needs to accomplish this is minimal. A real-world cloud testbed analysis of the 

suggested assaults is necessary to construct effective responses against them. The 

research that has been done up to this point has proposed a cross-VM network 

channel detection technique [16], [17]. However, this kind of technique is vulnerable 

since attackers can undertake network channel attacks that get around these 

mitigation strategies and so launch attacks. The vulnerability lies within a network 

component, as was discovered by inspecting the insight network architecture of the 

cloud. As a result, a countermeasure method to these attacks has been developed, and 

it involves directly changing the open source network code. 

The following are some more contributions made by this thesis: A comprehensive 

investigation into the most cutting-edge methods of cloud assaults across a variety of 

industries, with a focus on how they operate in cross-VM environments. A thorough 

investigation on the role of partitioning and the domain isolation capabilities of 

hypervisors. experiential knowledge of the changes in network and hypervisor 

architecture that are caused by cross-VM attacks of varying types. 

Chapter Plan: 

 
The present study is presented in the following six chapters. 

 

Chapter – 1 is Introduction which presents an overview of cloud computing. This 

chapter also describes the Objectives and research methodology of the study which 

covers the objectives, Hypotheses, Significance of the study, Data sources and 

methodology, Limitations of the study and Tools for analysis. 

Chapter – 2 has been described the review of literature. This chapter contains 
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significant background  information for this  research and gives a  full literature 

review on assaults in cloud models. In particular, it analyses cross-VM attacks that 

can occur in cloud environments. 

Chapter –3 presents the architecture of the network and how the traffic flows on the 

network while using the cloud computing model. 

In Chapter 4, we see how a modern impersonation and mirroring attack is conceived 

within the context of a real-time assault on numerous cloud platforms at varying 

degrees of severity. The conclusion also includes an evaluation of this attack that was 

proposed. 

Chapter – 5 depicts the design of a novel real-time privilege escalation attacking 

technique is discussed. A combination of network channels and Return oriented 

programming (RoP) is at the heart of this method. An empirical analysis of the RoP 

attack is also provided. 

Chapter – 6 depicts the summary of findings, conclusions and suggestions. This 

Chapter presents a summary of the study that was carried out as well as directions 

for further work. 
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Chapter-2 

Overview of Cloud Computing and Review of Literature 

 
This chapter explores potential security threats and countermeasure solutions that 

are disclosed in cloud systems. It also gives background information on the work that 

is described in this thesis. Discussion and examination of existing literature on cloud-

based attacks and vulnerabilities revealed by researchers, as well as novel 

methodology and planned architectures of prior works, might mitigate such attacks 

and improve cloud security. Security threats were detailed, and the suggested 

methodology was compared to the existing state of the art. In addition, the evaluation 

of secure public, private, and commercial cloud platforms as well as previous 

research work that is connected to the suggested technique are discussed. 

The primary objectives of this chapter are twofold: first, to conduct an analysis of 

the current threat model; second, to evaluate the most recent attacks that can be 

launched against cross-VM environments; and third, to discuss possible defences 

against these threats. In order to put this work into perspective, the chapter also 

provides a more comprehensive analysis of the security concerns raised by 

virtualization and the solutions proposed to address those concerns. 

Cloud computing 

Cloud computing is a paradigm of computing that is based on the Internet and 

functions as a virtualization platform [18]. Customers have access to the centralised 
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computing resources and environments that are deployed by cloud providers under 

this approach. These resources are then made available to customers. Customers are 

able to easily and conveniently outsource the compute and data storage jobs that they 

need to cloud systems that have tremendous elasticity, are economically viable, and 

have a high level of energy efficiency. Cloud computing introduces new features such 

as on-demand computing resources and applications, resource pooling, and broad 

network access [19]. These new features are designed to reduce the ongoing 

operational costs of cloud providers and to ensure that customers receive services 

of the highest possible quality. On the other hand, these capabilities, in turn, pose 

new security dangers that could affect the computations and data of consumers. In 

this dissertation, a new attack model and countermeasures are designed to discover 

and eliminate security flaws in cloud computing. This chapter provides some 

background information as well as a description of the attack vectors that can be 

found in cloud systems. 

Definition of Cloud Computing 
 

The National Institute of Standards and Technology (NIST) [19] provides the 

following explanation of the concept of cloud computing: - Cloud computing is a 

model for enabling "convenient," "flexible," and "on-demand network access" to a 

shared pool of configurable computing resources (such as networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction. 
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Essential Characteristics 

According to the definition offered by the National Institute of Standards and 

Technology (NIST), cloud computing brings with it some new essential aspects in 

comparison to previous computing models: 

 

🞽 Resources available on demand: Cloud service providers make it possible for 

their clients to hire computing resources whenever they require them, which is 

referred to as "on demand." They provide the idea of a pricing model known as 

"pay-as-you-go," which bills consumers in accordance with the length of time 

they use computing resources and the total quantity of those resources. 

Customers can avoid the expense of purchasing and maintaining real servers 

thanks to this functionality, which can result in a significant reduction in the 

upfront infrastructure expenditures incurred by the company [19]. 

🞽 Access to a wide variety of networks :Cloud computing is a form of computing 

that is based on the Internet and can be accessed through various networks. 

Customers are able to remotely manage their computing activities and sensitive 

data storage in remote datacenters, where they also perform their computational 

jobs and store their sensitive data. Customers can access the cloud services 

regardless of where they are or what devices they are using thanks to this feature, 

which can provide a great deal of flexibility to customers. They also have the 

ability to remotely share cloud services with other users [19]. 

🞽 Resource pooling: In cloud computing, the computing resources of a cloud 

provider are shared across numerous tenants in a multi-tenant environment. 

This allows the cloud provider to service multiple clients while utilising a diverse 
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set of physical and virtual resources. In response to the fluctuating demands of 

the various clients, these resources are dynamically assigned and 

unassigned. There is a notion known as location independence, which states 

that customers often do not have any control or information regarding the precise 

location of the resources that are delivered to them, but that customers may be 

able to identify location at a higher level of abstraction (e.g country, state or data 

center). Storage, processing power, memory space, and bandwidth on a network 

are all examples of resources [19]. 

🞽 Rapid elasticity: Cloud service providers make their offerings to their customers 

scalable, which enables rapid elasticity. Customers have the ability to scale up 

their computing resources at any moment in response to an increase in their 

demand for computing power, or scale down in response to a decrease in that 

demand [19]. 

🞽 Measured service: When it comes to monitoring and measuring the delivery of 

services, different cloud service providers use various metrics. These measures 

make it possible to price the cloud services using a "pay as you go" model. Cloud 

providers may handle automatic on-demand scaling and failure recovery based 

on these metrics, which enables them to achieve resource optimization as well as 

analytical planning, which is another benefit of using cloud computing. Full 

transparency can be offered to both the provider and the client through the 

examination, measurement, and informing of resource utilisation [19]. 

Virtualization 

Virtualization is critical to the framework of cloud computing, which heavily relies 
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on it. Through the use of virtualization, it is possible to simultaneously operate many 

versions of the same or distinct operating systems on a single physical server [20]. 

Despite the fact that they share the same physical server, all of the operating 

systems (OS) have the same experience when it comes to the level of abstraction they 

use to make use of the machine. Each Operating System is Executed Inside of a 

Virtual Machine (VM). The implementation of virtualization requires support from 

both software and hardware. 

Software support 
 

A specialised piece of software known as the hypervisor or the Virtual Machine 

Monitor is responsible for implementing virtualization at the software level (VMM). 

This piece of software comes with a wide range of functions [20]. First, it virtualizes 

the physical hardware resources (CPU cores, memory, I/O devices, and so on) so that 

numerous VMs can run at the same time on one physical server. This allows for 

greater efficiency. Second, it provides a high level of isolation between the various 

VMs, such that each VM can operate in its own independent CPU context and 

memory area. Thirdly, it is responsible for managing the actions of VMs, such as the 

launch and termination of VMs, the suspension and resume of VMs, migration, and 

so on. There are two different kinds of virtualization [21]: 

• Full Virtualization operates at a privilege level that is higher than that of the 

operating system. It makes it easier for guest operating systems to run on guest virtual 

machines (VMs). The guest operating system is able to release privileged instructions 

and sensitive calls in a manner that is analogous to those operating on the actual 
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hardware. The hypervisor then converts these instructions into instructions that can 

be executed by the computer (a process known as binary translation virtualization), 

or else such instructions are directly dealt with by the 

hardware (Hardware Assisted virtualization). The hypervisor includes two primary 

features that are designed to facilitate and secure virtualized environments. These 

features are I protections of OS-Independent Storage Management to provide 

resources that are shielded from unauthorised access, and (ii) conversion of 

virtualized environments to allocate physical computing resources to virtual 

environments. Both of these features are designed to make virtualized environments 

more accessible and more secure. Despite all of these features, full virtualization still 

offers various benefits. These benefits not only benefit the consumers in terms of 

privacy and security, but they also benefit the cloud provider by reducing the cost of 

infrastructure. These features include: 

🞽 emulating new hardware to achieve improved reliability, security, and 

productivity; 

🞽 maintaining isolation between different users and from the control programme; 

 

🞽 sharing hardware resources among multiple users; and maintaining isolation 

between different users and from the control programme. 

• Para-Virtualization is an additional method of virtualization. This method requires 

the guest operating systems to be modified in order to make special hypercalls that 

enable them to connect directly with the hypervisor. This type of virtualization is 

known as "OS Assisted." The requirement that the guest operating system be 

specifically crafted to execute on top of the virtual machine monitor (VMM), the host 

programme that enables a single computer to support multiple configuration settings 



17  

that are very similar to one another, is the primary limitation of paravirtualization. 

Paravirtualization, on the other hand, removes the necessity for the virtual machine 

to configure privileged instructions. The process of setting up 

the instruction, which is used to manage unexpected or unallowable conditions, can 

be time-consuming and has the potential to have a negative influence on performance 

in systems that use full virtualization. An industry-leading hypervisor called Xen is 

being developed as part of an open-source software effort called paravirtualization. 

The hypervisor can be further divided into the following two categories: (1) A Type-

1 or native hypervisor is one that operates natively on the hardware of the host 

computer and is used to control privileged host virtual machines as well as other 

guest virtual machines. (2) A Type-2 hosted hypervisor is one that operates within 

an existing operating system (called host operating system). It does it from within 

the operating system that is serving as the host. The conceptual architectures of these 

two categories of hypervisors are depicted in Figure 2.1. Figure 2.1b draws attention 

to the fact that a new layer has been added to the type-2 hypervisor. 

 
Figure 2.1: (a) Type 1 Hypervisor (b) Type 2 Hypervisor. 
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Hardware Support 
 

Hardware, as opposed to software, is designed to help with virtualization and to 

enable the rapid rise of cloud computing. To begin, the proliferation of multi-core 

processors has led to an increase in the number of processing units that can coexist 

on a single server. This trend is expected to continue. This improves the cloud 

server's capacity to host more VMs at the same time, as well as the efficiency with 

which it uses its resources and its power consumption. Second, key companies that 

manufacture CPUs, such as Intel VT-x [22] and AMD-V [23], have begun to 

incorporate hardware virtualization extension features into their products. The 

management of virtualized functions is made easier as a result of these enhancements' 

introduction of fresh hardware components, instructions, and execution modes. For 

example, Intel VT-x has added support for a variety of new functions [22, 23]. I VT-

x is capable of enabling two different modes of operation: the VMX root operation, 

which is a mode with full privileges and is proposed for the hypervisor; and the VMX 

non-root operation, which does not have full privileges and is proposed for the guest 

VMs. (ii) VT-x is responsible for the implementation of a Virtual Machine Control 

Structure, or VMCS, which is used by each VM to manage and store the non-root 

activities and VMX transitions specific to that VM. (3) Intel VT-x makes use of the 

hardware known as Extended Page-Table (EPT) in order to allow the virtualization 

of physical memory, and (4) VT-x provides new instructions that are utilised 

specifically for the management of VMCS operations and memory. AMD-V also 

offers support for functions that are very similar. When compared with software 

solutions, the performance of hardware improvements like these can be greatly 
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improved upon, which can lead to a large increase in virtualization's overall 

effectiveness. 

Cloud Computing Models 
 

Deployment Models 

The provision of cloud services can be accomplished through a variety of cloud 

computing deployment techniques [19]. Different cloud environments and use cases 

are exemplified by the deployment models presented here. 

• Private cloud A private cloud model is one in which the cloud's underlying 

infrastructure is customised to meet the requirements of a single company. The 

computing requirements of these types of businesses have undergone dynamic shifts, 

or they require direct control of the computing environment. In most cases, the 

private cloud system is set up behind firewalls and is controlled by the company. As 

a result, it restricts access to only those users inside the organisation who have been 

given permission to use it. In addition, a private cloud can be set up either internally 

by the company that owns it or externally by a third-party cloud provider. 

• Community cloud: Cloud for the community In most cases, various organisations 

belonging to the same community and sharing a common interest would collaborate 

on the creation of a community cloud (security, compliance, authority, etc.). As a 

result of the fact that these organisations are responsible for an equal portion of the 

total cost, this model may be more cost effective than private clouds. A community 

cloud, which is similar to private clouds, can be installed and managed either on the 

local level by the community itself or on the global level by a third-party service 

provider. 
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• Public cloud : A public cloud is one that makes its service available to the whole 

public. In most cases, individual users will share the entirety of the system with other 

users. This kind of cloud model provides services based on the "pay as you go" 

model's guiding idea. Renting services can be paid for by any consumer who 

possesses a credit card that is still in good standing. Customers do not have direct 

control over the system when using this cloud model as it is configured. A public 

cloud model is typically managed and run by a commercial cloud provider such as 

Amazon Web Services (AWS), Microsoft Azure, Google Compute Engine, 

Rackspace, Oracle, etc. A private cloud model is typically managed and controlled 

by an internal IT team. 

• Hybrid cloud: The services of two or more clouds can be accessed through a hybrid 

cloud, which delivers the advantageous characteristics of different deployment types. 

Customers are able to more easily integrate, customise, or aggregate its cloud 

services with those of other cloud models thanks to this feature. Customers of a 

hybrid cloud, for instance, have the ability to combine the services of a private cloud 

with a public cloud. The organization's private cloud can be used to store sensitive 

or confidential data, while the organization's public cloud is used to access computer 

resources in order to execute an application that is dependent upon the data. This is 

due to the fact that businesses do not want to store their private information in a 

public cloud architecture. 

Service Models 

Cloud computing is a model for facilitating ubiquitous, appropriate, on-demand 

network access to a shared pool of configurable computing resources (such as 
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networks, servers, storage, applications, and services) that can be quickly set up 

and released with negligible administrative work or service provider collaboration 

[19]. Cloud computing is a model for facilitating cloud computing is a model for 

facilitating ubiquitous, appropriate, on-demand network access to a shared pool of 

configurable computing resources (such as networks, servers, storage, applications, 

This cloud model is constructed using three different service models as its 

foundation. The acronyms Software-as-a-Service (SaaS), Platform-as-a-Service 

(PaaS), and Infrastructure-as-a-Service are the names that the NIST gives to these 

three different types of standard service models (IaaS). At an abstract level, the 

designs of these three service models are depicted in Figure 2.2. As shown in this 

diagram, the cloud service provider has control over the components that are 

highlighted in grey, while the customers have control over the components that are 

coloured white. These services have been broken out into their own descriptions. 

 
Figure 2.2: Cloud Services Model 

 

• Software-as-a-Service Customers receive application software as a form of on- 

demand service from the cloud provider when using this approach of service delivery. 

The cloud service provider is responsible for managing the underlying 
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infrastructure and platforms, installing and configuring a variety of application 

software on the cloud servers, and providing consumers with network access to these 

software programmes. Customers of cloud services can be granted the right to access 

these apps directly through the use of programme APIs or web browsers if this 

strategy is implemented. It is not necessary for customers to configure or instal apps 

on their own personal computers at this time. Email, file storage, social networking, 

and other similar services are examples of well-known cloud applications. As a result 

of the incorporation of virtualization into the cloud computing architecture, the cloud 

provider is able to achieve scalability by simultaneously running numerous copies of 

the same application in distinct virtual machines. The cloud provider can run 

numerous distinct applications on the server at the same time [19] in order to 

maximise the use of the available resources. 

• Platform-as-a-Service Customers can execute their apps on this infrastructure 

thanks to the programming environments that are provided to them. In this paradigm, 

the cloud provider is responsible for the implementation and provisioning of 

computing platforms and environments to clients in the form of a service. These may 

include operating systems, programming libraries, and databases. Then, clients may 

directly design, develop, and run their own applications on this platform, without the 

difficulty of creating and maintaining the underlying infrastructure such as servers 

and operating systems. This allows customers to save time and money. The provision 

of context isolation and the allocation of resources based on the requirements of 

the application are both the 

responsibility of virtualization in cloud models [19]. 
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 Infrastructure-as-a-Service Customers do not need to purchase actual servers or 

network equipment since the cloud provider gives them access to a whole virtual 

machine that includes operating systems, central processing units, memory, 

storage, and networking. Customers are able to select the necessary computer 

resources when it comes time to launch virtual machines. These options include 

things like the number of CPU cores, the amount of memory, the disc space, and 

various operating systems. The cloud service provider will then allot these 

resources from the physical host servers and boot the virtual machines (VMs) on 

the host servers with the necessary parameters. Customers are able to remotely 

access their virtual machines (VMs) once they have successfully booted up and 

may then customise and run whatever software they choose within their VMs. 

Customers have complete control over their virtual machines (VMs), including 

the ability to suspend, restart, or terminate their VMs at any moment by making 

a request to the cloud provider during the life cycle of their VMs. In addition to 

this, a cloud provider might migrate the virtual machines (VMs) of its clients to 

different servers for the purpose of improving energy efficiency or fault tolerance. 

The live migration strategy is often the one that is used by cloud providers at the 

moment. Using this strategy, it is possible to transfer VMs without causing any 

disruption to their running processes. When using the live migration strategy, the 

downtime of migrated virtual machines is practically nonexistent, and there is 

almost no noticeable impact on performance. In addition, clients are in complete 

ignorance regarding the migration of their 

virtual machines [19]. 
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Cloud Computing Security 
 

The term "cloud computing security" refers to a comprehensive collection of 

techniques, tools, and procedures that have been compiled in order to safeguard cloud 

computing-related data, applications, and associated infrastructure [24]. When a 

corporation moves its mission-critical data to geographically spread cloud platforms, 

which are not directly under the control of that organisation, this is the primary worry 

of the company. In addition, typical information technology security procedures, 

security configurations, and firewall rules can all contribute to the reduction of the 

attack surface that is presented by the cloud. Confidentiality, integrity, availability, 

authentication, authorization, auditing, and accountability are the primary security 

principles that secure information assurance. Other security concepts include 

availability and availability. These ideas are broken down into their essential 

components in the following sections. 

 

Confidentiality 

Figure 2.3: CIA Triangle 

Figure 2.3 illustrates the concept of the CIA triangle, which refers to the three pillars 

of information system security: confidentiality, integrity, and availability. They are 

sturdy pillars that support the guarantee of cloud security [25]. 
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Confidentiality 

The prevention of unauthorised disclosure of information or data, whether on purpose 

or by accident, is what we mean when we talk about confidentiality. The areas of 

hidden channels, traffic analysis, encryption, and inference are all connected to the 

concept of confidentiality in cloud computing systems. 

• Covert channels: A covert channel is a means of communication that is both 

unlawful and unplanned, yet which still enables the transmission of information. It 

is possible to create covert channels by carefully timing messages or making 

improper use of storage mechanisms [26]. 

• Traffic analysis: Traffic analysis is another domain of confidentiality breach that 

can be accomplished by analysing the traffic patterns such as the volume, rate, 

source, and destination of message traffic. This can be done regardless of whether 

the message traffic is encrypted or in plain text. Traffic analysis is a type of analysis 

that can be accomplished by analysing the traffic patterns. There may have been a 

significant event if there was a sudden spike in the volume of traffic and the number 

of messages being sent. The objective of the mitigation technique for traffic analysis 

is to keep the volume of traffic at a rate that is essentially constant while also 

concealing the origin and destination locations of the traffic [27, 28]. 

• Encryption: Encryption is the process of concealing original messages within a 

substitute message so that even if the messages are intercepted by an unauthorised 

user, the original messages cannot be read by that user. The amount of work required 

to decrypt the message is wholly determined by the function of the 



26  

resilience and quality of the encryption method, as well as the strength of the 

encryption key [27]. 

• Inference: The ability of an entity to use information that is protected at one level 

of security and correlate it with other information in order to reveal information 

that is protected at a higher degree of security. The concept of inference is typically 

associated with database security [27]. 

Integrity 

 
Data must retain its dependability, correctness, and reliability over its entire life cycle 

for the integrity of the data to be maintained. The data must not be altered while it is 

in transit, and precautionary measures have to be taken to ensure that the data cannot 

be altered by unauthorised individuals. Controls over user access and permissions for 

individual files are included in these safeguards. In addition to these precautions, 

there needs to be a system in place that can identify any changes in the data that may 

have been brought about by events that were not brought about by humans, such as 

a server crashing. Checksums, or even cryptographic checksums, could be included 

in some data in order to verify their integrity. In order to bring the corrupted data 

back to its original, right state, you need to have backups or redundancy available. 

[28]. 

The model of information integrity that is provided by cloud computing necessitates 

the necessity of the following principles: 

Internal and external data consistency is essential, as is the prevention of data 

manipulation by unauthorised parties or software. 
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Availability 

The term "availability" refers to the upkeep of the cloud data centre or the hardware 

resources, the prompt completion of hardware repairs whenever they are required, 

and the upkeep of an operating system environment that functions appropriately. 

ensuring that there is sufficient bandwidth for communication and preventing the 

formation of bottlenecks. When there are major hardware difficulties, redundancy, 

fail over, RAID, and even high-availability clusters can help reduce the significance 

of the problem. In order to be prepared for the worst-case circumstances, you need a 

disaster recovery plan that is both quick and flexible. Random occurrences, like as 

natural disasters and fires, must be accounted for in any defences taken against the 

loss of data or interruptions in connections. A backup copy might be saved in a 

geographically remote location in the event that such an incident occurs; this would 

help prevent the loss of data. Security software such as firewalls and proxy servers 

can protect against harmful acts such as denial- of-service (DoS) assaults and 

network intrusions, which can cause downtime and make data inaccessible. In 

addition, this theory guarantees that the safety policies or models used by the cloud 

system must be in operational condition [28]. 

Cloud Security Services 

 

Authentication, authorisation, auditing, and accountability are some additional 

aspects that have a direct bearing on cloud system security. 

These elements will be discussed in further detail in the following sections. 
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 Authentication 

 

The validation of a user's identity can be accomplished through authentication 

by doing analysis or reconciliation. It does both, establishing the user's 

identification and verifying that they are who they say they are. For instance, a 

user must first provide their identity by entering their user ID into the computer's 

login screen before proceeding to input their password. The user's identity is 

verified by the computer system, which does this by confirming that the person 

providing the ID is the owner of the associated password [19]. 

 Authorization 

 

The term "authorization" refers to the rights and privileges that are granted to a 

person or process and which make it possible for them to access computer 

resources and information. After a user's identification and authentication have 

been verified, the authorization levels that a user possesses will determine the 

scope of the system privileges the user is permitted to exercise [19]. 

 Auditing 

 

Auditing and monitoring of the system are the two primary practises that 

companies implement in order to keep their operations running smoothly. 

Depending on the design and deployment of the cloud, either the cloud customer 

or the cloud provider (or both) can use these approaches to manage their cloud 

resources. An audit of a system can be a one-time or periodic event to evaluate 

the level of security. Nevertheless, monitoring refers to a continuing activity that 

observes either the system or the users, as the identification of 

intrusions [19]. 
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 Accountability 

 

Accountability refers to the process of defining the actions and accomplishments 

of a single person within a cloud computing environment and giving credit to that 

person for those activities and accomplishments. To perform review for the 

purpose of analysing previous proceedings and the personnel or processes linked 

with those procedures, audit tracks and logs provision accountability can be used. 

There is a connection between the idea of accountability and the principle of 

non-repudiation, which states that a person is unable to successfully refute the 

conduct of an activity [19]. 

Threats in the Cloud Computing Environment 

 

As was previously mentioned, cloud computing offers new features that make it 

easier for businesses and individuals to implement information technology 

infrastructure. On the other hand, these new traits, in turn, increase weaknesses that 

currently exist and introduce new vulnerabilities. The Cloud Security Alliance (CSA) 

has identified a number of well-known attacks that, when carried out in cloud 

environments, pose a threat to the computations and data belonging to customers 

[29]. On the basis of the attack vectors, these assaults have been separated into the 

several categories that have been developed. The abstract architecture of a cloud 

system is depicted in Figure 2.4, along with the many attack vectors that could be 

used. The letter "x" denotes the potential entry points for an attack, which are 

explained further below: 
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Figure 2.4: Potential Cloud Attack Vectors 
 

Potential Attack Vectors 
 

• Service interface: A customer must first create an account on the official website 

of the cloud provider in order to gain access to the cloud computing services. This 

is a prerequisite for using cloud computing. In order for the consumers to use the 

cloud services, they will need to log into their accounts. An adversary can now 

penetrate themselves within a cloud system if they have reached this phase. Because 

certain cloud systems lack a robust user identification and authentication mechanism, 

there is a significant risk that an adversary may take over a customer's account and 

gain access to or breach sensitive or private portions of cloud services. Second, users 

engage with cloud services through the utilisation of User Interfaces (UI) or 

Application Program Interfaces (APIs). An adversary might simply use the 
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vulnerabilities to hack credentials or compromise the cloud services if these 

interfaces are not configured correctly or securely [30]. 

• Networks: Customers and end-users can access cloud computing's services over 

networks. This is made possible by cloud computing. When networks are not 

adequately secured, it is possible for adversaries to steal sensitive data while it is 

being transmitted. In addition, attackers can perform a variety of assaults on 

networks, such as denial-of-service (DoS) attacks, which make full use of the 

resources provided by cloud computing systems. Because of this, clients or end- 

users are unable to access the data or apps as a result of these kinds of attacks [30]. 

• Cloud Administrators: In order to facilitate management of the cloud 

infrastructure and services, an administrative position, which is a privileged job, has 

been delegated to the cloud administrators. The following are some of the ways in 

which unreliable cloud administrators or administrators who have been compromised 

might be the primary source of severe security threats for clients. To begin, an 

unpleasant mistake or accident might take place within a cloud system, which can 

either result in the permanent loss of data or the disclosure of sensitive data belonging 

to consumers. Accidental deletion of data by cloud administrators or a natural or man-

made calamity, such as an earthquake or a fire in a cloud data centre, are examples 

of the types of mishaps and accidents that might endanger cloud storage. Second, an 

authorised user will always have complete access to the information that is kept on 

the cloud. It is simple for him to mishandle or exploit the sensitive information of 

clients that is kept in the clouds, or to breach the 

cloud's key management [30]. 
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Virtualized System 
 

Attackers can take use of system vulnerabilities within cloud servers or virtual 

machines to tamper with the servers or VMs in order to leak data, seize control of the 

entire server system, or disrupt service operations. These vulnerabilities can be 

exploited in a number of different ways. The inclusion of the hypervisor brings about 

an increase in the likelihood of an attack. The hypervisor is a piece of software that 

has an extensive amount of code, and as a result, it invariably has a number of flaws 

related to safety [31]. An attacker can use these defects to compromise the server if 

they are successful. In addition, the operating system, which is referred to as a guest 

OS, is loaded into virtual machines. Each guest operating system comes with its own 

set of vulnerabilities, which puts the safety of the information and services provided 

to customers at jeopardy. 

Shared Infrastructure 

 
A single physical server can host several tenants or virtual machines (VMs), all of 

which can share the same underlying physical resources. This capability is offered 

by cloud service providers. It is possible that new cross-VM attacks will emerge as 

a result of the sharing of hardware resources and components. Within this shared 

architecture, a malicious virtual machine (VM) might initiate an attack to ex-filtrate 

or leak sensitive data from other co-located VMs by leaking the data. It is also able 

to take advantage of shared resources by conducting a denial of service attack on the 

main server or host machines in order to prevent any other co-located VMs from 

gaining access to the physical resources. 
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Cloud computing services 
 

Cloud computing makes it possible to have flexible and inexpensive cloud services. 

However, users with malevolent intentions can use these services to execute attacks 

on cloud servers if they exploit them. These consumers have the ability to employ a 

huge quantity of cloud resources through either fraudulent use of payment cards or 

free trials of cloud computing services. Customers have the ability to launch attacks 

against other customers, businesses, or even the cloud provider by using the 

resources provided by the cloud. They are responsible for a variety of well-known 

assaults, such as Distributed Denial of Service attacks, large-scale email spam and 

phishing attacks, brute-force password guessing attacks, port scanning attacks, and 

many others. 

Even though cloud providers offer fine-grained services and strict configuration of 

security models, there is still the possibility for attackers to attack cloud computing 

models by exploiting shared memory, cache, network channel, covert channel, and 

other possible channels. This is the case despite the fact that cloud providers offer 

these services. In the following section, we will cover the well-known assaults that 

have been made against the cloud model, as well as the defences that have been 

developed for them. Cloud computing presents a number of security risks. 

Vulnerabilities in Cloud Computing 

Traditional security risks, such as the vulnerabilities in networks and the 

accompanying operating system attacks that are faced in local networks and systems, 

are equally applicable to the area of cloud computing. Cloud providers are constantly 

developing new and more sophisticated capabilities for cloud 
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computing, which might in turn result in the emergence of new security risks for 

cloud providers as well as customers. When employing computing resources and 

storage devices, first and foremost, customers should have faith in the cloud 

providers. Consumers are not responsible for the handling or management of security 

perimeters, resource allocations, or the management of cloud services. Instead, cloud 

providers exercise stringent control and monitoring over these aspects of cloud 

computing. Consumers are extremely reliant on cloud service providers for the safety 

of their private data and the calculations they perform. Second, cloud service 

providers typically offer multi-tenancy architecture, which helps to both minimise 

the cost of the infrastructure and make the most efficient use of its resources. 

Because of this capability, it is possible for one physical computer to host numerous 

virtual machines (VMs), each of which may belong to a different type of untrusted 

user. This facility has the potential to significantly boost the resource utilisation 

across the entire system and can also minimise the costs of operations. However, due 

to the fact that the cloud system's hardware resources and storage devices are shared 

by multiple users, this feature might also bring about new security risks for the 

system. Thirdly, in order to more effectively manage resources, cloud service 

providers employ a technique known as virtualization. This additional software 

layer has the potential to make systems more difficult to understand and may 

introduce new attack vectors. The purpose of this chapter is to conduct an analysis 

of the existing cloud vulnerabilities, as well as a discussion of the countermeasures 

that have been recommended in previous work with the 

purpose of reducing cloud-based vulnerabilities. The classification of these 
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vulnerabilities and the solutions to address them are, in general, determined by the 

attack vectors. 

Vulnerabilities in Virtualization 
 

The idea of virtualization, in which a single physical machine is assigned to several 

users at the same time, is the basis of cloud computing's underlying architecture. In 

circumstances like these, there is always the possibility of data being stolen [32]. If 

the virtual machine monitor is breached, the addition of a new layer to the 

virtualization process could result in the creation of a single point of entry for 

attackers. 

There are potentially three different types of vulnerabilities associated with 

virtualization, which are as follows: 

 OS level virtualization A single host operating system can support multiple guest 

operating systems, each of which can be controlled and monitored by the host 

OS. An attacker can take control of all of the guest operating systems that are 

running on the host operating system if they are able to compromise the host 

operating system in this type of configuration [33]. 

 Virtualisation depending on application workloads The host operating system 

sits atop the virtualization layer. Each virtual machine (VM) in this configuration 

has its own guest operating system, which allows it to execute a unique set of 

programmes. [33] Vulnerabilities in application-based virtualization are the 

same kind as OS-based vulnerabilities, hence both types of virtualization suffer 

from the same problem. 
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 The same thing as a Hypervisor, the Virtual Machine Monitor (VMM) The 

hypervisor is a piece of code that is built into the host operating system. This 

kind of code could have some native errors. This code is executed when the host 

operating system boots up in order to control numerous operating systems 

running on guests. If the attacker is successful in compromising the hypervisor, 

then any and all guest operating systems that are controlled by the hypervisor 

can be compromised [33]. The following is a list of well-known attacks on the 

hypervisor. 

VM escape strategies were defined in [33, 34] as being when an attacker produces a 

programme that executes a VM, the objective of which is to access the hypervisors' 

root privileges by breaking the isolation layer. This was described as the "attacker 

creating a programme that executes a VM." An adversary can gain access to the host 

operating system by utilising VM escape. This allows the adversary to sidestep the 

hypervisor layer as well as any other VMs that are operating on the same physical 

machine. Another difficulty that cloud enterprises face is the proliferation of virtual 

machines. The term "virtual machine sprawl" refers to the phenomenon in which the 

number of virtual machines that are operating in an environment that is virtualized 

grows as a result of the development of new virtual machines that are not required 

for the operation of the business. Because of this, the newly created virtual machine 

will be abusing the resources provided by the cloud [35]. 

Cloud computing, which may be accessible by way of the internet, is capable of 

running virtual machines. This suggests that the thieves could steal them from a 

distant location. The majority of hypervisors have the capability to save the 
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contents of the virtual disc for each VM in the form of a file. This makes it possible 

for VMs to be replicated and operated on other physical machines. This may be a 

useful feature, but it also poses a risk to the safety of the system. The virtual machine 

(VM) can be copied over the network or saved to a portable storage medium, 

allowing attackers to access data on their own system without having to steal a hard 

drive in person [36]. After an attacker has gained direct access to the virtual disc, 

they have a limitless amount of time at their disposal to use offline attacks to 

circumvent any and all security features, including passwords. The second security 

flaw of the virtual discs that was discussed in [36] is the possibility that an attacker 

may corrupt a file or edit it externally while the VM was offline. This indicates that 

the integrity of an offline virtual machine (VM) could be jeopardised if the host is 

not properly protected [37]. 

The hypervisor is responsible for managing the distribution of resources between the 

host machine and any machines that are running as guests. The ultimate objective of 

the attacker is to gain access to the host operating system with the same privileges as 

those of the hypervisor [38]. This will be accomplished by first compromising the 

hypervisor. 

Rootkit 

 
A rootkit is a tool that may be implemented at the software or application level and 

gives an unauthorised user the ability to take control of a computer system without 

being discovered. Within the realm of virtualization, cross-virtual machines have the 

ability to breach rootkits protecting other virtual machines, bring down 

hardware, and even gain access to confidential information. Rootkits have 
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numerous characteristics, one of which is the ability to hide malware. In addition to 

this, rootkits can hide malware from the analysis and detection methods that are used 

by defenders [39]. 

Rootkit in Hypervisor 

 

When virtualization is used, the new operating system that runs on top of the host 

OS assumes that it has full control over the hardware and resources at its disposal. 

On the other hand, there is no concept of the host's existence in the real world. A 

compromised hypervisor can also be used to provide a covert channel for executing 

illegal code into the system. This can be accomplished by using the hypervisor to 

construct a backdoor. An adversary can exert control over any virtual machine (VM) 

that is running on the host machine by utilising this method, and as a result, they can 

alter the actions of the system [33]. 

Taking Control of the Hypervisor 

 

If the rootkit is able to instal itself below the guest operating systems, then it will 

have complete control over the machine [40]. This is exactly what rootkits 

accomplish by utilising various modes of modern x86 architecture, as will be detailed 

in more detail below. The current x86 architecture is depicted in Figure 2.5, 

together with the level of root-kit privileges. 

• The User-Mode Rootkit and a few additional apps that run in user mode, rather 

than as low-level system processes, are located in Ring 3. These are able to assist in 

the accomplishment of goals by either taking the place of a computer's binary 

applications or by writing over a Dynamically-Linked Library (DLL) [39]. 

Hooking up with DLL and injecting it Utilizing DLL hooks allows user-mode 
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rootkits to take advantage of an API hooking. The Vanquish rootkit [41] is a user 

mode rootkit that is well-known for its ability to redirect requests to the Windows 

API in order to hide files, folders, and registry entries [42]. This can be achieved by 

injecting a malicious DLL into a target process. This DLL acts as a middleman for 

API calls, allowing it to filter requests for files, folders, or registry entries [39, 43]. 

 

 

Figure 2.5: Privileges Level of Root-kit 

 
• Kernel-Mode Rootkit These rootkits are able to exist in Ring 0, which has the 

highest privileges level in the operating system, by either adding some code or 

changing the basic operating system components, such as the kernel and associated 

device drivers. Ring 0 has the highest privileges level. 
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Rootkits that run in kernel mode exploit a wide array of vulnerabilities in both the 

operating system kernel and the security solutions designed to protect against it. 

Hooking Tables When it comes to modern operating systems, there are a number 

of different tables that can be used to perform lookups for a variety of purposes. 

These lookups can be performed in response to receiving an interrupt, or they can 

be used to determine the location of a specific system call (also known as a syscall). 

Changing the memory mappings within a target operating system can be 

accomplished in an efficient manner by modifying the memory descriptor tables [39]. 

Routine Detours A code segment can be overwritten with jump sequences by using 

routine detouring [43]. This can happen either at the beginning (pro-log detouring) 

or at the end (epi-log detouring) of the routine that is being targeted. This helps 

maintain the original size of the function that was adjusted, but it does not affect 

the checksum. The overwritten sequence has been copied at the right point in the 

malicious code segment in order to ensure that the routine functions as intended [39]. 

This was done in order to prevent any unexpected behaviour from occurring during 

the execution of the routine. 

Binary patching The binary patching technique allows for the direct replacement 

of the binary representation of the target routine, which frequently involves the 

replacement of system drivers or files in their entirety. Prior to the activation of the 

operating system (OS), this vulnerability is frequently exploited via influencing the 

boot process, namely the Master Boot Record (MBR) and the Basic Input/output 

System (BIOS). One such illustration is the Vbootkit, which takes advantage of the 
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method to generate a personalised boot sector code in order to circumvent the safety 

safeguards that are built into Windows [39], [44]. 

The Subversion of Virtual Memory This is a further extra sort of rootkit, which 

demonstrates subversion of virtual memory. ShadowWalker is the name of the 

rootkit, which has the ability to hook and circumvent the protections placed on virtual 

memory. When run, ShadowWalker changes the way read and write operations are 

carried out in order to conceal executable code [45]. The returned frame is changed 

to an uncorrupted one whenever a read or write operation is attempted on the hidden 

code region. This is done so that the normal code execution of the hidden code can 

continue uninterrupted. This is achieved by exploiting the split Translation Look, 

which is a side Buffer (TLB) of the x86 architecture, and de-synchronizing the two 

components in order to effectively filter executable code regions from the read/write 

accesses [39, 46]. The split Translation Look is a side Buffer of the x86 architecture. 

Rootkits that are Based on Virtual Machines Virtual Machine Based Rootkits 

(VMBR) function in a layer that is referred to as the Ring -1 layer. The major goal 

of VMBR is to enable the guest operating system to operate with Ring 0 capabilities, 

without having an impact on other guest operating systems operating at the same 

privilege level. 

Subversion of the VMM Rutkowska [47] was the first person to exploit this 

technique to circumvent the operating system in a more advanced manner. This is 

where it inserted itself beneath the target operating system by utilising these 

processor extensions and virtualizing the target operating system in order to control 
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any and all access to hardware peripherals, context switching, memory management 

operations, and other components as well [48]. Virtual Machine Monitor (VMM) or 

Hardware Virtualization Machine (HVM)-based rootkits are two common names for 

these [49]. 

• System Management Mode Rootkits Typically, these rootkits, known as SMMR, 

are found in Ring2. Their development is being done with the intention of providing 

support for low-level strategy, which will be produced using the following methods: 

Rootkits in the BIOS and the firmware This rootkit was able to infect the lowest 

layer of computer systems, known as the Basic Input/output System (BIOS), as 

well as the firmware for PCI devices [39]. 

Modifications to the BIOS and Bootstrap This attack takes place in real-address 

mode and serves as a first step in corrupting the operating system before it has even 

had the chance to be initialised [39]. 

Manipulation of the Firmware This attack makes it possible to remotely insert and 

execute malicious code within the memory region, which opens the door for Direct 

Memory Access (DMA) into the operating system that is being targeted [50]. Using 

this way to perform DMA enables the examination or modification of the operating 

system that is being targeted [39]. 

The Interface for Hardware These devices can be utilised to communicate with a 

system by means of hardware vectors that were not specifically intended for that 

purpose. [51] A project carried out at RMC is a good illustration of this type of 

thing. The project's primary focus was on leveraging unintentional USB channels in 



43  

order to establish two-way communications with a target system. This work made 

use of two different unintended channels for exfiltrating data. One of these channels 

was a keyboard LED channel, which used a combination of the Scroll Lock, Caps 

Lock, and Num Lock keys. The other channel was an audio channel, which uses 

waveform files to communicate data to the target operating system [52]. 

• Adaptive Changes to the Hypervisor When an initial hypervisor is remotely 

controlled or modified by an external attacker, the security provided by the original 

hypervisor is rendered meaningless. The latest generation of rootkits gives an 

adversary the ability to instal an additional layer of hypervisor between the 

computer's hardware and software. The original operating system is dynamically 

transformed into a virtual guest after the hypervisor assumes control of the machine 

and makes the transformation. This sort of hijacking does not require any restart, and 

therefore renders intrusion detection difficult [33], [37], [53]. This is in contrast to the 

software-based virtualization, which does require a restart. 

Virtual Machine (VM) Monitoring on the Host 

 

The host machine in a virtual environment can be thought of as the central nervous 

system of the system. There are various ramifications that make it possible for host 

machines to view and communicate with the execution of VM programmes. Because 

of this, the security of the host machine is an absolute requirement. There are a 

variety of virtualization methods that support the implications of the host computer 

interfering with the operation of VMs within the system. The following is a list of 

possible ways for the host to influence the VMs: 
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Table 2.1: Overview of Root-Kit Classification 
 
 

 
• The host is able to carry out the fundamental tasks associated with virtual machines 

(VMs), such as starting them up, shutting them down, pausing them, and restarting 

them. 
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• The host has the ability to monitor and alter the resources that have been allotted to 

the virtual machines. 

• The host possesses adequate privileges to monitor the programmes that are running 

within the VMs. 

• The data associated with the VM is eventually written to the virtual disc that has 

been assigned to it, and the host machine is able to read and write to this drive. 

Because of this, the host is able to do fundamental operations on the content of this 

data, such as copying, pasting, modifying, or simply viewing it. 

More crucially, all communications to and from the VMs are routed through the host, 

which, once again, enables the host to monitor all conversations that take place 

within its VMs. In situations like these, the security of every virtual machine (VM) 

that is operating on the host is put at a significant risk if the host is compromised in 

any way. 

Related Efforts 

 

Attacking from Different Channels While in the Cloud: 

 

All of these different kinds of attacks provide a general risk to a cloud model. The 

following are some well-known cross-channel assaults in a cloud model that are 

relevant to our research. 

Side Channel Attacks 

 

Side-channel attacks are a type of physical attack that belong to the family of physical 

attacks called side-channel attacks. In side-channel attacks, an adversary tries to 

steal important information from other virtual computers. The usage of 

virtualization can result in the introduction of new security flaws, such as cross 
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VM-Side channel attacks, which are designed to collect information from the 

computer that is the target [54]. The following is a discussion of some of the most 

well-known side channel attacks that have been discussed. 

An access-driven attack that takes advantage of shared micro-architecture 

components like caches is the type of cross-VM assault that is proven to be the most 

effective. During this phase of the attack, the adversary will run a piece of code on 

the target system that will carry out actions related to cryptography. This application, 

which is performed by the attacker, monitors how the cache is used in order to gain 

knowledge about the key [55]. 

It is feasible to launch a time-driven side channel attack when the total execution 

times of the cryptographic operations with a fixed key are affected by the value of 

the key. An adversary who is able to calculate such time can use this influence to 

their advantage and exploit it in order to statistically obtain information about the 

key [56] [57]. 

For the purpose of capturing a profile of the cache's activities, a trace-driven attack 

is deployed. According to this, an attacker can get access to a running profile in which 

cache activity is watched, then process the profile in order to extract the actual 

activity from the rest of the profile material [56] [57]. This is stated in both of the 

aforementioned references. 

Covert Channel 

Covert channels are a type of virtual communication channel that are used between 

entities in order to circumvent the rules that govern their contact with one another. 

Within the context of virtualization, these provide the attackers with new 
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communication options that are undetected by the VMM (Virtual Machine Monitor) 

security module [58]. Therefore, the development of security threats occurs within 

the framework of virtualization, and these need to be avoided in order to achieve 

the full advantages that may be obtained from utilising this technology. 

Researchers demonstrated a covert channel between virtual machines running on 

the Xen hypervisor in [59], and they did it again in [60]. This conclusion was reached 

due to the fact that any guest virtual machine is able to access the table that maps the 

machine address frames to the pseudo physical frames of the virtual machine. 

Rutkowska [61] developed a technique for TCP/IP steganography that she named 

NUSHU. This technique allowed sensitive data to be leaked from a system that had 

been compromised through network packets created from it. Through the use of 

TCP/IP header steganography, Murdoch and Lewis [62] have discussed the many 

different covert channel options that are available. It has been brought to light that 

this might be relevant within the context of the virtualized environment. 

In their paper from 1962, Murdoch and Lewis detailed the header fields that allow 

for steganography and established the innovative 'Lathra' approach for a covert 

channel that makes use of TCP ISN (an initial sequence number). It was also stated 

that an external warden, which is a programme or entity that can watch and analyse 

data transfer between two different computer systems or programmes, is unable to 

differentiate between an ISN generated by a machine and a manipulated TCP 

header. An external warden is defined as follows: Only by decrypting the message 
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with the key that was used to generate the ISN is it feasible to recover the original 

message. This covert channel can be established between VMs, and the VMM will 

be unable to determine its presence [59]. 

It was hypothesised in [59] that a timing covert channel, which can be used to 

communicate covertly between VMs and an attacker, can also be used to leak 

information from possible VMs. This was a possibility because timing covert 

channels can be used to communicate covertly between VMs and an attacker. It is 

necessary to send TCP packets from a virtual machine at varying intervals of time 

in order to send information secretly. When a TCP packet is sent during a particular 

time interval, the recipient will recover the message as bit 1; otherwise, the receiver 

will recover bit 0 [63]. 

It has been discovered that there is a new network-based covert channel that makes 

use of two sockets in order to send data in a covert manner. An adversary could utilise 

this to their advantage in order to steal information from a VM [59]. 

Indexes might hold a significant quantity of information that is pertinent to the data 

itself. They are generated when the service provider receives data from the users, and 

decides to build indexes in order to increase search performance. This causes the 

development of the indexes. Users are completely unaware that their data is being 

used in this manner, which almost certainly contributes to the disclosure of a great 

deal more information. The searcher will first query the index in order to receive a 

list of documents that are relevant to their query, and the index will then map each 

term to a collection of documents that include the phrase. After that, the 

index host is responsible for applying these policies for each searcher in order to 
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filter search results in an appropriate manner. Since only the indexing host needs to 

be contacted in order to completely execute a search, searches can be highly efficient. 

Hackers could cause a total and catastrophic loss of privacy if they gain access to the 

index host [64]. 

Assaults on Different Images 

 

An adversary can launch an attack against OS images in order to collect sensitive 

data from other guest operating systems and to cause the OS to fail. Attackers can 

still gain access to dormant VMs even if they are not actively being used. This is due 

to the fact that the backend data centre is always operational, and an offline VM is 

not deemed to be the same thing as a powered-off home computer. Second, in order 

to bypass legacy-vulnerable programmes or trapdoors, pre-built images need to be 

properly checked. This is necessary in order to ensure that no vulnerabilities are 

missed. For instance, Amazon Web Services (AWS) pre-built images save the SSH 

keys of their builders locally, which means that publishers have access to any and all 

servers that use these types of images [34]. 

The creation of a template image of an operating system (OS) by a cloud provider, 

followed by the cloning of that image to many machines, is a standard operation 

procedure in cloud computing. If there are any VM template images that are 

vulnerable, then it could spread to a large number of systems. An adversary can gain 

access to one of these VMs through rental, and once inside, they will be able to 

investigate any significant configurations, including administrator rights. Another 

significant concern that they have brought to light is the fact that a picture 
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can even be obtained from a source that cannot be relied upon, which can give an 

adversary back-door access [65]. 

According to the information presented in [66], the Guest VM carries the potential 

to bring down the Host OS as well as any other guest VMs that are hosted by it. 

Sharing virtual machine images on the cloud, as Modi et al. [33] detailed, presents 

a number of potential security vulnerabilities. The owner of an image's primary 

concern is its level of confidentiality, which includes factors such as the likelihood 

of unauthorised users accessing the image. The user of a picture is worried about its 

security, such as the possibility of a malicious image corrupting or stealing the user's 

own personal data. For instance, instances that are operating on Amazon's EC2 

platform are vulnerable to a wide variety of attacks, including signature- wrapping 

attacks, cross site scripting (XSS) attacks, and denial of service (DoS) assaults. These 

vulnerabilities make it simple to compromise these instances. Attackers are able to 

build, modify, and destroy VM images when they use these types of attacks. 

Additionally, they are able to change administrative passwords and settings that are 

put into instances using EC2 for S3 access. Before being uploaded, images of pre-

configured virtual applications and computers run the risk of being tampered with or 

given incorrect settings [67]. 

Attacks to One's Memory 

 

Attacking the actual hardware of a system, such as memory or storage units, allows 

an adversary to exfiltrate data. In this section, a variety of instances have been 

provided to illustrate how successfully attackers might activate different memory 

areas. 
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Once an attacker has managed to co-reside on the same physical computer as a target, 

the next step is to exploit the hardware resources and extract sensitive data through 

cross-VM assaults. This can be done once the attacker has successfully co- resided 

on the same machine. It does this by utilising a method for encoding information and 

then accessing the latencies of a shared L2 cache [56], [68]. This constitutes an abuse 

of the hardware. 

The malicious VM will first write continuous blocks of memory, and then it will 

release those blocks after it has finished writing. After some time, the attacker will 

release those blocks, and the host VM will then use its own instruction set to 

overwrite those blocks. One of the operational characteristics performed by the target 

is the manner in which those memory blocks are written to by the machine that is the 

target after the attacker has released them. The attacking VM will next attempt to 

reproduce the possible instruction set, check for any missing blocks of memory, and 

read back the identical instruction set [69]. 

An event channel functions in the same way as a signal channel in that it notifies 

parties involved in communication about the arrival of a new event. The data that 

was just written are described for the reader by the writer. Then, once a reader has 

finished reading it, it deletes the data and tells the writer that a new space is ready for 

the next input through the event channel. Lastly, the data can be retrieved again by 

the writer. Therefore, adequate security must be provided for the event channel; 

failing to do so will result in a breakdown of the entire communication system. It is 

possible that delivering incorrect information will result in the shared memory 

channel becoming out-of-sync [34]. 
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The grant table includes support for two distinct kinds of grants between several 

VMs. The first one is called page-flipping, while the second one is called page- 

sharing. The high frequency of hypercalls results in an unacceptable amount of 

performance overhead for the per-packet page-flipping method. As a result, the new 

communications do not include the ability to turn pages, but they do include a grant 

for page sharing. The technique that Xen uses to share memory operates at the page 

granularity level. The number that is used to identify shared pages is called a 

grant reference, and it is an integer. The hypervisor is responsible for storing the 

grants information, communicating it to the communication VMs by way of the 

event channel, and passing on the grant reference. When it comes to authenticating 

communication parties, the hypervisor will serve as the authority. For reasons 

related to performance, the system may, under certain conditions, give 

communication parties the responsibility of managing the grant table all by 

themselves. [34, 70]. 

According to Ranjuth [59], if a virtual machine (VM) is moved to a new host, 

the memory that was being used by that VM would be recovered by the Virtual 

Machine Monitor (VMM). In the event that a new VM is created on that VMM, there 

is a potential that the RAM that was being utilized by the previous VM will be 

allotted to the new VM. It's possible that this new VM is an adversary. As a result, 

the adversary has the ability to search through all of the pages in the memory for 

certain information such as passwords, session keys, and other elements pertaining 

to the initial VM. 
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When a VM is deleted or turned off, the information contained within the virtual 

machine runs the risk of becoming public. Following the destruction of a virtual 

machine or its subsequent shutdown, the memory of that machine might be allotted 

to a different virtual machine that operates on the same VMM [59]. 

Row Hammer Attacks 

 

The most recent DRAM chips have an enormous capacity and an extremely high 

density of memory cells. As a result, a memory cell may experience disturbance 

errors as a result of electrical interference from cells that are located nearby. Some 

data bits in the memory area, to which the opponent does not have access rights, 

can be flipped as a result of electrical interactions, and this is especially likely to 

occur when the adversary makes frequent and rapid visits to the DRAM with very 

specific patterns. Row hammer attacks are one type of vulnerability that can exist 

in DRAM hardware. 

Xiao and colleagues [71] took use of a memory flaw in order to launch an attack on 

a para-virtualized platform using a guest virtual machine. An enemy virtual machine 

(VM) maintained accessing certain data in the DRAM during the course of this 

attack in order to flip important bits of this VM's page table entry. When this is done, 

the entry in the page table leads to a phony page table, which prevents the hypervisor 

from observing or checking the real page table. The VM's virtual page is interpreted 

by the fake page table as a physical page that does not have any link with this VM. 

As a consequence of this, the attacker VM has the capability of stealing or otherwise 

manipulating the sensitive data stored on the co-located VMs. 
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Code Reuse 
 

Exploits that involve code reuse rely on code pieces called gadgets, which can be 

found in memory at specific addresses [23, 36, 39]. Code diversification and 

randomization techniques, also known as fine-grained address space layout 

randomization (ASLR) [105], can prevent code-reuse attacks by tampering with 

executable code at the function [13, 64], basic block [38, 118], or instruction [57, 87] 

level. This causes the precise location of gadgets to become unpredictable [72]. "just-

in-time" ROP, also known as JIT- ROP, is a method that was developed by Snow et 

al. [105] as a way to get around fine-grained ASLR for programs that have integrated 

scripting capabilities. JIT-ROP is a staged attack: first, the attacker takes advantage 

of a memory disclosure vulnerability to recursively read and disassemble code pages, 

effectively negating the properties of fine-grained ASLR (i.e., the exact code layout 

becomes known to the attacker); next, the ROP payload is constructed on-the-fly 

using gadgets collected during the first step of the attack. 

Denial of Service 

 
An assault known as a denial of service (DoS) poses a significant risk. Due to the 

lackluster authentication provided by the various communication protocols that are 

currently in use [33, 34, 72], this kind of attack poses a risk to both the privileged 

host OS and the regular guest OS. Attacks that use denial of service render other 

hosts unable to carry out their tasks in a timely manner. Sharing of hardware is 

another vulnerability that can be used to launch host-based denial of service attacks. 

Both the performance of the victim VM and the performance of the 
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adversary VM can be negatively impacted by the adversary VM's ability to cause 

contention over various sorts of shared resources. 

The central processing unit is the first resource that has been negatively impacted 

and is the primary focus of this discussion. It was indicated in Grunwald and Ghiasi's 

paper that it is possible to flush the shared processor pipeline; however, doing so will 

result in a performance hit for the victim. They were able to accomplish this by 

introducing de-normalized floating point numbers, which led to the creation of an 

underflow in the pipeline. Because of this, the pipeline needed to be flushed in order 

to deal with the exceptional condition. Zhou et al. [74] demonstrated a CPU resource 

attack, in which an attacker virtual machine (VM) can take advantage of the boost 

mechanism contained inside the Xen credit scheduler in order to improve its 

scheduling priority and acquire more CPU resources than are paid for. 

The memory system is the subject of the second applicable example. Varadarajan et 

al. [75] anticipated the resource-freeing attack, which is when an attacker 

deliberately increases the victim VM's use of one form of resource, such as network 

I/O, in order to force it to release other types of resources, such as CPU caches. In 

this type of attack, the victim VM is forced to release resources that it has been 

holding onto. Because of this, an attacker can exert more influence over a co- located 

virtual machine (VM) and utilise more of its resources. Grunwald and Ghiasi [73] 

looked at the effect of trace cache expulsions on the victim's execution while Hyper-

Threading was enabled on an Intel Pentium 4 Xeon processor. They 

found that a malicious thread can slow down a victim's performance by a factor of 
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10 to 20, which can have a significant impact on the application's overall throughput. 

The researchers Woo and Lee [76] found that regularly emptying shared L2 caches 

on multi-core platforms could cause a victim's processing speed to be slowed down. 

They investigated both the saturation and the locking of the buses that link the L1/L2 

caches to the main memory [76]. Contention attacks on the schedulers of memory 

controllers were researched by Moscibroda and Mutlu [77]. 

I/O resources and networking make up the third category of denial of service attacks. 

Contention for I/O resources is another factor that might be to blame for a victim's 

deteriorating performance. Bedi et al. [78] presented a network-initiated DoS attack 

for network resources. This attack would involve the attacker VM causing contention 

inside the Network Interface controller. The goal of this attack would be to make the 

victim's operation less effective. A method of reverse- engineering the I/O scheduling 

within the virtualization platform was proposed by Yang et al. [79] for disk resources. 

This method helps the attacker construct particular Denial-of-Service assaults on the 

disk I/O resources. A more effective adaptive attack was developed by Chiang et al. 

[80], which classified the victim's I/O consumption pattern and synchronized the 

assault phase with the victim. Cascading performance attacks were proposed by 

Huang and Lee [81], and they include an attacker VM consuming the I/O processing 

capabilities of the Xen Dom0. This causes the performance of the victim VM to 

suffer as a result. In a similar manner, Alarifi and Wolthusen [82] made use of VM 

migration in order to 

lessen Dom0's capacity for I/O processing. 



57  

The effect that it has on power is the final aspect of DoS that will be examined. An 

adversary may lessen the amount of power that is utilized by the host server in 

order to disrupt the victim's cloud services or perhaps the victim's entire server. Xu 

and colleagues [83] devised an attack that makes use of power over-subscription 

techniques; this causes harm to the datacenter. This method generates instances on 

the host server and runs power-hungry programs, which brings the server's total 

amount of available power up to its maximum level. As a result, it has an impact on 

the overall power consumption because it exceeds its levels. As a direct consequence 

of this, the power unit gives out, and the server turns off. 

Cross-VM attack 

Co-location Attack 

In a system that uses IaaS, a VM co-location attack poses a threat to the position of 

the victim VM, for example its host server, which the attacker is able to identify. 

When this occurs, the attacker launches their virtual machine (VM) on the same host 

server as the victim's VM. As a result, both VMs share the same hardware resources, 

including I/O and network devices. Attacks that take advantage of co- location are a 

requirement for attacks that target shared infrastructure [72, 84]. 

Researchers have already offered a variety of strategies that can be utilized to 

successfully get co-residency. The term "floater" refers to one strategy for 

establishing co-residency [85]. In order to start the hunt for the machine that is his 

intended target, the attacker will first generate a large number of instances in the 

cloud. These instances are known as flooder. Each flooder broadcasts its existence 

to a master host; the client, which is an adversary operating outside of the cloud, is 
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the target of the attack. After that, a string of signals is transmitted to every flooder. 

The flooder responds to these signals by injecting a network activity into the 

outbound interface of the physical host computer it is running on. After doing so, the 

client can test whether or not the two locations are colocated [85]. 

Ristenpart et al. [56] presented the first demonstration of a network-based 

methodology for initiating colocation attacks in a public cloud, such as Amazon EC2. 

An adversary can launch a large number of unneeded VM instances inside the same 

availability region as the victim VM, and then use a variety of methods to determine 

whether or not their VMs have been successful in co-locating with the victim VM. 

Executing the TCP SYN traceroute for the purpose of determining the network 

traffic's first hop (which is Dom0 in the host Xen server) of this VM and the victim 

VM is one of the ways for investigation that the attacker uses. Other methods include: 

It will be possible to determine whether or not they are co-located if his VM and the 

victim VM share the same Dom0 IP address. In addition, the attacker is able to 

determine the amount of time it takes for a network packet to complete a full circuit 

between his VM and the VM that is being attacked. A lower value implies that the 

host machine is shared by two virtual machines (VMs). The attacker can then verify 

the internal IP addresses of both his virtual machine and the virtual machine that he 

is attacking. Internal IP addresses that are numerically near to one another suggest 

that two virtual machines (VMs) most likely reside on the same physical server [86]. 

Watermarking is a simple signature measure that is used for identification reasons. 

 

It might be beneficial for post-hoc leakage point identification since it denotes the 
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origin of ex-filtrated content in a way that is not identical to any other source [87]. 

The attacker infiltrates the network activities of each of his malicious VMs while 

simultaneously measuring how well the victim VM performs on the network. The 

co-location of the malicious VM and the victim VM is confirmed when there is a 

delay in the network caused by the victim VM. This delay indicates that the 

performance of the victim VM has been negatively impacted by the malicious VM. 

A method for co-location that consists of two steps was proposed by Herzberg et al. 

[88]. The first thing the attacker does is determine the internal IP address of the 

virtual machine that they are attacking. The attacker will next configure a client 

computer to connect to the victim's web service using the victim's public IP address. 

For example, the attacker may download a file or a web page from the victim's server. 

An additional prober VM is used by the attacker in order to send a huge number of 

network packets to each and every conceivable internal address inside the range of 

the address block. If the client machine of the attacker observes that the performance 

of the victim has been negatively impacted by the prober VM, then the internal 

address of the victim VM is the one that is being flooded by the prober VM. The 

attacker then makes use of a Time to Live (TTL) scanner, using the victim's internal 

addresses to determine the number of hops that exist between his virtual machine and 

the one belonging to the victim. A zero TTL suggests possible co-residency. 

The DNS lookup method was utilized by Xu et al. [89] in order to determine the 

victim VM's internal IP address, which led to the subsequent confirmation of the co-

location through the use of two stages. In the initial step of the process, 
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implausible pairs of co-located VMs were pre-filtered out by inspecting the /24 prefix 

that was present in each of the internal IP addresses. If the internal IP addresses of 

two virtual machines do not share the same /24 prefix, then it is unlikely that the 

virtual machines are co-located. The second step is to construct a bus locking covert 

channel between each pair of virtual machines (VMs) so that the bus locking covert 

channel may be used to justify the co-location of the machines. If two virtual 

machines (VMs) are able to interact with each other over this hidden channel, then it 

indicates that the VMs are running on the same physical machine. Varadarajan et al. 

[90] used the bus locking covert channels as a means of analyzing the financial 

implications of co-location inside various public clouds. This was done by exploiting 

the fact that the buses lock themselves. 

Inter VM-Communication, or Communication Between VMs and Hosts 

Isolation is the primary benefit that may be gained from using virtualization. In the 

event that the settings for this feature are not adjusted appropriately, it has the potential 

to pose a risk to the cloud infrastructure. The virtualization feature known as isolation 

ensures that applications running on one virtual machine (VM) do not disrupt or 

otherwise interfere with those running on another VM. When it comes to virtual 

machines, isolation means that breaking into one virtual machine should not allow 

access to its co-located virtual machines within the same environment or even to its 

underlying host machine. This is an important point that should be carefully observed, 

so pay attention to it. 

A appropriate software that enables data to be exchanged between virtual machines 

 

(VMs) and the host is a shared clipboard that is contained within a virtual machine. 
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This application may also be regarded as a gateway for the transmission of data 

between several malicious apps that are running in VMs. It is possible for it to be used 

to "exfiltrate sensitive data to/from the host operating system" in the worst possible 

scenario. 

Through the use of virtual terminals, the VM layer of certain VM technologies is 

able to keep a log of screen changes and keystrokes. This log is used to successively 

issue the appropriate authorization to the kernel of the host operating system. Because 

these collected logs are maintained in the host, hosts have the ability to view these 

logs, including those that pertain to encrypted terminal connections that are taking 

place within the VMs themselves. 

Some virtualization circumvents isolation. The fundamental concept that underpins 

this line of reasoning is that it should be possible to run apps that were designed for 

one operating system on another operating system without making any adjustments. 

The proposed technique makes improper use of the security carriers that are present in 

both operating systems. They give the virtual machines unfettered access privileges to 

the underlying host's resources, including file systems and networks, in such a way 

that there is no isolation between the host and the VMs. This occurs in systems in 

which there is no physical separation between the host and the VMs. 

This type of assault is known as a guest-to-guest attack, and the communication that 

occurs between virtual machines (VMs) is referred to as guest-to-guest 

communication. In this scenario, the attackers use one virtual machine (VM) to access 

or control another virtual machine (VM) through the use of the same 

hypervisor. It is possible to carry out these assaults without compromising the 
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hypervisor layer. Shared memory, network connections, and other shared resources 

are all points of entry for a malicious virtual machine to gain access to other virtual 

machines [91]. For instance, if a malicious virtual machine (VM) discovers where 

the memories of other co-located VMs are situated, it may then be able to read from 

or write to that area, which may then cause it to interfere with the activities of other 

VMs. An attacking virtual machine (VM1) that is carrying out a guest-to-guest assault 

is able to get access to subsequent guests (VM2 and VM3). The attacker could or 

might not have permission to access other virtual machines (VMs), but in this example, 

it accesses VMs without permission [37]. 

Survey of the state of the art 

In this section, we will survey the state-of-the-art relevant work in the field of cross- 

VM attacks, specifically cross-VM network channel attacks for the purpose of data 

leakage or to elevate the privilege level of a non-root user. 

Vulnerabilities in Network channel 

Access to cloud services is gained through the utilization of ordinary networking 

protocols, such as Internet Protocol (IP), which are regarded as being unreliable [65]. 

The Internet Protocol, sometimes known as IP, is the protocol used to transmit data 

from one computer to another. For the purpose of communication, an IP address is 

given to each system. The Internet Protocols itself contain a number of flaws, some of 

which are going to be covered in the next section. The usage of the same Internet 

Protocol (IP) address by several users can sometimes result in those users gaining 

access to the resources of other users [33], [32]. The Address Resolution Protocol, 
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sometimes known as ARP, is a protocol that is used to map an IP address to a physical 

machine address that corresponds to it [92]. 

Within the context of cross-VM Address Resolution Protocol (ARP) assaults [93], 

the attacking virtual machine (VM) initiates an ARP spoofing attack by fabricating 

an identical IP address within the target VM and then sending an ARP packet to the 

virtual router. When the faked ARP packet is received, the virtual router will 

immediately update the routing table. As a consequence of this, any traffic that was 

supposed to be routed to the target VM is instead forwarded to the attacking VM, 

which can then choose to either modify the traffic or perform sniffing on it. The bridge 

functions as a virtual hub when the network configuration mode is set to bridge [93]. 

The virtual hub that allows communication with the network is shared by all VMs. 

By utilizing a sniffer tool like Wireshark, an attacker VM is able to monitor the activity 

on the virtual network [94]. When operating in router network mode [93], a router 

assumes the function of a virtual switch and makes connections to each VM through 

the use of a specific virtual interface. 

Poisoning of the Address Resolution Protocol (ARP) [95] is another example of a 

vulnerability that is regarded to be well-known for Internet protocols [96]. Due to the 

fact that ARP does not need Proof-of-Origin [33], a malicious VM is able to reroute 

all of the inbound and outbound traffic of a co-located VM to the malicious VM by 

utilizing this vulnerability. 

Return Oriented Programming 

Real-time assaults, often known as ROP attacks, come in a variety of forms and can 

exploit ROP systems. On the application layer, Adobe announced that a significant 
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vulnerability had been present in the Adobe Flash Player 10.0.45.2, as well as earlier 

versions of the software [97]. The use of ROP is required to exploit these 

vulnerabilities, which can also be found in Adobe Reader and Acrobat 9.x. This 

vulnerability, as a consequence, bypasses data execution prevention (DEP) [98], 

which is a security system that is implemented by Windows. As a consequence of this, 

the entire system is compromised, and it is possible for an attacker to take control of 

the system that has been compromised [99, 100]. Rootkits based on ROP have been 

implemented at the kernel level of the Windows operating system. When these rootkits 

are executed, they are able to successfully conceal harmful processes, files, and 

network connections through Windows. These rootkits are constructed using ROP 

techniques, which allows them to avoid being detected by kernel integrity protection 

technologies like SecVisor [101]. The ROP approach can be used to exploit the Apple 

iPhone, in which an unauthorized user installs applications or exposes a customer's 

SMS database [102]. This can be accomplished by exploiting the fact that the ROP 

technique is available. Cloud assaults that are already in existence are outlined in Table 

2.2. 

Analysis 

In this section, we took a look at cross-VM assaults to determine which areas of 

research are the least covered by this thesis. [32, 93, 103]. Different methodologies, 

such as ARP spoofing, sniffing the virtual network, and ROP, have been utilized by 

the researchers that worked on these studies. These attacks have two goals: the first 

is to reroute the network traffic of a compromised VM, and the second is to explain 

how an unprivileged VM can use the ROP approach to successfully modify the code 
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of the hypervisor, so increasing the privilege level that it possesses. The security 

perimeter of cloud computing prohibits such attack scenarios by establishing an 

additional layer of separation between virtual machines (VMs) or by preventing the 

execution of arbitrary code. Despite this, each and every one of these attack tactics has 

a few drawbacks. 

The most important things that were discovered about the general techniques are 

summarized as follows: there are a number of prospective pathways of research 

channels that have not been explored yet. Researchers have not shown any possibility 

for privilege escalation by applying ROP in conjunction with exploiting the network 

channel, nor have they shown any indication for the redirection of network traffic by 

exploiting the network channel through an impersonation and mirroring approach. 

Researchers have also not suggested any indication for the redirection of network 

traffic. Exploitation of network channel is the primary focus of this body of study for 

a multitude of reasons, including the following: I It is possible that it has the maximum 

potential to reroute the real-time network traffic of a target virtual machine (VM), as 

well as the potential to raise the privilege level of an unprivileged VM. (ii) Previous 

work merely redirected the network traffic and increased the privilege level by 

utilizing classic methods such as ARP spoofing and the'ret' command, both of which 

are straightforwardly defeatable in virtualization environments. The methodologies 

that have been suggested offer an in-depth investigation of the procedures that are 

involved as well as the consequences, in terms of both quality and quantity, that they 

have in a variety of contexts. (iii) If this strategy is successful, the outcome will be so 

powerful that it will be able to control the toolstack and redirect network traffic to a 

concealed point. Additionally, it will be able to handle other virtual machines. 



66  

Table 2.2: Overview of Cloud Attacks. 
 

 

Attack Description Ref. 

 
Co-location 

 

Flooder DNS lookup 

Watermarking 

[85] 

[89] 

[87] 

 
Virtualization 

OS level virtualization 

Application-based 

virtualization 

Hypervisor/VMM Rootkits 

[33] 

[33] 

[33] 

 
Side 

 

Time-driven Access-driven 

Trace-driven 

[57] 

[55] 

[56] 

 
Covert Channel 

TCP/IP Steganography TCP/IP 

Header Steganography Timing 

Channel 

[61] 

[62] 

[59] 

Images Image Tempered [67] 

 
Memory 

 

L2-cache Event Channel Grant 

Table 

[56] 

[34] 

[70], [34] 

DoS The illegal use of resources [72], [33], [34] 

 
Network Channel 

ARP Poisoning Sniffing 

Spoofing 

[33], [95] 

[93] 

[93] 

Row Hammer Attacks DRAM Hardware Attack [71] 

Return-Oriented Programming 

(ROP) 
ROP based rootkit 

[99], [100] 

[101] 

The anatomy of Cross-VM attacks is presented in Figure 2.6 

 
Countermeasures 

Reducing Side/Covert Channel Leakage 

Cloud providers have a few different options available to them when it comes to 

putting up a defense against side-channel cache attacks. The first technique for 

preventing cache sharing partitions the cache into distinct areas that are dedicated to 

individual virtual machines (VMs) or applications. This can be accomplished 
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through the utilization of either software or hardware-based methodologies. In terms 

of software, a number of academics have erroneously applied the page coloring 

strategy to cache partitioning [104], [105]. 

 
 

 

Figure 2.6: Anatomy of Cross-VM Attacks 
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The application known as STEALTHMEM was developed by Kim and colleagues 

[106], and they utilized it to partition the Last Level Cache (LLC). It provides each 

virtual machine with a certain amount of covert pages, which can't be modified in 

the cache. The researchers Liu et al. [107] took use of Intel's Cache Allocation 

Technology in order to prevent the attacker VM from exchanging sensitive data with 

the victim VM while the LLC was in session. In order to defend against side-channel 

attacks that are caused by cache exclusions, new hardware caches have been 

developed that partition the caches by ways or sets [108]. 

The second strategy incorporates randomization into the design of the system so that 

malicious actors do not gain any knowledge that could be beneficial to them. In the 

case of software, the measurements of the system clock are muddled up in order to 

disrupt the monitoring that the attackers are performing [109, 110]. Zhang et al. 

[111] launched Duppel, which adds noise to an attacker's observations while also 

periodically executing cache cleaning throughout VM's operations. New caches have 

been developed for the hardware that randomize memory-to-cache mappings as well 

as cache fetching [112, 108, 113, 114]. [112]; [108]; [113]; [114] 

Optimizing Resources 

The cloud provider is able to optimize resource consumption between multiple 

domains and decrease performance interference, both of which can help mitigate DoS 

assaults generated by contention for resources. In order to alleviate memory conflict, 

the method partitions memory resources among a number of different domains, such 

as the Intel Cache Allocation Technology [115]. In the event that 

there is contention for input or output (I/O), the cloud server is able to monitor and 
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control the bandwidth of I/O traffic in order to prevent resource depletion. Direct 

Device Assignment is another option that can be used by it to avoid I/O encroachment 

between each virtual machine [116]. These technologies have garnered widespread 

support from suppliers of public cloud storage. PAD was proposed by Li et al. [117] 

as a secure data center for power attacks in an over- subscription situation. This was 

in reference to the power resource. PAD will generate a virtual battery pool, which 

will then enable load sharing and control the amount of power that is utilized by each 

rack. In order to prevent a failure caused by insufficient power consumption, it has the 

ability to detect and cut power surges. 

Protection of VM images 

It is essential to protect VM images stored in the cloud application store and to 

eradicate any potential security flaws that may exist in the publishers or retrievers of 

those images. Mirage is an image management system that was established by Wei 

et al. [118] to deal with the many approaches of addressing the concerns regarding the 

security of VM images. (1) Access control: In order to keep a tight eye on who is 

retrieving the photos, Mirage implements access permission in the form of two distinct 

types: check-out and check-in. (2) Image filters: In order to protect critical information 

in the original photographs, Mirage employs specialized filters that can be applied to 

them. 

Network Defenses 

"CAPTCHAs" were implemented into the protocols by Georgiev and Shmatikov 

 

[119] in order to differentiate between human users and malicious machine scanners. 
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Eliminating the Hypervisor’s Vulnerabilities 

In previous research, a variety of approaches to strengthening the security of 

hypervisors were investigated. The first strategy involves the creation of brand new 

secure hypervisors. TrustVisor is a miniature version of the hypervisor that was 

described by McCune and colleagues [120]. Its purpose is to secure the dependability 

of sensitive data and codes stored within applications. In this, a new secure guest mode 

has been developed for running applications that are processed on the x86 hardware 

architecture. This mode supports virtualization in order to impose tight memory 

separation between the host operating system, the hypervisor, and any VM 

applications that are running. In order to carry out the integrity attestation process, 

TrustVisor further started a software micro-TPM instance for each application. An 

open-source eXtensible and Modular Hypervisor Framework was designed, 

configured, and validated by Vasudevan and colleagues [121]. [Citation needed] 

(XMHF). The XMHF is made up of a variety of XMHF main libraries in addition to a 

few XMHF associate libraries. In order to implement the hypervisor application's 

preferred security measures, the XMHF core and the fundamental functionalities 

offered by this framework can be extended by the hypervisor application. 

The second strategy that might be taken in this regard is to protect the hypervisors' 

data integrity. At runtime, Wang et al. [122] presented HyperSafe, a lightweight 

approach for verifying the integrity of Type-I hypervisors. HyperSafe was developed 

by Wang and his colleagues. Write Protect (WP) is a bit that is implemented by 

HyperSafe in order to protect hypervisor pages from being corrupted by malicious 
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applications. As a means of implementing the control flow of the hypervisor program 

at runtime, HyperSafe enables the configuration of a target table that includes all 

acceptable destinations for indirect control flow instructions. This table may be used 

to implement the control flow. HyperSentry was developed as a tool for calculating the 

integrity of the hypervisor while it is running by Azab and colleagues [123]. The 

Intelligent Platform Management Interface (IPMI) can be used by a remote client that 

needs to validate the hypervisor in order to initiate the server into the System 

Management Mode (SMM) and measure the hypervisor's code, data, and CPU state. 

This is done by initiating the server into SMM. Reducing the rights and capabilities of 

the hypervisors is a another potential path to take. 

During the runtime of the virtual machine (VM), NoHype [124, 125] is intended to 

remove the hypervisor, which will result in a decreased attack surface caused by the 

hypervisor. This is accomplished by NoHype through the pre-allocation of processors, 

cores, and memory for each VM during the VM formation process, as well as the 

allocation of virtualized I/O devices directly to VMs, which eliminates the 

requirement for a hypervisor to perform I/O emulation. Additionally, it alters the guest 

operating system such that it stores the settings of the host system in a cache for 

subsequent use. Self-service cloud computing was presented by Butt et al. [126] as a 

method for restricting the rights of the host virtual machine. It does this by dividing 

the administrative privileges between a virtual machine (VM) that is system-wide and 

administrative VMs that are client-specific. The system-wide administrative VM is 

unable to investigate the client VMs in any way, be it their 

code, data, or computations. On the other hand, the per-client administrative VMs 
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are able to carry out certain privileged system functions within their respective VMs. 

In this scenario, security and privacy are maintained even in the event that the host 

virtual machine (VM) is breached. 

Avoiding Co-location 

One of the most important aspects of virtualization is the utilization of common 

underlying infrastructure. One method for removing the risks associated with using 

shared infrastructure is to minimize or eliminate the possibility of co-residency 

between several virtual machines (VMs). Launching a static virtual machine (VM) 

or a dynamic virtual machine (VM) migration is one way to accomplish this goal. 

During the process of launching virtual machines (VMs), some cloud providers offer 

clients the option to select dedicated VMs. In this configuration, a customer's VM 

has exclusive usage of a dedicated server and does not have to split resources with any 

other VMs. In addition, new policies for the deployment of virtual machines have 

been revised, which has led to a reduction in the likelihood that an attacker and a victim 

will share the same virtual machine [127, 128]. Some academics have suggested that 

virtual machines (VMs) be migrated often in order to make it more difficult for 

attacking VMs to co-locate with the VMs they are assaulting [129–131]. Defeating 

Row Hammer Attacks 

Cross-VM Defending oneself against row hammer attacks can be accomplished by 
 

the implementation of either hardware or software solutions. Error-Correcting Code, 

sometimes known as ECC memory, is a type of memory that can be used in hardware 

to assure the correctness of one single-bit error and to detect two-bit faults. 

This makes it significantly more difficult to execute row hammer attacks [132]. Two 
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different approaches were proposed by Brasser et al. [133] with regard to software. 

The first possible remedy is to modify the system bootloader so that it can identify 

pages of vulnerable memory. Offline execution of row hammer exploitation tools is 

required in order to ascertain which memory pages may be vulnerable to row hammer 

attacks [134]. The boot loader will then signal that the potentially exploited memory 

pages are inaccessible during the boot process. This will ensure that the pages in 

question are not carried out during runtime. The second alternative is to extend the OS 

kernel in order to impose stringent isolation onto the physical memory of various 

system entities, such as user and kernel areas. This will allow for more memory to be 

available for usage by the system. This ensures that the memories of the various 

entities are physically separated by at least one row, which means that the memories 

of one creature cannot interfere with the memories of another entity. Irazoqui et al. 

[135] developed MASCAT, a static code analysis tool that can analyze an 

application's binaries and identify potential micro-architectural attacks. Some 

examples of these types of attacks are row hammer assaults. This tool uses an 

algorithm for signature-based detection to search binary files for implicit 

characteristics that micro-architectural attacks typically display in their design. These 

files are searched using a signature-based search. In order to carry out row hammer 

assaults, the adversary needs to consistently avoid the cache and access a 

predetermined spot inside the DRAM. Row hammer assaults use this as their signature 

move to identify themselves. 

Table 2.3 provides an overview of all of these attacks as well as the relevant 

 

defenses that have been tabulated for your convenience. 
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Analysis 

In this section, we took a look at the various defenses available against cross-VM 

assaults. There is a strong connection between this idea and a few of the 

countermeasures [126, 137, and 138]. In these investigations, the researchers have 

offered various solutions, such as giving user rights, combating ROP assaults, and 

using specialized virtual machines (VMs). Cross-VM assaults, network channel 

attacks, and ROP attacks are what these solutions are designed to defend against. All 

of these countermeasures, however, come with a few drawbacks, such as the fact that 

specialized virtual machines on cloud computing are not an option for cloud 
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providers. This is because cloud providers reduce their operational costs by sharing 

the same hardware across several VMs. Similarly, attacking VMs using privilege 

escalation is a way to get around the requirement of providing user rights to VMs and 

the need to defend against ROP attacks. The researchers have provided numerous 

countermeasures, but there is very limited study in offering the countermeasures of 

varied attack techniques. This is the lesson that was learnt from the overall approaches. 

Discussion and Findings 

In the previous chapters, we covered cross-VM attacks and the various 

countermeasures that may be taken against them in a cloud computing setting. This 

chapter will continue that discussion. These works are broken down into the many 

kinds of assaults that an attacker used and their respective summaries may be found in 

Figure 2.6. It has been shown in Figure 2.6 that researchers put in a significant amount 

of effort not only to exploit shared hardware like images, memory, and virtualization 

but also to exploit hypervisors by means of ROP and changes in memory codes in order 

to elevate their privilege rights. According to the literature review and the current state 

of the art, it is clear that there is a clear gap in the exploitation of network channel and 

ROP through combination of different approaches to redirect the network traffic of 

co-located VMs and to escalate the privilege level of non-root VMs. This gap is 

observable due to the fact that there is a clear lack of research in this area. On the one 

hand, the studies are totally focused on how the attacking VMs are making 

optimum use of or exploiting the shared 

resources to degrade or exploit the hardware performance. On the other hand, the 
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analyses completely disregard the impact that these security flaws have. On the other 

hand, theoretical approaches emphasize how important it is to cut down on these 

failures without providing any insight into the nature or scope of the problem that is 

being tackled. As a direct consequence of this, there is now a necessity for conducting 

in-depth security failure investigations in actual cloud infrastructures. 

Summary 

A complete literature overview of the state-of-the-art concepts of cloud computing, 

including their key properties, cloud computing models, security aspects, attack 

vectors, and countermeasures, has been provided in this chapter. It has also been 

demonstrated how these methods can be utilized to better research and quantify the 

security of cloud-based models of computer systems. 

The abstraction of the model of the cloud system has been presented, and the concepts 

of a cloud system being composed of multiple nodes that interact with each other 

through various interfaces within the system environment have been introduced. These 

concepts were presented after the presentation of the model of the cloud system. In 

addition, the idea of virtualization has been dissected in great depth, as has its system 

support in terms of both hardware and software. Cloud computing and the various 

service models it offers are also extensively covered here. 

The idea of cloud computing, as well as its definition, have been discussed, along with 

its primary vocabulary and distinguishing traits. In addition, the many aspects of 

cloud computing security, such as CIA, the various services, virtualization, and 

servers, have been dissected in great detail. 
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This article has introduced the idea of potential attack vectors in cloud models and has 

emphasized the important necessity for empirical study and modeling of cloud system 

security. A literature review of the current state-of-the-art of analyzing and 

characterizing Cloud attacks, including co-location attacks, side-channel attacks, and 

network-channel attacks, has been presented and discussed in detail here. This review 

includes attacks on network channels, side channels, and co-location. In 

conclusion, current holes in the state-of-the-art for these assaults as well as areas where 

the security of cloud system models might be improved have been brought to light 

during this study. The solutions to countermeasures for attacks that already exist have 

been offered. These solutions include optimizing resources, strengthening network 

defenses, cutting down on side-channel attacks, and developing a defense mechanism 

for row hammer assaults. 

Based on the findings of the analysis, we have come to the further conclusion that 

there is a compelling argument for future investigation into cross-VM assaults and the 

channels that are linked with them. In contrast to these ideas, there is a need for 

research that looks into cross-vm assaults from a ROP perspective. Therefore, 

additional study is needed to employ ROP and mimicking attacks, which will allow 

for the acquisition of new scientific insights through the examination of results in 

unconventional methods. 

The following chapter takes a deeper look at the general network architecture and 

hypervisor architecture of cloud models, specifically focusing on what the primary 

components of each are. To develop further the research topics and surrounding 

viewpoints for this thesis, it is necessary to understand how network traffic is routed 

through VMs so that it can access external networks and how hypervisors create 

domain isolation between VMs that are co-located with one another. 
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Chapter 3 

Architecture of Networks and Hypervisors in Cloud Computing 

This chapter presents a thorough analysis of the designs of networks and hypervisors, 

and it discusses the insights that may be gained by observing how these systems 

operate. To be more specific, the primary goal of this chapter is to conduct in-depth 

research on the distinctive qualities and primary components of network and 

hypervisor architecture in the context of network traffic flow and domain isolation 

attributes. This will be accomplished by analysing the results of these investigations. 

This chapter's overarching goal is to provide a more in-depth understanding of the 

cloud network system and the hypervisor in terms of those systems' primary 

components, how those components connect with each other, the flow of network 

traffic, hypervisor domains, the privilege levels of root and non-root virtual machines, 

and the domain isolation properties of those VMs. 

Cloud System Model 
This section provides an overview of the fundamental aspects of the cloud model, 

including its key components, the hypervisors that are utilised, the network and its 

isolation properties, the firewall rules, and the IP addressing methods, as well as 

their implementation. 

Nodes of Cloud Model 

The principal nodes of the cloud model are listed below. 
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Node Types: A hardware machine that functions with the assistance of an operating 

system and well-defined software that has been configured on it can be referred to as 

a node. The following are some node specifications, together with their respective 

explanations [139], at a high level of abstraction. 

Controller nodes : Controller nodes are the types of nodes that are in charge of running 

the management software services that are required for the cloud platform to function 

[139]. 

Compute nodes : Compute nodes are responsible for putting virtual machine instances 

through their paces. On this node, KVM serves in the role of the hypervisor. In 

addition to that, the provision of firewall services falls under the purview of this node. 

In a given arrangement, it is possible to run more than one computing node [139]. 

Network: The roles of such nodes include ensuring the establishment of virtual 

networks, which are required for the client to create either public or private networks, 

and connecting the customer's virtual computers with external networks, such as the 

Internet [139]. 

Modes of Cloud Configuration 

The cloud model is capable of being customised in three distinct modes, each of which 

is detailed further down. 

The Single Node Setup cloud model supports a range of various back ends and 

network configuration choices, and it provides a variety of distinct configuration set- 

ups to choose from. In a setup with a single node, only one server is responsible for 
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running all of the services and also controls all of the virtual instances [140]. The 

configuration of a single node is shown in Figure 3.1. 

 
Figure 3.1: Single Node Setup 

 

Multi-Node Setup (2-Node) 

 
Two node architecture separates the control and compute nodes. Each node has its 

own functionality and features. Multiple services are run on these nodes separately 

[140]. Double-Node setup has been shown in Figure 3.2. 

 

 

 

Figure 3.2: Double Node Setup 
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Multi-Node Setup (3-Node) 

 
Cloud model meets different needs by enabling several options such as compute, 

networking, and storage, thus it proves highly flexible. In three-node architecture, a 

controller and a network node can also be added as additional nodes in a more complex 

multiple node configuration [140]. Figure 3.3 shows the three-node setup. 

Network Services in Cloud Model 

 
The networking services that are provided by the cloud model are an independent 

service that configures a number of different processes across a variety of nodes. These 

services and processes communicate with one another as well as with other services. 

A neutron-server, which is a module built in Python that imports the Networking API 

and is responsible for delivering the tenant requests to various plug- ins for further 

processing, is the process that is in charge of directing the networking services. 

The main Networking components [141] are: 

 

Neutron Server (neutron-server and neutron-*-plugin) 

 

This service configures and executes on the network node to service the Networking 

API and its extensions. Additionally, it is accountable for the implementation of the 

network model as well as the distribution of IP addresses to each port. Access to a 

persistent database can be gained indirectly through the use of the neutron- server.This 

is possible through plugins, which connect with the database using AMQP (Advanced 

Message Queuing Protocol)[142]. 

Plugin Agent (neutron-*-agent) 
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Figure 3.3: Triple Node Setup 

 

It runs on each compute node and is responsible for managing the local virtual switch 

(vswitch) [143] configuration. This service involves message queue access and 

depends on the plugin used. Some special plugins like OpenDaylight(ODL) 

[144] and Open Virtual Network (OVN) [145] do not require any python agents on 

compute nodes. 

DHCP Agent (neutron-dhcp-agent) 
 

Offers DHCP services to tenant networks. This agent is responsible for managing 

DHCP configu- ration [146]. The neutron-dhcp-agent involves message queue access. 

L3 Agent (neutron-l3-agent) 
 

Includes L3/NAT forwarding that is used for external network access of VMs. it 

requires message queue access for message forwarding [146]. 
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Network Provider Services (Software Defined Networking (SDN) 

server/services) 
It offers additional networking services to user networks. These SDN [147] services 

may commu- nicate with neutron-server, neutron-plugin, and plugin-agents through 

network channels such as REST APIs. Figure 3.4 depicts an architectural and 

networking flow diagram of the OpenStack Networking components: 

 

Figure 3.4: Cloud Model Networking Components 

 

The installation of networking services for the cloud on physical servers 
 

A controller (the system that acts as the host), a network machine, and a group of 

compute machines that may create and run many virtual machines (VMs) are the 

essential components of a conventional cloud architecture. In order to put up a 
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conventional networking architecture, you will need to make use of separate physical 

data centre networks. To name a few of these: 

Management Network 
 

By utilising this network, the components of the cloud are able to communicate with 

one another. The IP address that has been issued to this network is able to 

communicate with other nodes within the nearby data centre. Their IP addresses are 

not viewable from a network that is external to their system, such as the Internet [148]. 

Network of Guests 
 

The communication of virtual machine data within the cloud platform is the 

responsibility of this network. The IP requirements of such a network are determined 

by the plug-ins that are utilised as well as the configuration of the network [148]. 

Linked to the outside world 
 

This network makes it possible for virtual machines to connect to the Internet and 

other external networks. It is required that the IP addresses that are issued to this 

network can be accessed from any location on the Internet [148]. 

API network 
 

An application programming interface (API) network is a specialised network that 

contains all APIs, including network APIs. The Internet should be able to access the 

IP addresses that have been assigned to devices in this network. The function of this 

is that of an external network. Constructing a subnet for an external network can also 

be done within this network (see reference number 148). 
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Figure 3.5 provides a visual representation of the Cloud Networking Services as well 

as their connectivity with the Management, Guest, External, and API networks. 

 

 

Figure 3.5: Cloud Model Networking Services 

 
Networking Services: During the preliminary architectural phases of the Network 

infrastructure, it is necessary to make certain that the appropriate level of technical 

skill is offered in order to contribute to the configuration of the physical networking 

infrastructure, classify appropriate security controls, and assess appropriate strategies. 

This is a requirement. Tenants are given the ability to construct their own virtual 

networks thanks to the addition of a layer in the networking infrastructure that 

consists of virtualized network services. In comparison to these virtualized services, 

the traditional networking counterpart services have reached a higher level of 

development and security up to this point. 

Isolation through the use of many techniques: VLANs, which adhere to the standard 

of IEEE 802.1Q tagging, and L2 tunnels that make use of GRE 
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encapsulation are the two mechanisms that can be provided by Cloud Networking in 

order to separate network traffic in distinct ways. 

Isolation utilising VLANs and L2-tunneling: The strategy that is used to separate or 

isolate network traffic is determined by the options presented by the configuration of 

the network, as well as the choices available to take use of those options. 

Virtual LANs, or VLANs for short, [149] maintain the isolation on a specific physical 

network by using IEEE 802.1Q headers with a predetermined value for the VLAN ID 

field (VID). The traffic on VLAN networks that share the same physical networks is 

segmented and isolated from the traffic on the other VLAN networks. Each every 

physical network that provides access to VLAN networks is regarded as a separate 

VLAN trunk that has its own set of distinct VID values. VID values are valid from 1 

to 4094. The OpenStack network needs will determine the degree of difficulty 

involved in configuring the VLAN network. OpenStack Networking requires a proper 

VLAN range to be allocated as well as each compute node physical switch port being 

allocated to a VLAN trunk port before it can make efficient use of virtual local area 

networks, or VLANs. 

L2 tunnelling: Network tunnelling encapsulates network combination with a unique 

"tunnel- id" that is used to recognise the network traffic linked to that network 

combination [150]. L2 network connectivity is not dependent upon the physical zone 

or underlying network configuration. [Citation needed] L2 network tunnelling: Traffic 

on a network can be made to flow through Layer-3 borders and avoid preset VLANs 

and VLAN trunking if it is encapsulated inside an IP packet and sent along 

the network. When data traffic on a network is tunnelled, an additional layer of 
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obfuscation is added. This decreases the reflectiveness of individual tenant activity 

from the perspective of someone monitoring the network. OpenStack networking is 

capable of supporting both advanced networking capabilities, known as GRE and 

VXLAN encapsulation respectively. The scope and scale of networks are two 

important considerations that should guide the approach choice for L2 isolation 

configuration. Tunneling is recommended in situations in which the network 

infrastructure will have a large number of L2 networks or will only have access to a 

limited number of VLAN IDs. In any of these cases. 

Additional Services for the Network: Isolation of the network Provide a description 

of how the network security and the security boundary are implemented. The 

following network services are available as an additional layer of protection for the 

design of the network, but they are not required. 

Access Control Lists: When setup with standard nova-network services, the compute 

node supports VM network traffic access controls [151] natively. Using iptable, 

traditional security groups in nova-network are configured to apply to all of the 

interface ports (virtual or otherwise) on VMs. The security perimeter gives 

administrators and virtual machines (VMs) the ability to identify the sort of network 

traffic and the directions (traffic travelling towards inward or outward) that are 

permitted to move through a virtual interface port. It is strongly suggested that the 

security groups be enabled in this service model before attempting to apply the 

networking services. 

L3 Routing and NAT: Cloud networking makes use of routers that are equipped 

 

with the capacity to connect many networks. These routers can also provide a 
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gateway that connects multiple private networks to a shared external network, such 

as the Internet. Network Address Translation (NAT) [152] capabilities are supported 

on ports (gateway) that connect the router to an external network by L3 routers [149] 

in a networking environment. This router supports floating IPs and SNATs (Static 

NAT) for all traffic by default. SNATs are a form of static network address translation 

that link a static one-to-one mapping between a public IP address on an external 

network and a private IP address. 

Firewalls (FWaaS): The ironic set of security characteristics requires careful 

management and application in order to be  effective. FWaaS is responsible for 

providing these characteristics, which are typically more extensive and comprehensive 

than the security features given by security organisations. [153]. 

Restricted Capabilities of the Networking Services 
 

The following is a list of the constraints that are commonly associated with cloud 

networking services. 

IP addresses Overlapping: In the event that a physical system (the host) does not 

support multiple namespaces, it is necessary to operate networking services such as 

DHCP and L3 agents on separate hosts. The fact that there is no segregation between 

IP addresses that are established by L3 agents and those that are created by DHCP 

agents is the primary motivation for this idea. In the event that support for network 

namespace is unavailable, the L3 agent has another constraint in that it can only handle 

a single router. 

Neutron agents are limited in the following ways: Forwarding was implemented in 

 

a lot of plug-ins by using the neutron-l3-agent library, but the neutron agents don't 
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support IPv6 forwarding. [154]. OpenStack Networking does not provide any services 

that would facilitate any flavour of NAT when used with IPv6, which is the primary 

limitation of neutron agents in the case of IPv6 forwarding. 

During the process of constructing the network, each of these networking services and 

plug-ins are utilised. For the purpose of conducting a study, the network architecture 

of cloud computing has been constructed so that various services and plug-ins are 

utilised extensively. 

Architecture of the Cloud Network 
 

Cloud providers offer extremely comprehensive security groups and rules, which may 

be applied to a broad variety of factors, including the incoming and outgoing traffic of 

users, virtual machines (VMs), containers, and apps. To provide the highest level of 

protection possible, individual virtual machines (VMs) can have their own security 

groups configured and dynamically deployed. Enterprises have the ability to react 

appropriately and respond to risks in a timely manner thanks to the control and 

flexibility of security groups. Each virtual machine (VM) has an IP address that is 

associated with a Vif. This IP address is only visible to the virtual switch, where all 

virtual machines (VMs) are linked to br-int, i.e. part of open virtual switch (OVS), 

using a TAP device that is formed immediately upon connection request. TAP stands 

for "tape-attached port," and it is an access path that allows network traffic to go from 

VM to VSwitch. Figure 3.6 demonstrates that the OpenVSwitches denoted by br-int 

and br-ex are the devices that are accountable for managing ingress and egress 

requests, respectively. Open-VSwitch is a type of virtual switch that is integrated into 

the hypervisor. It is capable of carrying out the duties of a Layer-2 switch and 

provides a variety of functions, including Access Control List, VLAN, and a great 
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deal more besides. VMs can take advantage of the subnet or private network that it 

provides [155]. 

A virtual switch functions in a manner analogous to that of a virtual network interface, 

which is created by joining one or more virtual Ethernet interfaces. A additional 

connection is made between the virtual switch and a virtual router using a Veth pair. 

The creation of a link between VSwitch and vrouter is under the purview of the Veth 

pair. Maintaining the routing table for incoming and outgoing traffic flow is one of 

the vrouter's primary functions. Routers are designed with a stringent setup of the 

firewall (FWaaS) that is responsible for implementing the security perimeter. The 

packet is then sent onward by the router to its subsequent hop, which is on the external 

bridge known as br-ex. A physical network interface known as eth0 is housed within 

the external bridge. This interface is responsible for finally passing network packets 

on to an external network such as the Internet. 

 

Figure 3.6: General Cloud Architecture 
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Vulnerability Discovered in the Architecture of Cloud Networks 
 

Individual network components and the functionality of those components, in order 

to determine the vulnerability using a top-down approach [156], have been 

explored. This topic was covered in Section 1.4. A virtual machine's (VM) virtual 

interface (Vif), which is connected to a tap device, is where an outgoing packet 

begins its journey. The TAP device is connected to a bridge device and serves as an 

integral component of the network. The bridge, also known as br-int, is the central 

component of the system to which all VMs are connected through TAP in turn. The 

br-int is responsible for performing VLAN tagging and untagging on the traffic that 

is arriving from and going to VM. To ensure that the network traffic from the 

several virtual machines that are hosted on the same physical hardware is kept 

separate from one another, a unique VLAN ID is given to each network. Virtual 

Machines cannot be given direct access to the network bridge if the security setup is 

in place. It makes it possible for VM to connect by way of a TAP device, as 

demonstrated in Figure 3.6. Therefore, the only method to attack or access the 

network is via compromising the TAP. This is also the only way to do either. 

Therefore, we study the TAP, their properties, and their connection with VM and 

br-int simultaneously, and the vulnerability that we find in the TAP is as follows: The 

cloud networking system makes it possible to link a virtual machine's TAP 

interface with a vswitch even if the backend of the switch does not have a private 

Ethernet interface. This makes it possible for VMs to communicate with one another 

and access the internet. 

Following the discovery of this vulnerability, an investigation was conducted into 
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the network designs of various cloud models and the cross-cutting vulnerabilities that 

were discovered in the OpenStack and Oracle Ravello network systems, both of 

which share the same network architecture. 

Oracle Ravello Networking in Addition to OpenStack 

 

OpenStack and Oracle Ravello offer security policies and groups that may be applied 

to parameters on incoming and outgoing user traffic, VMs, and containers. These 

features are available through OpenStack and Oracle Ravello. It is possible to 

construct and apply security groups dynamically, which will result in improved 

protection. Some examples of security groups include rules for a firewall, SSH 

control, and port bounding. Because of their adaptability, security groups enable 

businesses to react rapidly to a variety of threats. Figure 3.7 illustrates OpenStack's 

network architecture, which is carried out in practise by use of the following four 

virtual networking devices: 

An external monitoring device known as the Test Access Point (TAP) sits in- 

between the physical Ethernet card and each virtual machine (VM) that is hosted on 

the physical machine. 

A Veth Pair is a virtual network cable that connects a Linux bridge to a virtual bridge 

running on a physical machine. This cable is known as the Veth Pair. 

The Open Virtual Switch, often known as OVS, is the virtual bridge that is in 

charge of managing the flow of traffic coming into and leaving the network. It 

performs the duties of a Layer-2 network switch, delivering a variety of Access 

Control List and Virtual LAN (VLAN) features to VMs, in addition to the 

capabilities of delivering subnet or private network functionality. Each virtual 
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machine (VM) is connected to an OVS bridge interface and has an IP address that 

is visible to the virtual switch. The OVS is comprised of the following two sub- 

components: (1) br-int is in charge of VLAN tagging, which is the process of issuing 

VMs' network traffic IDs, and cloud providers use it to provide isolation between 

VMs. (2) br-ext is used to bridge the virtual bridge to the physical network device. 

The Linux bridge (L.B) is in charge of the communication that takes place between 

the br-int and the TAP of each virtual machine. It does this by recording the 

conversation in a MAC caching table, which stores the address and port number of 

packets that take place between the VM and the Ethernet card. This is done to stop 

packets with unknown IP addresses from flooding to all of the VMs. 

 

 

Figure 3.7: Networking Devices That Are Employed in the Transmission Of Traffic 
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A virtual machine (VM) generates and saves data on an associated virtual network 

interface card (VNIC), such as eth0. After that, the data is sent to the TAP that is 

located on the compute host. The typical function of a TAP is to provide an access 

point to data that is moving through a network. In addition, the TAPs are connected to 

the Linux bridges, which are responsible for transmitting the data to Veth Pair, which 

represents one side of the cable. Information that is transmitted to one side of Veth 

Pair can be received at the opposite end of the network. The other half of the pair can 

be found on the integration bridge, which is abbreviated as br-int. This bridge is in 

charge of the attachment of all of the VM's TAPs as well as the attachment of any other 

bridges that are present on the system. As can be seen in Figure 3.8, the integration 

bridge also makes a connection with the br-eth network. 

 

Figure 3.8: Function of br-int and br-eth 
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Validation of the Hypothesis As a proof of concept, we exploited the same 

vulnerability in Google and Microsoft Azure; nevertheless, we were unable to 

successfully complete the task. Because the successful exploitation of the vulnerability 

is contingent on the presence of an illegal TAP connection with the bridge, which is 

not granted in these cloud models due to the unique ways in which their internal 

network devices are configured, the vulnerability cannot be successfully exploited. 

Before allowing a connection of a VM's TAP interface with vswitch, these cloud 

models make certain that a connection of a VM's private Ethernet Interface with TAP 

has been established. They will only allow the connection to be established if the TAP 

is linked to the Ethernet. 

Architecture of the Hypervisor 

 

In the section that follows, the domain architecture of the Xen hypervisor will be 

explained. 

XEN 

 

Xen is a concrete hypervisor that operates using a microkernel technique. It provides 

functionalities that make it possible for numerous virtual machines (VMs) to run in 

parallel on the same physical computer hardware. It offers a high level of isolation 

between the several virtual computers that can coexist on the same physical hardware. 

It is licenced under the GNU General Public License version 2 (GPLv2) and is 

managed by Xen.org, which is a group that works across industries. Xen is composed 

of a variety of products and ongoing initiatives. 3.9 presents an illustration of the Xen 

architecture. 
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Figure 3.9: Xen Hypervisor Architecture. 

 

 

The Xen Project runs in a more privileged state of the CPU than any other application 

currently installed on the computer. Memory management, CPU scheduling for virtual 

machines, and the launch of the most privileged domain are the primary 

responsibilities of this component (dom0). Dom0 is the privileged domain, and only 

the virtual machine has access to the hardware directly. It possesses the authority 

necessary to control any and all domains that are not privileged (domUs). 

Domains with privileges and domains without privileges 

 

On Xen, it is possible to run a variety of virtual machines, also known as VMs, as well 

as domains. Following the loading of Xen by the bootloader at the beginning of the 

boot process, Xen then loads its primary domain, known as dom0. Dom0 is the only 

virtual machine that can contact the hardware and respond to device requests because 

Xen does not maintain any device drivers. Additionally, it is the only 
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administrative domain that is accountable for the creation, pausing, unpausing, saving, 

and eradication of other virtual machines (VMs) that are hosted on the same physical 

hardware. In contrast to this, other domains that dom0 launches are known as domU, 

which stands for unprivileged domain, and they do not have admin privileges of any 

kind. A domain structure of the hypervisor's code contains a Boolean value store, 

which is used to handle the data for the domain privilege. In the case of dom0, it is set 

to 1, whereas for domUs, it is set to 0. If you need to escalate the privileges of domU, 

you will need to change the assigned value for this domU from zero to one [103]. This 

will allow you to do what you need to do. 

Xen Vulnerabilities 

 

It is possible for a non-root user to become a root user of their own domain and get the 

ability to further sublet their resources if they have the wish to increase their resources 

in the event that the cloud expands. The use of return-oriented programming (RoP) 

makes the growth of the cloud model conceivable; nevertheless, RoP leaves the system 

open to assault. As was covered in section 1.4, we attempted to uncover a vulnerability 

in the RoP of the cloud system by implementing several ways in an iterative manner. 

However, due to the stringent cloud security settings, we were unable to do so. 

Because of the stringent security setups of modern cloud models, we have come to the 

conclusion that exploitation of ROP by itself does not present a vulnerability. Since a 

result, we combine the exploitation of ROP with network channel and determine that 

it is vulnerable, as the attacker can use this vulnerability to initiate an 

unlawful network connection with the root user. Therefore, following the successful 
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(illegal) connection, the attacker is able to elevate the privilege level of its VM by 

breaking the domain separation of hypervisors and controlling ToolStack, from which 

it is able to manage other VMs. This allows the attacker to administer other virtual 

machines. As illustrated in Figure 3.10, we analyse whether or not this vulnerability is 

exploitable within the OpenStack architecture. Xen serves as the underlying 

virtualization technology. 

 

 

Figure 3.10 shows the architecture of OpenStack Xen. 

 

The following is a brief summary of OpenStack with Xen architecture and its domains, 

which are referred to as Domain 0 (dom0) and Domain U (domU): Domain U 

Each guest VM in a virtualized environment runs its own copy of the operating 
 

system as well as its own applications. The hypervisor is capable of supporting two distinct 

types of virtualization modes, which are referred to as Hardware- assisted or 
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Full Virtualization (HVM) and Para virtualization (PV). Both of these modes are 

discussed in section 2.1.2. Each sort of guest can be employed concurrently on a single 

hypervisor without any problems. It is also feasible to apply techniques used for Para 

virtualization in an HVM guest, effectively forming a continuum between PV and 

HVM. This can be done through the use of hypervisor migration. This methodology 

is referred to as PV on HVM. Virtual machines that are running as guests are 

completely separated from the underlying hardware; in other words, they do not have 

permission to directly access either the hardware or the I/O functions. Therefore, 

another name for them is "unprivileged domain" (or DomU). 

The Area Under Your Control (or Domain 0) 

 

Domain 0 is a specialised Virtual Machine that is capable of accessing the hardware 

directly, managing all access to the I/O functions of the system, and interacting with 

the other Virtual Machines. These are some of the particular administrative privileges 

that this Virtual Machine possesses. In addition to this, it is in charge of managing a 

control interface that connects to the outside world and is used to control the system. 

Domain 0 is the first virtual machine that is started when the system boots up. 

Console Domain 0 is comprised of a specialised management tool known as control 

stack, which is also known as Toolstack. This tool enables a user to handle the 

creation, destruction, and configuration of virtual machines. Console Domain 0 is also 

known as Domain 0. 
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OpenStack Nova 

 

It executes the XenAPI library code of the domU process in order to communicate 

with the xapi process of the dom0 process. Python is the language used to write both 

sets of codes. Without ever leaving the host, it travels all the way from domU to dom0 

by way of the communication route provided by the Host Internal Management 

Network. Communication from dom0 to dom0 is accomplished through the usage of 

library code that is XAPI to XAPI. This is typically utilised in the event that there is a 

cloud expansion. 

XAPI 

 

A Xen-based hypervisor can be managed by Toolstack using XAPI, which is the 

essential component of Toolstack. In the world of KVM, the function of libvirt is 

comparable to that of XAPI's. API for XAPI was supplied by XenAPI. Because the 

compute driver in OpenStack communicates with xapi, it is possible to use any and all 

xapi servers with OpenStack [157]. 

API that was offered by XenAPI XenAPI. API. Python's standard library, which 

functions as a xapi client, also includes Xenapi [157]. 

XenServer 

 

XenServer is a virtualization platform that is open source. It enables all of the 

capabilities that are necessary for any server or datacenter to be implemented, 

including the Xen hypervisor and the XAPI for management [157]. 

Analysis 

Several conclusions have been determined as a result of the investigation of the 
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architectures that have been covered in this chapter. 
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First, after doing research into the architecture of the network and the flow of traffic 

in cloud computing, it was discovered that there is a significant risk to cloud 

computing if we did not prevent the penetration of any external device into the 

network. This was a discovery that was made. The unauthorised connection of a 

TAP device with an internal network vswitch was identified as the vulnerability that 

was present in leading cloud computing. The attacker can gain access to the cloud 

computing network system over this link and enter the system. After conducting 

research on a variety of cloud architectures in order to find this vulnerability, our team 

discovered that both OpenStack and Oracle Ravello are susceptible to the assault. As 

a proof of concept, we evaluated the identical vulnerability in Google and Microsoft 

Azure, but we were unable to find any evidence that it was executable in either of 

those environments. 

Secondly, various vulnerabilities have been found in the Xen hypervisor architecture 

in the event that the cloud expands. The cloud model can be expanded with the help 

of ROP. However, the attacker can acquire control of the root domain by utilising ROP 

in conjunction with the network channel to do so. Once in control of the root domain, 

the attacker can then manage other co-located VMs. 

In order to investigate the network architecture, the work that is presented in this thesis 

concentrates mostly on the OpenStack and Oracle Ravello cloud systems. OpenStack 

and Ravello provide compelling solutions today for the challenges of delivering 

flexible infrastructure for high-performance computing (HPC) and high- throughput 

computing (HTC). In addition, the development community is rapidly 
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expanding services to meet exponential future demands for these types of 

computing. 

Summary 
 

OpenStack's underlying system model is discussed in this section, one of the top cloud 

platforms, as well as the Oracle Ravello System were covered. This chapter will also 

cover the presentation of the key components that make up various cloud models. 

There have been multiple configurations of OpenStack demonstrated in detail, each of 

which demonstrates the connectedness of nodes despite having a distinct set up. The 

network channel, in addition to the services that run on networks, was also studied in 

considerable length. Virtual machines are required to maintain isolation while using 

shared hardware by virtue of these networking services. The implementation of 

security features in the cloud was mostly the responsibility of networking services 

such as VLANs, Access Control Lists, firewall rules, and network traffic routing. 

This chapter can be broken down into two distinct but equally important parts: the 

analysis and the learning. In order to choose a cloud architecture, these processes are 

carried out in a manner that is both incremental and iterative. The examination of 

various cloud deployment configurations, which are covered in greater detail later on 

in this chapter, makes up the bulk of the analytical phase. Following this, the learning 

phase will make use of the selected cloud deployment methods in order to construct a 

model for the prediction of system performance. 
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This chapter also includes an explanation of the default cloud network architecture, 

which is typically adopted by cloud providers at higher levels. Nevertheless, the 

internal system level configurations of each provider are distinct from one another. 

The network architecture of OpenStack and Oracle Ravello cloud systems has also 

been extensively discussed, elucidating the central networking nodes and the paths 

taken by the network traffic of several co-located virtual machines. 

It is up to the hypervisor to keep numerous virtual machines (VMs) completely 

isolated from one another. As a result, the study of hypervisors is also essential for 

readers who wish to understand what the primary functions of hypervisors are and how 

they maintain isolation between root and non-root virtual machines (VMs). What are 

the constraints placed on them? It has also been demonstrated how the Xen hypervisor 

can be configured to work with OpenStack, which illustrates the connection that can 

be made between various APIs and root and non-root VMs. 

This chapter delves deeper into the security perimeter configurations of cloud network 

architectures, the steps required to locate the vulnerability in cloud network 

architecture, the cloud models that are susceptible to this vulnerability, and the 

configurations of XEN architecture and the location of their vulnerability. 



105  

Chapter 4 

Cross-VMN Channel Attacks Using Spoofing And Tap Impersonation: Defenses And 

Countermeasures 

 
As was covered in chapter 3, network planning is an essential part of cloud 

computing, and virtual machines that are co-located must have their network traffic 

routed through various devices that are configured according to the architecture of the 

network. When companies are considering moving their operations to the cloud, one 

of their key concerns is the protection of their customers' data and privacy. This study's 

objective is to analyse the consequences that virtualization has on network security 

vulnerabilities in cloud computing and to report its findings. There is a risk of side 

channel attacks when a virtual machine shares its hardware environment with other 

virtual machines that are physically located in the same physical location. The 

existence of such problems has been brought to light by a number of researchers, 

including how side channel attacks on shared hardware enable attackers to exfiltrate 

sensitive data between co-resident virtual machines (VMs). These side channels 

perform the function of a security gateway between the users and the attacker. If a 

malicious user is able to successfully exploit these side channels, they will have the 

ability to spy on the data of other virtual machines. As a consequence of this, cloud 

providers make an effort to handle this kind of problem by ensuring the logical 

segregation of resources using an internal virtual network that connects numerous 

virtual machines (VMs). The use of virtual networks is critical to guaranteeing that 
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one virtual machine will not disrupt the operation of other virtual machines (VMs) 

running on the same host. 

At this time, there is a significant dearth of empirical research that investigate 

network assaults and the various countermeasures and solutions available to defend 

against them. The current work is entirely focused on IP, ARP sniffing, and spoofing, 

all of which have the potential to compromise the co-located virtual machine (VM) 

network traffic by redirecting it to some destination point; however, such attack 

techniques have been controlled by countermeasures. The currently available works do 

not utilise network design by means of an internal regular device that is responsible 

for the transmission of data and the connection of nodes. In addition, the 

methodologies that are currently in use do not thoroughly research the utilisation of 

network isolation in cloud computing, nor do they offer a comprehensive way of 

network traffic analysis that is able to quantify and extract empirical findings. 

Researchers and providers of cloud services may find this to be of practical use. This 

chapter offers the study and analysis of attack design by leveraging the network 

architecture of cloud computing. The following are the significant contributions that 

this study and analysis has made: This internal virtual network, in turn, exposes further 

vulnerabilities in virtualization by mounting cross- VM assaults on a network 

channel. This finding is the most important contribution of this research, and it 

indicates that this is the case. This chapter presents the introduction of a novel network 

channel attack, in which a malicious virtual machine can redirect the network traffic 

of a victim virtual machine running on the same 

physical hardware. The attack is carried out by launching a novel network channel. 
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In order to launch such an attack, it is necessary to first overcome the challenges posed 

by traffic redirection, then pre-empt the traffic of the victim VM, then enter the 

existing network infrastructure, then launch an impersonation attack on the interface, 

and finally remove any footprints left by the attack. This research addresses these 

challenges and demonstrates the proposed attack on two IaaS cloud platforms: 

OpenStack, which is an open source IaaS management system, and Oracle Ravello 

Systems, which is a public IaaS provider. Both of these cloud platforms have multiple 

setups that are configured with security requirements. In addition to our findings, a 

countermeasure option has been presented as a possible response to the attack that was 

reported. 

Introduction 

 
The term "cloud" refers to a virtualization platform that functions as a computing 

model [158] that is built on the Internet. Clouds can take on many different 

configurations, including grid, distributed, virtualization, utility, and parallel. A user 

can easily use the cloud's utility services and request access to its resources such as 

storage, networks, computation, and apps on demand. This is made possible by the 

cloud's easy design. It presents the idea of "pay as you go" (also known as "pay as you 

use") [159]. There is no requirement to purchase one's own resources. Instead, one can 

simply pay to access the resources and then augment or reduce those resources 

according to their needs. It possesses a number of useful characteristics, including 

resource pooling, on-demand self-service, broad network access, measurable service, 

and quick flexibility, among others. The cloud makes it possible 

for multiple service models to exist, such as Software as a Service (SaaS), 
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Infrastructure as a Service (IaaS), and Platform as a Service (PaaS) [19]. These service 

models were previously covered in chapter 2. 

The hypervisor, which is located at the very top of the operating system, is responsible 

for controlling the virtualization environment and the network layers [19]. The 

infrastructure of cloud computing is dependent on the hypervisor. In most cases, a 

hypervisor will have a somewhat limited interface. There are two distinct varieties of 

hypervisors. The types I and II are as follows: A Type-I hypervisor, also known as a 

native or bare metal hypervisor, only requires a few lines of code on the host operating 

system. A Type-I hypervisor is illustrated by the Xen virtual machine. The Type-II 

hypervisor, often known as a hosted hypervisor, operates within a traditional operating 

system environment. Examples of a Type-II hypervisor are VMware and Virtual Box 

[160]. [Citation needed] 

Virtualization technologies of the modern era, such as HyperV [161], Xen [60], and 

VMWare [162], are swiftly becoming the backbone of the security architecture for 

cloud computing systems. Because the cloud is virtualized, many virtual machines 

(VMs) can coexist on the same piece of physical hardware. The high isolation 

between co-resided virtual machines is one of the primary reasons for their desirability 

[10]. This means that a guest virtual machine that is operating on the same system as 

other guest VMs cannot disrupt the operation of the latter. Every virtual machine (VM) 

has its own specific limitations and bounds. Strong isolation, which is one of the 

fundamental features of public cloud computing platforms like Microsoft Windows 

Azure [163], EC2 [164], and Rackspace [165], helps to increase 

the systems' overall level of security. 



109  

The creation of an internal virtual network by a virtual machine manager (VMM) 

 

[166] is what ensures logical isolation between virtual machines (VMs) in 

virtualization systems. Despite this, the possibility of an assault still exists. Numerous 

recent research (some of which are mentioned in Section 2.6) have shown both how 

co-residency can be achieved and how an adversary can benefit from shared hardware 

in cross-VM environments. These findings are described in more detail in that section. 

Researchers have discussed in [93] and [26] how an attacking VM can potentially 

access other VMs by means of network connections, shared memory, and other shared 

hardware resources. They have also discussed how an attacking VM can exploit 

network channel to redirect the network traffic of other co- located VMs and what their 

limitations are in the current cloud model. [93] and [26] also discuss how an attacking 

VM can exploit network channel to redirect the network traffic of other co-located 

VMs. 

In spite of the fact that cross-VM attacks have the obvious potential to abuse shared 

memory and disc space, as mentioned in Sections 2.6 and 2.7, there have been no 

actual demonstrations of a fine-grained cross-VM network-channel attack. This is 

despite the fact that such an attack could be performed. The majority of the challenges 

that are discussed centre on the fact that cloud providers place additional layers of 

isolation between co-resided virtual machines (VMs) in comparison to non- virtualized 

settings. This is due to the fact that the attacker and victim are frequently assigned to 

separate segmentation of virtual networks [46]. The suggested attack, on the other 

hand, will stealthily reroute the network traffic of the victim VM, making it 

difficult to identify because it will leave behind few or no traces on the network. 
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The cloud network model was given in Chapter 3, and its purpose was to uncover 

vulnerabilities in the current state-of-the-art design of the cloud model's network. 

According to the findings that have been provided, there are various technological 

obstacles that need to be overcome in order to take use of these vulnerabilities. Their 

implementation has been presented in the well-known open-source cloud model 

OpenStack as well as in the commercial cloud model Oracle Ravello system. This was 

done in conjunction with a description of how to address the challenges involved in 

exploiting these vulnerabilities, which we discovered in Section 3.2.1. 

Statement of the Problem 

 
Multiple virtual machines are using the same network resources, which means that 

these resources are open to attack. This was covered earlier. The exploitation of these 

vulnerabilities in real-time settings becomes more difficult as a result of the stringent 

security configuration in the cloud network paradigm. This chapter addresses these 

security concerns and builds a zero-day assault model (as indicated in Section 1.3.1, 

research goal 1), focusing on the major components of the underlying network 

architecture, the technique, and how network components are connected, processed, 

and used for the model. 

Ultimately, the goal is to achieve the stated research goal. The creation of a real-time 

system for OpenStack and Oracle Ravello serves to validate the primary ideas that 

comprise the new attack model. In order to evaluate how effective the proposed assault 

model actually is, a number of different tests were carried out. The purpose of this 

was to demonstrate that it would be feasible to implement the system in a 

working environment. In the conclusion, a defence approach (similar to the one 
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described in Section 1.3.1, research target 3) for preventing attacks of this nature is 

also offered. 

Technical Challenges 

 
The suggested attack establishes a network channel assault, as  was shown in a 

laboratory testbed; this attack allows a malicious VM to covertly monitor the network 

traffic of victim VMs by taking advantage of the isolation that exists between VMs. 

Demonstration of the proposed attack utilising OpenStack and Ravello cloud systems 

as a case study to explain how to deploy the mirror in the internal medium of the 

network channel to optimise location. After positioning a mirror, divert the target 

virtual machine's network traffic to the destination. Network channels—specifically 

cross-VM information leakage owing to network resource sharing—are the main entry 

sites for such an attack (e.g network bridge). 

A previous assault [167] on network resources redirected the network traffic of a target 

virtual machine by using address resolution protocol (ARP) spoofing. 
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Table 4.1 provides a brief comparison of the different assaults that already exist, along 

with our own proposed method. The details of these assaults are included in the 

second column of the table. 

Attack Setting and Challenges Attack Setting 
The experimental investigations assume that an attacker has through some means 

achieved control of a VM co-resident on the same physical computer as the victim 

VM [56] by compromising an existing VM that is co-resident with the victim. 

OpenStack [172], a cloud computing platform, is the primary focus, especially when 

deployed on modern computer architectures. The experimental setup is influenced 

by both public clouds like Amazon EC2 and Rackspace, and other OpenStack use 

cases. Co-resided virtual machines (VMs) are hosted in centralised data centres 

using a cloud hypervisor, as is the case with many virtual network solutions. Another 

typical scenario involves isolating and partitioning operating systems into multiple, 

independently functioning parts with varying degrees of access and security [173, 

174]. Qubes [175] is one such system; it is an open-source OS designed to be deployed 

in a cluster of virtual computers using a hypervisor. Regarding the hardware 

architecture, we aim for today's multi-core CPUs. This choice was mostly motivated 

by the processors now in use in public cloud services like Amazon Web Services and 

Microsoft Azure. Both the attacker and the victim are thought to be on different 

network domains, and to have access to different sets of resources such virtual central 

processing units (VCPUs), virtual local area networks (VLANs), and 
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virtual storage in this experiment. The access levels of every virtual machine are 

identical [176]. 

OpenStack's ability to keep untrusted co-resident VMs separate is a key tenet of the 

attack model, as is the assumption that the attacker lacks access to software 

vulnerabilities that would give it complete control of the physical node. Therefore, the 

suggested attack employs a cross-VM network-channel to reroute the victim's data 

packets. One such case is the actual flow of data in a network consisting of victim 

machines in real time. Significant difficulties arise when attempting to build such a 

network channel in a cross-VM environment. Each of these major hurdles has been 

dissected, and a strategy for traversing each has been offered. The tests mirror the 

various stages of the attack pipeline shown in Figure 4.1. 

 
Figure 4.1: Main Attack Steps for a Network Channel 

 
 

Problem #1: Keeping tabs on the Existing Network Layout 

 

The victim VM's network communication is difficult to eavesdrop on due to the way 

OpenStack clouds operate by default secure setting, especially if the attacker and 

victim are on different network domains. For instance, there's great potential in 
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network channel for eavesdropping on the network traffic of victim VMs, but doing 

so requires some illusions to manage the network channel. Therefore, in order to 

eavesdrop on the victim's network traffic, an attacker must first attempt to take control 

of the network channel by dismantling the firewall between the two networks. This 

technique has been effective in non-virtualized environments where attackers are 

trying to eavesdrop on a victim's network traffic by leveraging the victim's virtual 

network. However, our proposed scheme does not advocate for such virtual network 

exploitation because OpenStack's default security perimeter, i.e. Firewall as a Service 

(FWaaS), constantly monitors any anomalous activity in the current OpenStack cloud 

setting and prevents the attachment of any external devices. Therefore, the greatest 

difficulty lies in either joining the system or gaining direct access to it. As a result, it 

is challenging to eavesdrop on a victim VM's network activity while FWaaS is 

present. The first difficulty is finding a susceptible target and researching the most 

effective methods of exploiting it. To initiate the suggested attack, there must be a 

single entryway. 

In order to find a solution, it will be necessary to analyse the current network 

infrastructure thoroughly. Entering or becoming a part of the present system requires 

a set of well-executed steps. As shown by (1) in Figure 4.3, the first stage in this 

process is to set up a dummy interface card as a vector for network channels, which 

is a device that is oblivious of the network and does not have a running NIC adapter. 

A network card is a typical piece of hardware in a network, and its primary function 

is to send and receive data. It is necessary to develop a device with similar 

functionality, which is accountable for carrying out the fundamental network 
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operations that a typical device would handle. Data transmission and reception via this 

device have been performed as part of network activities in order to identify it within 

a system. 

As opposed to real network interface cards, dummy cards function in a different 

manner. It helps computers that rely solely on an IP connection through a dial-up 

modem for all of their network communication. The idea behind solitary hosts is that 

they only need to activate a single network device, the local loopback device, which 

receives the IP address 127.0.0.1 by default. The local host's official IP address may 

be required for communication under certain conditions. Take, for example, the laptop 

with the hostname "test," which has been deliberately cut off from the internet so that 

its owner can conduct experiments on it. 

An application running on test need now to send some data to another application on 

the same host. By observing test host entries on the path /etc/hosts shows an IP- 

address of 172.16.17.21, so the application attempts to send at this address. But in 

our experiment, currently, the local loopback interface is the only active interface in 

this system. The operating system kernel has absolutely no idea that this IP-address 

actually refers to itself locally. Resultantly, the kernel discards the packet by sending 

an error to the application. 

A fake interface is introduced now. It solves the problem by acting as a replacement 

for the loopback connection. In a test scenario, it would be assigned the IP address 

172.16.17.21 and a host route pointing to it would be added to the routing table's entry. 

Then, all packets destined for 172.16.17.21 would arrive at their destination 

on the local network. A proper order for this stage is: 
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ifconfig dummy test 

route add test 

It is further illustrated how this dummy network interface card is coupled with other 

devices in order to abuse the security perimeter of the OpenStack cloud and to be a 

component of an existing OpenStack system. This is the initial stage that enables an 

attacker to gain an edge and become a member of the system of an existing system, 

with the assistance of further operations, in order to spy on the network traffic of 

victims. Disclosure of other virtual machines' private information can occur when a 

weakness in the architecture of an OpenStack cloud is exploited using an approach 

that exploits a security perimeter. 

Challenge 2: Hiding the Dummy Network Interface 

 
OpenStack's security perimeter can be fooled by changing the ordinary interface's 

identification to that of a TAP (Figure 4.3, (2)), which is a legitimate device within 

the network system, but only if OpenStack is aware that the real network card is active. 

The only way for our gadget to connect to the network is if we can trick TAP into 

thinking it is the standard interface. The TAP is passive because it is compatible with 

the network setup and does not affect any current settings. The TAP acts as a 

middleman between the VM and the network, taking the place of the vNIC and the 

switch. In other words, a TAP provides unrestricted, full access to all inbound and 

outbound data streams. Information travels back and forth between the VM's network 

interface card and the switch (ingress and egress). A TAP can record 
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transmissions from multiple sources. This ensures data is replicated and 

oversubscription is prevented. 

The malicious virtual machine (VM) now possesses two interfaces: I a regular Ethernet 

card that pretends to be a TAP despite the fact that it does not possess a valid identity, 

and (ii) the dummy interface. After that, a connectivity request is transmitted to the 

Linux bridge, which takes it for granted that it is a legitimate TAP and adds it utilising 

a manner that is analogous to the standard one. Adding a Linux bridge here is 

necessary because the iptables security rules that are applied to this bridge are what 

are used to configure the security group rules that apply to the VM. When the attacker 

has finished this phase of the process effectively, they are now able to access the 

network. This impersonation can be carried out inside of OpenStack by first manually 

removing all types of interface identity from the network configuration file located at 

/etc/network/interfaces, and then restarting the networking services by executing the 

/etc/init.d/networking restart command, which ensures that this change is made 

permanent inside of the system file. Because of this, a networking device that does not 

have a legitimate identification will function in the same way as a TAP. Figure 4.2 

illustrates the fundamental distinction between a TAP and a standard network device. 

The standard network device is enp0s3, and the tap device, test0, is the one that does 

not have a proper identity. 
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Figure 4.2: Difference between Tap0 and eth0 

 

Challenge 3: Observing Network Traffic 

 
Even though an OpenStack cloud has the robust feature of a security perimeter, there 

are still some weaknesses in the existing design. These flaws can be exploited by an 

adversary in order to spy on the network traffic of a victim virtual machine (VM). 

Redirecting network traffic at the attacker's destination port is the most effective 

method, not to mention an innovative one, for eavesdropping on the network traffic of 

a victim VM in a stealthy manner. This adds two obstacles in the way. First and 

foremost, who is accountable for the rerouting of the real-time network traffic? The 

second factor is the positioning, which should be such that it conceals you from others 

and provides the greatest possible advantage. Already existing systems [93] did not 

succeed in providing any aid in rerouting the traffic on the network. In order to tie 

network observations to the specific operations carried out by the victim, an innovative 

technology known as a mirroring approach has been utilised. By carrying out the 

activities in the following list, this obstacle has been conquered. The utilisation of a 

mirror provides a solution to the initial problem that the method under 
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consideration presents. In particular for Linux, a mirror was utilised so that this could 

be put into action. A powerful Linux feature known as a mirror has the capacity to 

change the direction of network traffic by switching it from one port to another. 

The positioning of the mirror is the next obstacle to overcome. The mirror needs to 

be hidden from view of any other virtual machines (VMs), and its placement should 

be chosen so as to increase the likelihood of achieving a favourable positioning. This 

strategy calls for the creation of an illusion because, if the mirror is installed in any 

open position on the network, it can be easily discovered. As a result, the target virtual 

machine will be cautious when sending traffic through the interface, and it will notify 

the cloud administrator if it suspects that traffic is being spied upon. Setting up the 

mirror at the internal interface of the network bridge, which is unobtrusive to all other 

VMs, was necessary to overcome this obstacle. This position is the most challenging 

position because the traffic from all other VMs passes through this interface. However, 

this obstacle has been overcome. In order to configure mirror, you will need to carry 

out the actions outlined below at the bridge. These steps will configure the dummy 

interface to act as a destination port. 

create Mirror name=test_mirror select dst-port=dummy0 

set mirror @ br-int 

This method makes use of the fact that it is possible to penetrate the network at the 

point from where the network traffic of other virtual machines passes, as shown (3) 

in figure 4.3. 
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Challenge 4: The fourth obstacle is the redirection of traffic at the destination 

point. 

The activity of spying on the network traffic of the victim VM is a difficult 

undertaking. If an attacker is able to see the network traffic of a victim VM from a 

place with open network access, there is a chance that the behaviour of the attacker 

is being monitored by the security perimeter of an Open-Stack cloud, which will result 

in the cloud blocking the attacking VM. The network traffic of the victim has been 

redirected at the set concealed destination point, which allowed us to successfully 

overcome this challenge. When the network traffic of the victim VM goes via the 

network bridge where the mirror is setup, it will redirect the network traffic from the 

internal bridge port towards the set destination port. This happens when the traffic of 

the victim VM goes through the network bridge. It functions similarly to the 

installation of a mirror in that it transfers a copy of all network packets observed on 

one port to another port, which is then used to perform an analysis on the packets. 

Because of this, it is important that victim VMs and the security perimeter both remain 

oblivious to the fact that network traffic has been redirected. The following 

commands, which are shown in 4.3's (4), are the ones that are used to do this re-

direction within OpenStack: 

select-src-port=@br-int select-dst-port=@dummy0 

 

Challenge 5: Obfuscation 

Following the completion of all of the operations, the next difficulty is to get rid of all 

of the traces left behind by the attack by covering up all of the devices and routes that 

were utilised in the initialization of this attack. Obfuscation's primary purpose is 
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to create confusion and divert attention away from the examination and monitoring 

activities being carried out [177]. route [178] is a very powerful tool that can be used 

with Linux as well as other distributions such as Ubuntu. It displays all of the available 

interfaces and static routes that exist within a network. It has been made impossible to 

determine the existence of used devices, as well as diverted routes from route tools 

and other network monitoring tools. Obfuscation can be accomplished through a 

variety of different methods. After the impersonated interface has been attached to br-

int, a Zero will be added out to this interface. This zero eliminates the identity of the 

interface and is hidden from view in route tool. Because of this activity, the action that 

was completed cannot be analysed. 

Putting it all together 

 

 

Figure 4.3: Attack Scenario in OpenStack 
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When we put these steps together, we may conduct a network attack that spans virtual 

machines, as shown in Figure 4.3. This attack takes advantage of the fact that the 

target's cloud provider allows them to utilise a TAP interface to connect to the Internet 

even when there is no private Ethernet present at the interface's back end. 

Evaluation Criteria 

 
It is clear from looking at Figure 4.3 that the research approach covered in Section 

 

1.4 serves as the pivot point around which the assessment framework is constructed. 

 

The primary objective of the attack is to exploit the network channel in order to reroute 

the network traffic of co-located virtual machines (VMs). In order to accomplish this 

goal, the network design of OpenStack was modified to include the five different 

assault tactics. The evaluation results are mostly dependent on the network traffic, but 

they also place some emphasis on the resources that are available on the network. This 

is because network traffic is a significant part of the attack. 

The following essential reflective qualitative features will serve as the foundation for 

the evaluation criteria. I Functional demonstrates that the aforementioned five tasks, 

which are crucial for the execution of attack, have been completed successfully. (ii) 

Expressive reflects how well the assault tactic does what it sets out to do. (iii) The 

overall advantages as well as the drawbacks of the attack have been demonstrated at 

this point. 

Evaluation 

OpenStack, the most popular open-source IaaS cloud platform, and Oracle's 

commercial Ravello System, a cloud computing service, were used in the experiment. 

The default security perimeter of OpenStack and Oracle Ravello cloud 
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model has been established. After elaborating on OpenStack's experimental setup in 

the previous section, this one moves on to discuss how to deploy Ravello. 

Experiment Setup 

 

OpenStack's cloud architecture utilises hardware and software components (CPUs, 

KVM hypervisor, and Linux kernels) that are almost identical to those in host 

OpenStack environments. Firstly, the configuration guarantees that no single VM is in 

communication with any others, and secondly, it prevents VMs from being separated 

from each other and from engaging in any kind of passive communication. The 

attacker can either wait for the target virtual machine (VM) to begin communicating 

before spying on the messages, or they can actively spy on the communication by 

rerouting the traffic. An additional scenario where the victim VM is already in 

communication with other VMs has been considered advantageous to the attacker. 

Because the configurations are so similar to real-time ones, it's also crucial to realise 

that the intended architecture is, in and of itself, a realistic secure setup for virtualized 

settings. Isolating many virtual machines in the cloud can increase their security 

because no single virtual machine can affect the performance of the others. The 

significance of these attacks is thus understood to extend beyond their potential impact 

on OpenStack. 

Attack Scenario: 

 

The attack is demonstrated by using a scenario in which an attacker VM (VM1) is able 

to listen in on and steal information from communication taking place between two 

victim VMs (VM2 and VM3). After that, one can use the positioning of the 

mirror to accomplish traffic rerouting  in the  desired direction.  The assault was 
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carried out inside of OpenStack by utilising multi-node configurations that included 

single node, double node, and triple node environments respectively. Using the KVM 

hypervisor, three guest virtual machines have been set up inside of a physical computer 

that has an Intel Core Z Q9650 running at 3.0 GHz. VM1 was set up to be the attacker 

VM, and it has now been successfully hijacked; VM2 and VM3 are the ones who are 

being attacked. Each virtual machine (VM) has been set up with two virtual CPUs and 

a variety of operating systems, including Ubuntu 15.10 (VM1), cirros (VM2), and 

Windows 10 (VM3). These operating systems have been set up with both floating IPs 

and private IPs so that they can access the internet and communicate with one another, 

respectively. Target virtual machines had their settings adjusted so that they could 

send between 0 and 15 Kbps to one another. Each of the experiments was carried out 

an additional 20 times. 

The overall resource allotment for all co-located virtual machines is presented in Table 

4.2. On the other hand, the statistics of VM resource use for one week have been 

compiled and presented in Table 4.3. The value of resource usage that is discussed in 

section 4.3 is not a constant; rather, it varies from time to time depending on the VM 

and the programmes that it is currently running. Since network traffic does not put a 

burden on disc or memory, there is no direct relationship between network traffic and 

these physical resources. Through the use of a network monitoring tool such as mrtg[x] 

or prtg[x], it is possible to monitor the load on the network. 
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Table 4.2: Resource Allocation of Each VM 
 

Co-located VMs Memory (MB) Disk (GB) CPU 

VM1 (small) 512 10 1 

VM2 (Medium) 2048 20 2 

VM3 (large) 4096 40 3 

 

The number of virtual CPUs that are being used by VMs that are being operated on 

the physical machine is displayed in the CPU column of Table 4.2. 

The MEMORY MB column displays the total amount of memory (in megabytes) that 

has been allotted to the VMs that are now operating on the physical machine. 

The DISK GB column provides information regarding the root and ephemeral disc 

sizes (in gigabytes) that have been allotted to VMs that are currently operating on the 

physical machine. 

Table 4.3: Summary Statistics of Each VM 
 

Co-located VMs Memory (GB) Disk (GB) CPU (Hours) 

VM1 (small) 365.06444 5.15 525.12 

VM2 (Medium) 644.09474 9.64 564.83 

VM3 (large) 4523.06489 12.45 746.0 

 

Network Setup: 

 

By allocating IP addresses and VLAN tags within distinct ranges known to provide 

physical resource separation, VLAN Manager was set to assure VM isolation amongst 

co-resident VMs. This was accomplished by using a tag system. 

VLAN Manager Setup 

Each virtual machine (VM) has its own VLAN and allocated network when the VLAN 

mode is activated. In order for this to work, any physical switches that are placed in 

between must implement the 802.1q VLAN tagging standard. The 



126  

configuration described below must be used in order for the VLAN to operate 

properly. 

specified in /etc/nova/nova.conf: network_manager=nova. 

network.manager.VlanManager 

vlan_start=100 dhcpbridge_flagfile=/etc/nova/nova.conf dhcpbridge=/usr/bin/nova- 

dhcpbridge 

Association of Public IPs to VMs 

 

When a VM is first created, it is provided with its own unique private IP address by 

default. This particular range of IP addresses is only available inside the context of the 

local network. In order for the virtual machine to communicate with the outside 

network, it has to have a public IP address. When manually attaching a public address, 

there are two steps involved: (1) selecting an address from the pool of accessible IP 

addresses, and (2) associating the address with a virtual machine. This experimental 

set up needs to have a working range of floating IP addresses supplied to it so that it 

can be allocated. The Nova client was utilised here: 

nova floating-ip-create and associating this address to a VM (such as 172.10.1.1) nova 

add- floating-ip <VM-id> 172.10.1.1 

This makes it possible to communicate with virtual machines (VMs) that have a public 

IP address. 

Security Configuration 

Iptables are utilised in networking to accomplish the functionality of security groups; 

however, iptables also offer linear storage and filtering. It is recommended to use ipset 

rather than other methods in order to enhance the performance of the security 



127  

group. Therefore, the ipset option is enabled in networking in order to increase the 

efficiency of security group hashes by specifying a table. An additional ipset option 

is added to the iptables chain whenever a new port is made available for use. The 

member of the security group that the port belongs to is added to the ipset chain if 

the security group contains any rules that are also shared by other groups. If you use 

ipset to change the membership of a group, the corresponding iptables rules will be 

modified rather than refreshed. As a result, a new virtual machine (VM) security group 

has been established after conducting a manual search for newly created security group 

names. 

Managing Security Groups 

 

On the nova-compute host that is responsible for the execution of virtual machines 

(VMs), security groups are established. This enables the host machine to be protected 

by limiting access to it and preventing intrusion from other VMs that are running on 

the same host. Port 22, which is the default port for security groups, has now been 

used to launch a security group. Two stages are necessary to complete the design of a 

security group. The first stage involves defining a group with the nova secgroup-create 

command. ii Establishing guidelines for the group by use of the nova secgroup-

add-rule command: 

Only traffic that is compatible with the rules of the security group is allowed to pass 

via the entrance point. In the event that no rule is satisfied, all other traffic will be 

blocked. 

Only traffic that is compatible with the rules of the security group is allowed to exit 

 

the building. In the event that there is no rule stated, all outbound traffic is blocked. 
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When a new security group is created, rules that allow or deny any and all ingress 

and egress traffic are automatically added to the group. 

Assumption 

 

The most important presumption made in our developed attack model is that an 

adversary has successfully taken command of a virtual machine (VM) that is located 

on the same physical machine as the target VM [56]. Researchers have already proved 

the effectiveness of this control by utilising a network-based strategy to launch a co-

location attack within a public cloud such as Amazon EC2 [56]. This attack was 

successful. They demonstrated that an adversary is possible to launch several instances 

of VMs within the same geographical region as the target VM, and they applied a 

variety of different approaches to determine whether or not a VM is effectively co-

located. The following is a rundown of some of the systems that can be used to help 

determine the location: 

By using a trace-route application such as TCP SYN to find the first hop of network 

traffic between the attacker and the target VM (for example, Dom0 in the host Xen 

server), you can discover the first hop. The discovery of this software suggests that 

an attacker has achieved success in locating the co-location of the target virtual 

machine (VM) if there is an identical Dom0 IP address. 

Examine the round-trip time (RTT) [179] of the network packet that travels from the 

attacker to the target virtual machine. A shorter RTT number suggests that the two 

virtual machines (VMs) are hosted on the same physical machine. 
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Verify the internal IP addresses of both the attacker and the target virtual machine. 

When the two virtual machines' internal IP addresses are numerically close to one 

another, it indicates that they are most likely hosted on the same physical server. 

Analysis of Result 
 

In this section, an in-depth evaluation of the experimental outcomes of the entire 

strategy through a real-world situation is described. The evaluation focuses on the 

recording of network traffic and the consumption of network resources by virtual 

machines (VMs). A definitive conclusion regarding the viability of the underlying 

attack plan cannot be reached based solely on the one outcome that was obtained. 

Because of this, the efficiency of the proposed method is evaluated by recording 

network traffic and determining how effectively network resources are utilised. 

Taking Samples of Network Traffic An examination of the collected network traffic 

that was taken from the testbed is carried out in order to validate the attack technique. 

Each iteration of the experiment produces redirected network traffic that is annotated 

with the reality of the situation with relation to the existence of an attack. 

 

Figure 4.4: Traffic Capturing at Attacking VM 
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In this actual-time scenario, the two targeted virtual machines (VMs) (VM2 and VM3) 

are pinging each other. Figure 4.4 illustrates how the attacker machine VM1 can 

monitor the communications between the targeted VMs by employing an attack 

mechanism similar to that described in Section 4.2. Figure 4.4 shows an ICMP echo 

reply being sent to the attacking virtual machine. The ping command makes use of a 

protocol called Internet Control Message Protocol (ICMP). Success in exchanging 

"echo" messages between two virtual machines indicates two-way communication has 

taken place. 

Identifying sender and recipient communication between target VMs is crucial to the 

success of the attack (e.g., packet header source IP address). The attacker will be 

confused as to which VM traffic originated from which other VM if they are all 

communicating at the same time. 

Network Resource Utilization 

 

When an assault is carried out, this results in the production of network traffic within 

each virtual machine. The VM network traffic before, during, and after the assault is 

depicted in Figure 4.5. The results of the experiment show that the attacking VM1 

generates random network traffic not dissimilar to that produced by VM2 and VM3 

when the time for the experiment ranges from 0 to 30 minutes (point A). At 25 minutes 

(point B), the attack begins, during which it is observed that the attacking VM1 uses a 

significant amount of network traffic in comparison to the VMs that are the targets of 

the attack, and it continues to do so for the remaining 6 minutes until the attack is over 

(point C). This significant rise is due to the fact that the attacking 
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VM is now receiving all network traffic destined for the target VM and redirecting it 

through itself. 

 
 

Figure 4.5: Normal Co-residing VM-Network Traffic 

 

When the cloud administrator observes the network traffic of VM1 in relation to that 

of other VMs for the entirety of the experiment, it is probable that they will identify 

this as abnormal behaviour due to the abrupt rise in the amount of network 

consumption. This could result in further study or the implementation of a 

straightforward countermeasure to restrict virtual machine network traffic that exceeds 

a certain threshold. On the other hand, it is considered that in the setting of cloud 

computing, a countermeasure of this kind would be difficult to detect. To begin, the 

utilisation of virtual machine (VM) resources is regarded as a mystery by the provider 

in many public cloud environments. This is considered to be standard practise so long 

as a customer's resource capacity requests are not violated by resource demands made 

by the customer. Second, even if the system is making an effort to monitor irregular 

resource patterns by employing bandwidth monitoring 
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tools such as prtg [180], the countermeasures will most likely include a time delay for 

determining irregular resource patterns. This is because the system is unable to 

distinguish between normal and abnormal resource patterns. As a result, it's possible 

that an attacker only needs a few minutes to accomplish what he set out to do on a 

virtual machine that he's hacked. For instance, in 2008, the defence solution of a 

system that was being run by the Georgia Government during an HTTP attack [181] 

became active for a period of five minutes after the attack had been initiated. Last but 

not least, if the attacker virtual machine (VM) is capable of create cyclical network 

patterns prior to an attack, as shown in figure 4.6, then it is much more difficult to 

notice unusual patterns of traffic on the network. 

Network intrusion detection systems (NIDS) [182] deployed at strategic points within 

the network can monitor traffic to and from all sources on the network as a viable 

countermeasure technique in such circumstances. It compares traffic over multiple 

time periods to identify assaults. The alert is delivered to the administrator after 

unusual activity is detected on the network. Figure 4.6 depicts an attack executed by 

the attacking machine that follows a resource pattern similar to that seen before during 

the first two peaks and the third peak (point A to B). This means that the unusual traffic 

pattern will go undetected. This situation calls for the administrator to ideally analyse 

all incoming and outgoing data; nevertheless, this could cause a bottleneck and slow 

down the network. 
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Figure 4.6: Cyclic Attack Pattern of Network Traffic 

 
 

When evaluating the attack, a more extensive network system is taken into 

consideration, as depicted in Figure 4.7. Within the scope of this scenario, ten VMs 

have been taken into consideration. When an assault is carried out, this results in the 

production of network traffic within each virtual machine. The VM network traffic 

before, during, and after the assault is depicted in Figure 4.7. The results of 

experiments conducted over a period of time ranging from 0 to 30 minutes indicate 

that the attacking VM1 generates random network traffic that is not distinct to that 

generated by target VMs (point A). At 25 minutes (point B), the attack begins, during 

which it is observed that the attacking VM1 uses a significant amount of network 

traffic in comparison to the VMs that are the targets of the attack, and it continues to 

do so for the remaining 6 minutes until the attack is over (point C). This significant 

rise is due to the fact that the attacking VM is now receiving all network traffic 

destined for the target VM and redirecting it through itself. For the purpose of 
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capturing the network traffic of all VMs, the "post routing traffic graph" (prtg) [180] 

is utilised. 

 
 

Figure 4.7: Cyclic Attack Pattern of Network Traffic 

 

 

Attack on Ravello Systems 

 
On Oracle's cross-cloud platform, Ravello Systems, the same assault may be analysed 

for its effectiveness. Oracle Ravello is a commercial cloud platform that enables users 

to utilise any of the most popular public clouds on the market today, including GCE, 

AWS, and others. In our testbed, AWS is set up to function as the underlying 

infrastructure as a service provider. Ravello provides a one-of-a-kind cloud application 

hypervisor technology that enables businesses and individuals to encapsulate and 

abstract an entire multi-VM application and its environment. As a result, the 

application is able to run on any cloud, regardless of whether it is public or private, 

without requiring any changes to be made. 
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Network Configuration 
 

Ravello makes it possible to configure the network settings for each VM, including 

the assignment of static IP addresses. The static IP, Netmask, Gateway, and DNS 

server all need to be assigned to this interface before it can be used. Ravello is able 

to handle the functionality of SDN that is responsible for the automatic creation of a 

virtual switch based on the IP address that has been assigned to VM as well as the 

netmask of the interfaces. Each and every interface that belongs to the same subnet 

will be assigned to the identical virtual switch. If a gateway has been allocated through 

the user interface, then the SDN of that gateway will follow the properties listed below: 

Ravello's SDN settings will be in accordance with the VM's Gateway setting if the 

guest VM has been given a gateway IP and has been configured to act as a router. 

Alternatively, if the VM has not been given a gateway IP but has been configured to 

act as a router. 

In the event that the guest VM does not have a Gateway IP, Ravello's Software Defined 

Network (SDN) will connect a virtual Router to the virtual switch and assign it 

the defined Gateway IP. 

Ravello's software-defined networking (SDN) capabilities will be inactive if the 

Ravello user interface is not used to specify a default Gateway. 

Evaluation 

 

All virtual machines are members of distinct VLAN Tags, as can be shown in figure 

4.8. Tagging of VLANs is described in IEEE Standard 802.1Q [183]. VLAN tags 

may be included in components of the network that support the VLAN standard. 
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When a packet enters a portion of the network that is configured with VLAN, a tag 

is appended to the packet to indicate the VLAN membership of the packet. VLAN 

ensures that the network traffic of all VMs is kept completely separate from one 

another. The network configurations of all three virtual machines are depicted in 

Figure 4.8 as well. 

 

Figure 4.8: VLAN Configuration of VMs in Oracle Ravello System 

 

Evaluation of the Outcome 
 

As can be seen in Figure 4.8, the attacking virtual machine (VM) is in a position to 

successfully see the network traffic that is occurring between the target VMs when 

they are conversing with the ping command. Figure 4.8 demonstrates that the 
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attacking VM is successful in receiving the ICMP echo request and reply, which 

indicates that the two target VMs are able to communicate with one another. As was 

previously stated, ICMP is the protocol that is being used to carry out the ping 

command. The echo request and reply demonstrates that the two VMs are 

communicating with one another. VM3, which is an attacking VM, does not have the 

access rights necessary to monitor the conversation taking place on the network 

connection between the other VMs. 

 

Figure 4.9: Traffic Capturing at Attacking VM in Oracle Ravello System 

 

Limitations 

 
The success of the proposed method depends on the particular network model chosen. 

Openvswitch (OVS) is commonly used by cloud providers to implement complex 

network configurations. An advanced implementation of Open Stack's networking 

capabilities, including the VLAN and ML2 plugin in OVS, is described in the case 

study we used for our experiment. Only a neutron network enabled by OVS, which 

supports multiple cutting-edge security and design options, is vulnerable to this 

attack. It is not compatible with the nova-network, a legacy 
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network. The latter paradigm is restricted in that it does not allow for the creation of 

a sophisticated network layout. Before Neutron was added to OpenStack, Nova- 

networking was the sole option for creating and managing networks. Only the FLAT 

network and DHCP services are compatible with Nova-network. It's always been a 

component of OpenStack, but its constraints make it look antiquated. The standard for 

flat networks and DHCP was to use the same structure. The central idea is that each 

virtual machine is linked to a single physical computer, or "bridge," in this case a 

Linux host. The eth0 physical NIC on the host computer serves as an attachment point 

for the bridge. A number of virtual machines are linked to this bridging device. Figure 

4.10 presents this conceptual framework. 

A breakdown of the cloud services that could be compromised in this attack is shown 

in Table 4.4. 

Stopping Network-Channel Attacks 

 

In this article, we'll examine the benefits and drawbacks of some of the most promising 

defences against cross-VM network-channels. 

 

Figure 4.10: Nova-Network 
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Table 4.4: An Overview of the Vulnerability of Different Cloud Systems to the Proposed 

Approach 
 
 

 
Avoiding Co-residency 

 

One time-tested method for ensuring the proper separation of duties in a safe setting 

is to perform different activities on different hardware at different times. When 

protecting against side-channel attacks (and many others), this method offers the 

highest level of confidence. This approach, however, would sidestep many of the 

current and future practises of virtual machines, such as the use of public clouds that 

multiplex actual servers like Amazon EC2, Windows Azure, and Rackspace, and the 

use of other VM-powered apps, as detailed in Chapter 1 of this thesis. 

Solutions to Prevent Attacks 

 

Several efforts are applicable and could be utilised to protect against cross-virtual- 

machine threats. Afoulk et al. [184] try to avoid conflict of interest among VMs 

using priority based scheduling, whereas Zhang et al. [168] propose using side- 

channels as a detector to identify illegal co-residency based on the timing channel 

(accessing L2 cache response time). Altering OpenStack's source code directly is an 
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alternative. It restricts the level of detail at which network-based side channels or 

devices from the outside can access a live system. The OVS internal network bridge, 

denoted by br-int, is the connection point for many VM interfaces to the underlying 

physical device and the outside network. Because the TAP interface is not a private 

Ethernet interface, an attacker within the internal network can impersonate it. 

The output of OVS is displayed in Figure 4.11, which exhibits the interconnection of 

several virtual Interfaces. 

 

Figure 4.11: Connectivity of Virtual Interfaces at OVS 

 

 

In-depth examination of the results revealed that all legitimate interfaces have two 

characteristics: tag and type. The 'tag' of an interface indicates the VLAN that is 

enabled to provide VM isolation, and the 'type' determines the interface's behaviour. 

Attachment of the test0 mock interface is depicted in Figure 4.12. 
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When examining the output of OpenvSwitch, it is clear that neither the "tag" nor the 

"type" attributes of this fake interface are present. 

Close monitoring of the OpenStack code base revealed that the cloud service's 

networking (neutron) component contains a security flaw. Because of this, the def 

run vsctl method in the class /opt/stack/neutron/agent/impl vsctl.py, which is 

responsible for carrying out virtual switch operations, needs to be updated in neutron 

code (self, args). All the data about the bridge's connected interfaces is gathered in a 

new method called get all bridges(self,args). 

 

Figure 4.12: Attachment of Dummy Interface 

 

 

The goal of this feature is to prevent direct connections between TAP interfaces and 

an OVS bridge utilising the same Ethernet connection to the Internet if the linked 

interface is capable of communicating using solely the TAP interface. Each valid 

interface has the following three qualities, according to the interface analysis: tag, 

interface, and type. The 'tag' attribute specifies that the VLAN is active for VM 
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isolation, the 'interface' attribute links the VLAN to the private Ethernet in the 

backend, and the 'type' attribute reveals the interface's behaviour. Before establishing 

a connection to the bridge, the security checks must validate each of these 'TAP' 

characteristics. 

An invalid interface error is displayed in the OpenStack cloud when a dummy virtual 

interface is attached to OpenVSwitch (OVS) after a change was made to the neutron 

code, as seen in Figure 4.13. 

Discussion 

 
The chapter concludes with a discussion of the most important results from the 

empirical examination of the TAP impersonation attack. 

 

Figure 4.13: Blockage of Invalid Interface 

 

Through the use of a network's channel, attacks such TAP impersonation and 

mirroring were made possible. The initial step in breaking into the network was to 

impersonate a TAP. The network traffic was being redirected to a secret location, thus 

a mirror was established up at the main bridge. The bridge's attention was 
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narrowed to the data streams generated by virtual machines. Evidence from the results 

shows that the disclosed attack successfully exploits cloud network architecture by 

rerouting the traffic of co-located virtual machines. 

The described attack, as seen in the network traffic graph, is capable of diverting the 

high-rate network traffic of co-located VMs to a secret target point. When comparing 

different methods for evaluating the network bandwidth of each virtual machine in 

real time, PRTG was shown to be the most effective overall. The graph suddenly 

spiked, showing that the attack was successful. 

It was intriguing to see that this attack configuration can be protected from being 

exploited. By spoofing the TAP interface, the attacker can gain access to the network. 

By comparing impersonated TAPs to the actual thing, we were able to determine that 

they have distinct characteristics that can be mitigated by modifying the open source 

cloud's code. 

The evaluation requirements (Section 4.3) have been met using the following means: 

The attack tactic is assessed for its ability to carry out all of the goals for which it was 

developed. All of these assault tactics are depicted in Figure 4.3, which is used to 

assess the functional parameter's inference capacity. Even more reassuring was the fact 

that every event had been correctly inferred. The results of the analysis confirmed that 

the attack model effectively achieved its design goals. 

In the context of this thesis, "expressiveness" is how well the TAP Impersonation 

attack performs across the board when applied to the network environment. Figure 

4.4 shows the captured network traffic of other co-located VMs, providing 
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significant proof regarding the working of attack, and therefore is used to evaluate 

the expressive parameter. 

The evaluation findings show that the capacity to reroute network traffic from other 

co-located VMs is the approach's main strength. The approach was outlined, however 

it had a few flaws that are discussed in Section 4.7. 

Summary 

 
In conclusion, this chapter gives the following information in order to evaluate this 

assault in a real-time setting: details of experiment, their setup, configuration, limits, 

and mitigation plan; and comparisons to work described in the literature on cross- VM 

attack. In addition, we show how to initiate a cross-virtual machine network channel 

attack inside of OpenStack, an open-source cloud platform. The security weakness in 

the cloud model has been investigated using a divide-and-conquer approach. To 

illustrate just how difficult it is for an attacker to breach the network system and to 

explain how to go over the cloud's security, we have also gone into detail about attack 

settings and hurdles. The configurations and properties of the virtual machine (VM) 

have been discussed in detail. 

The attack described here involves masquerading as a TAP interface and creating a 

network mirror in the bridge interface through which the connections of all co- located 

VMs are routed. The goal of the experiment is to use the underlying network channel 

as an empirical reference point for tracking the data transfers of physically separated 

virtual machines. The empirical analysis confirms that the attackers are able to 

successfully exploit the vulnerability and reroute the network traffic of co- 

located VMs. Since the attacking VM does not exceed the allotted VM resource 
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capacity, it is difficult for cloud providers to notice and monitor such attacks. A 

countermeasure approach that closes the security issue in OpenStack's source code has 

also been presented. 

Our next discovery, obtained from an examination of the OpenStack Xen architecture, 

is described in detail in the following chapter through the use of experiments on 

various configurations and assessments of their efficacy. 
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Chapter 5 

Countermeasures to Privilege Escalation Attacks and Their Implementation 

The researchers have presented various methods for exploiting memory and 

have investigated vulnerabilities in kernel code, as was covered in chapter 2. As a 

result of this exploitation, the installation of hardening systems to prevent privilege 

escalation assaults is required. As memory separation techniques between the kernel 

and user space become increasingly stringent, such as Intel's SMEP, attackers are 

forced to rely more and more on approaches that involve code reuse in order to exploit 

vulnerabilities, particularly kernel-related vulnerabilities. In contrast to comparable 

attacks in more protective settings, such as web browsers, non- privileged limited 

adversaries have a large deal of latitude when exploiting memory disclosure 

vulnerabilities. This enables them to dynamically determine the placement of a certain 

code segment and design code-reuse content. The linkage of code variation with the 

development of a "read XOR execute" (RX) memory security technique is an effective 

defence against the misuse of user-land software, according to recent study [185]. 

However, this method has not yet been implemented for the kernel's own defence. 

This study aims to analyse the implications of hypervisor vulnerabilities in cloud 

computing so as to better understand those implications. In this study, a novel method 

of attacking a cross-VM cloud system that was running Xen hypervisor on 

the bottom was revealed. The hypervisor's primary duty is to guarantee that there is 
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adequate separation between domains, often known as the root domain and the non- 

root domain. The suggested method makes use of the ROP model, which stands for 

return-oriented programming. An adversary with limited privileges who resides on the 

same physical machine as the target VM is able to launch ROP, establish a connection 

with root domain by abusing the network channel, and obtain possession of tool stack 

despite the fact that they are not authorised to access it directly is able to do so. 

Research has been done on the ROP approach in cross-VM environments. This 

technique is used when a malicious VM reuses the existing code that is already stored 

in the Kernel memory and does not modify or inject any external programme in order 

for it to be executed. Attackers have been successful in exploiting the integrity 

protections by using this strategy. According to the findings, the proposed assault is 

doable in modern public clouds such as OpenStack and Azure, which are setup with 

Xen para-virtualization underneath. In addition to our findings, a solution for a 

countermeasure that can be used against the assault that was detailed has been 

proposed. This suggests that the cross-VM attack that is being presented is of some 

consequence when used to cloud platforms. The findings of this research point to the 

existence of a significant security risk for the industry's most prominent cloud 

providers. 

Introduction 

There have been several studies done in the past that have shown how hypervisors can 

be utilised to improve the safety of virtual machines (VMs) that are running on them 

[33, 186, 187, 187–191]. Their primary hypothesis is based on the idea that the 

hypervisor is a piece of software that, in comparison to operating systems, consists 
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of a relatively small amount of code. As a result, they believe that it can be thoroughly 

examined, which in turn reduces the number of bugs that exist within its code. 

However, modern services of hypervisors like Xen and VMware are intricate. These 

hypervisors are also massive softwares with a high number of lines of code, which 

contradicts the theory. For example, Xen 4.1.2 has approximately 350 thousand lines 

of source code in the hypervisor itself. Only 10,000 lines of source code can be 

processed by the most advanced formal authentication method available today [103]. 

It is not in anyone's best interest to formally vet such a massive hypervisor code base. 

In addition, the National Vulnerability Database [192] provides a rundown of the most 

recent security flaws that have been discovered in hypervisor software while also 

stating that it is not easy to produce hypervisor software that is bug-free. Because of 

these vulnerabilities, hypervisors are frequently the focus of attacks [193–195]. 

The primary goal of a software attack is to divert the normal flow of the currently 

operating programme in order to carry out some other instructions. The phrase 

"software assault" is commonly used in a wide variety of applications, ranging from 

desktop to eeb to even a basic tool like notepad. The exploitation of memory 

vulnerabilities is a more specific type of software attack that can come in many 

different forms [196]. Some examples of memory vulnerabilities are buffer overflow, 

heap overflow, and string vulnerability. The most dangerous vulnerability is known as 

Buffer Overflow [197], and it allows an attacker to overflow buffers in the stack 

process and overwrite the return address of a function with a random 

memory location. This is the most serious type of threat. When the vulnerable 
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function completes its execution and returns, the attacker can take advantage of the 

overwriting by executing whatever code they choose. The researchers have carried out 

this attack in a variety of guises, and they have also provided their solution to the 

problem in a number of different guises. Their mitigation strategies prevent the 

execution of code that is located in the data regions of the process, such as on the stack 

or in the heap, for example. Data Execution Prevention (DEP) is a feature found in 

modern operating systems, and it is implemented with the help of the security model 

[198]. In these models, the memory location can either be executable or writable; it 

cannot do both jobs at the same time. Rather, it must choose one or the other. Because 

of this, the attacker will be unable to create code and then execute it at the same 

address on the stack and the heap. 

In spite of the deployment of such countermeasure tactics, attackers are still able to 

identify the gaps to execute proposed code by making reuse of already existing code 

in the process address space rather than injecting new code. This allows them to 

circumvent the countermeasures. The return-into-libc attack, which was designed by 

Solar [199], is one of the well-known subcategories of this attack. During this type 

of attack, the adversary modifies the return address of a susceptible function so that 

it points to the address of any function contained within the libc library. For instance, 

the attacker may overwrite the value with the address of a "system" function, which 

would allow for the opening of a shell. A shell is the most common type of backdoor, 

because it allows for the simultaneous execution of numerous jobs. Return-Oriented 

Programming, or ROP, is a more specific form of the return-into- 

libc attack. ROP is an attack in which the attacker attempts to implement parts of 
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code that are scattered throughout the process address space by connecting them 

with unintended transfer instructions, most commonly the'ret' instruction. 

According to the theory put forward by Shacham [15, 197], the attacker in ROP 

typically carries out the attack in two phases: 

The initial step in an attack is the attacker determining the appropriate sequence of 

instructions to carry out the intended tasks. A gadget is a brief sequence of instructions 

(often between 2 and 5 steps) that performs a specific task. However, the length of the 

devices is not restricted in any way, and it has not been proven that devices with a 

greater range are impossible to create. Additionally, it is possible for the attacker to 

discover multiple tools. 

The second phase involves the attacker setting up a chain reaction of the previously 

identified devices. 

Figure 5.1 is a schematic depiction of ROP exploits. 

 

 
Figure 5.1: Overview of RoP 

An attacker begins by locating a vulnerable function in the process address space. This 

function could be part of the application itself or a component of one of the 
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process's internal or external libraries. This potentially exploitable function would then 

be called while the programme is running. The suggested return addresses are 

overwritten on the stack by the attacker (i.e the start addresses of the gadgets). The'ret' 

instruction is commonly used to achieve the goal of the gadgets ending in an accidental 

control transfer. The'ret' instruction at the end of a gadget pops the next value (the 

address of the next gadget) from the stack, which is then used as the new execution 

instruction the next time the actual action (gadget) is executed. Data values inserted 

by the attacker onto the stack can be used as arguments for the proposed instructions 

[197, 200-203]. 

The first-described method simply uses the'return' instruction to switch the program's 

control flow to the new one that is being proposed. However, there are other ways to 

manipulate the controller than the "return" instruction. Other control transfer 

instructions include the address-storing indirect 'imp' and indirect 'call' directives. So 

now the attacker can choose to use such instructions to run their own code by changing 

the flow. According to what Checkoway et al. [204] proposed In ROP, similar 

commands to return are used instead of the return instruction itself. A 'pop' instruction 

sequence, for instance, is functionally equivalent to a'ret' instruction in that it moves 

the contents of the stack from the top of the register to the instruction location. 

The hypervisor in cloud computing is in charge of establishing security boundaries 

between root and non-root virtual machines. The hypervisor, however, is a piece of 

software made up of many individual lines of code, all of which can be exploited in 

some way. Recent studies (covered in section 2.9.2) have shown several techniques 
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for attacking the hypervisor in a way that allows an attacker to employ ROP to elevate 

the privilege level of non-root users and to inject an external programme into system 

memory for arbitrary execution. In [210], the authors demonstrate in detail how an 

attacker might escalate their privileges by changing the memory-resident value of a 

non-root virtual machine. 

Although it is evident that abusing RoP and shared memory might lead to privilege 

escalation assaults, as mentioned in Section 2.9, a fine-grained privilege escalation 

attack that uses ROP in conjunction with the cross-VM network-channel attack has 

not yet been carried out. By adding new layers of isolation between virtual machines 

(VMs) in the form of domains, hypervisors have significantly improved data security. 

Different types of virtual machines (VMs) are housed in different domains. Since each 

virtual machine in the cloud has its own unique set of permissions and lives in its own 

separate domain, this type of assault appears to be less of a concern in the cloud. 

In Section 3.3 of Chapter 3, we discussed the hypervisor architecture and domain 

attributes that are the focus of the study into the state-of-the-art hypervisor's security 

flaw. According to the results presented, there are obstacles that must be overcome 

before these weaknesses can be exploited. The next part details how they've been 

implemented in OpenStack and Microsoft Azure, two of the most popular open- source 

cloud platforms, and how to attack the vulnerabilities discussed in Section 3.2. 

This chapter has introduced a cutting-edge, novel attack mechanism known as 

 

privilege escalation. It exploits ROP in tandem with network-channel to launch an 
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attack in cross-VM scenarios, providing insight into the state of security in cloud 

environments supporting many tenants. While studying the security of cloud servers 

is not the primary focus of this research, the isolation qualities of cloud systems have 

been examined to see whether or not the suggested attack may be used to bypass virtual 

machines and hypervisors, and if so, how. 

Problem Statement and Contribution 

 
As was previously mentioned, Cloud providers run several virtual machines (VMs) on 

the same physical server. All virtual machines (VMs) have been given a certain 

amount of access, and the hypervisor then places them in the appropriate security 

domain. However, by abusing domain isolation, the attacker can raise the privileges 

of the VM it controls. However, such attacks are impossible due to the cloud's built- 

in security measures. It's getting harder to pull off these kinds of exploits in real 

time. 

Throughout this chapter, we will examine the RoP and the associated approaches 

that have been developed to circumvent these security flaws. Additionally, this chapter 

presents the design of a zero-day attack model (as mentioned in Section 1.3.1, research 

goal 2), with particular emphasis on the primary components of the underlying 

hypervisor architecture, the technique, and the manner in which domains are 

connected, processed, and applied for the overall model. The construction of real-time 

systems for OpenStack and Oracle Ravello verifies the basic principle of the suggested 

attack model. In order to measure the efficacy of the suggested assault model, a set of 

experiments was carried out. The objective was to demonstrate the 

system's viability in a real-world setting. At last, we give our plan of action for 
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defending against these assaults (objective 3 of the research, as described in Section 

1.3.1). 

Technical Challenges 
 

In this research, we present the design and implementation of a cross-virtual- machine 

privilege escalation attack. To each virtual machine in the cloud, a unique set of 

permissions has been granted. An attack that raises the privileges of normally 

unprivileged virtual machines is called a "privilege escalation assault" [195]. One 

privileged virtual machine (VM) typically resides in dom0, while numerous 

unprivileged VMs (domU) coexist in a cloud infrastructure. All virtual machines are 

kept separate from one another by being assigned to various "domains" by the 

hypervisor. This assault, like many others, is a privilege escalation attack in which the 

attacking virtual machine (VM) employs the ROP technique to gain access to higher 

levels of privileges and then uses the network channel to communicate with the root 

domain. Many of the steps taken to execute the proposed attack efficiently and 

precisely in a virtualized setting are fresh to this study. In particular, a description of 

how to deal with the major obstacles of privilege escalation and root domain 

connection has been presented. If an attacker is able to elevate the privileges of his 

virtual machine (VM), he can compromise any other VMs hosted on the same physical 

computer. By spawning numerous malicious VMs that hog the host machine's 

resources, this attack can also lead to a denial-of-service. 

Case of an Attack 

In this part, we show how a rogue VM can use the ROP approach to abuse the network 
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channel and gain elevated privileges. Attackers have been found to be able 

to administer other co-resided VMs once they have gained access to the necessary 

privileges and then take control of Toolstack. Having control of Toolstack is a severe 

threat to other virtual machines (VMs) and cloud providers, and it's also fairly 

important to attackers. Many unique applications have been introduced to execute this 

attack, including breaking into the root domain, stealing Toolstack, and using ROP in 

conjunction with a network channel. This procedure has been thoroughly tested on an 

actual, live instance of the OpenStack cloud. 

The Attack 

 

Through the use of the attacker machine, there is the possibility of gaining control of 

Toolstack, which is located in the hypervisor of dom0. Toolstack is in charge of 

managing the operation of additional virtual machines (VMs) that sit on the same 

physical machine. The primary objective of this research is to find a way beyond 

OpenStack's security perimeter by first introducing the idea of code RoP and then 

utilising the network channel as a means of attack. By compromising the network 

channel, the attacker was able to successfully break into the domain, also known as 

dom0, of the running system. This is the domain in which the privilege VMs reside. 

It is necessary to do in-depth research on the network connections that enable 

OpenStack to allow for its expansion and via which other cloud computing systems 

can be joined. 

The root or administrative virtual machines will reside at dom0 in an OpenStack cloud 

that uses Xen as its underlying architecture. These VMs will have direct access to the 

hardware that the cloud is running on. These root or administrative VMs have 
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specific privileges, which allow them to exert influence over the other VMs in the 

system. Dom0 is the initial machine that is started up when the system boots up. There 

is a specialised stack in this industry that is referred to as the Toolstack, and it is what 

enables a virtual machine to control the creation, destruction, and allocation of 

resources. Because they are located in the unprivileged domU domain, guest virtual 

machines (VMs) cannot directly access the hardware. These guest VMs are not 

permitted to interfere with the management or operations of other guests. 1) An 

OpenStack client, a specialised component of OpenStack, has been set up in an 

attacking guest virtual machine (VM), which is located in domU. The configuration 

of this unique feature of OpenStack is based on the idea that a malicious VM may use 

this function to copy the code of OpenStack into its own domain, known as domU. 

This is the basic concept that underlies the setting of this feature. The unique method 

of RoP, known as code-reuse, was implemented in the device's internal memory as a 

result of this action. This code that runs in memory has previously been validated and 

examined by the security perimeter of OpenStack, and it is currently in a state where it 

may be run. Therefore, security perimeters are unable to prevent it from happening. 

The most important advantage of using previously used code in a guest virtual machine 

is that it allows a malicious guest VM to become the host of its very own local computer 

(sub-host from main root). After acting as the host of its own local computer, it was 

awarded the status of "dom0," which enables it to manage its own sub-guest virtual 

machines. This architecture resembles a tree in which there is one main root that lives 

in dom0 and that have additional guest VMs that belong to domU. The tree has 

branches that belong to both dom0 and domU. 
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One of these guest VMs is functioning as a root of its local system, which also contains 

its own guest VMs; yet, on a global scale, it functions as a sub-root. 

These malicious virtual machines use the access rights and (dom0 and domU). Dom0 

to control his own locally hosted virtual machines (VMs), which he can then sublease, 

and domU, which is automatically added to his account. When two domains need to 

communicate with one another, they can use a specialised python API called xapi in 

dom0 to establish a connection over the br0 network bridge. One uses a specialised 

python API, called XenAPI, on domU to establish a connection with the xapi service 

on dom0. The path from domU to dom0 uses the internal management network and 

begins at the Ethernet device and ends at the bridge. 

2) In the proposed attack scenario, the attacker connected the veth bridge pair that 

links the python library's xapi with the xapi of the xapi. One of veth's bridges is present 

in the main root, while the other is a piece of the malicious guest VM he acquires by 

code reuse. Thirdly, if a xapi establishes a connection with another xapi via a bridge, 

it does so under the assumption that the roots of both clouds are trying to establish a 

link for the purposes of cloud expansion or hybrid cloud deployment. This allows the 

attacking machine to get access to dom0, obtain root capabilities, and take command 

of the tool stack, allowing it to administer other guest virtual machines. Once an 

attacker takes control of Toolstack, they not only have access to all of the guest VMs 

operating on the same physical machine, but they can also create dummy VMs and 

flood them with resources to launch a denial-of-service assault. As can be seen in 

Figure 5.2, the OpenStack Xen architecture is vulnerable 

to a variety of attacks because of the way it is designed. 
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Evaluation Criteria 

As can be seen in Figure 5.2, the evaluation is centred on the attack mechanism 

covered in Section 5.2.1. The primary objective of the attack is to elevate the privilege 

level of non-root virtual machines so that they can act as root virtual machines by 

taking control of the tool stack and then managing additional co-located virtual 

machines. This is done by putting into practise the attack techniques covered in 5.2.1 

and then gauging the outcome. 

 

 
Figure 5.2: Attack Model on OpenStack Xen Architecture 

 

Results on Performance (ROP) is the primary metric used in judging the outcomes. 

Criteria for assessment are based on the following central facets of introspective 

quality. I Functional demonstrates that the aforementioned five steps, critical to the 

execution of attack, have been completed. (ii) The level of expressivity denotes the 

efficiency with which the attack tactic is implemented. 

As a result, the attack's advantages and disadvantages have been demonstrated. 
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Evaluation 

Both OpenStack, a popular open-source IAAS cloud platform, and Microsoft Azure, 

a commercial cloud system, are used to test the assault outlined in chapter 5. The 

system is now set up with the subsequent configurations. 

Experiment setup 

 
OpenStack Networking is fully compatible with the Virtual Networking Infrastructure 

(VNI) and the Physical Networking Infrastructure (PNI) access layer stages (PNI). 

When turned on, virtual machines (VMs) can activate complex virtual network 

topologies, including firewalls, load balancers, and VPNs (VPN). Connectivity paves 

the way for further functions including networks, subnets, and routers. Each 

component functions similarly to its physical analogue: networks are made up of 

subnets, and routers direct data packets between them. There must be at least one 

external network and any number of internal networks in every defined networking 

setup. Virtual machines can communicate with these SDNs by hooking up to them 

straight away. To connect to VMs located in other networks, networking routers are 

required. Both an exterior and an internal network interface are present on each 

router. Subnets function in much the same way as a real router does in terms of 

granting access to computers on different networks. 

Security Configuration 

Cloud computing is highly secure. With OpenStack, administrators may create 

security groups to manage firewall rules collectively. It's a set of rules from various 

security groups that together define how users can interact with the network. One or 

more security groups can be assigned to a virtual machine. The primary function of 
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security groups is to control the flow of network traffic to and from virtual machines 

by either blocking or opening specific ports, defining ranges of ports, or defining the 

routes taken by certain types of network traffic. Security groups can also be supported 

by a network. To improve OpenStack networking security, a security group plug-in is 

applied to every defined Network setup. 

Attack Setup 

 
Developments in reusing existing code (Remote Procedure Calls) have been detailed 

in this section. Because of ROP, the attacker can elevate the privileges of the malicious 

VM, which allows them to launch the proposed attack over the network channel. The 

adversary's objective in this attack is to manage the co-resided VMs and take over the 

Toolstack in dom0. Once connected to root (dom0), an attacker can use Toolstack to 

gain access to the root domain and ultimately take command of the victims. As 

described in [103], an attacker can utilise the ROP approach to compromise the 

hypervisor and then alter its code to gain root access. The proposed attack has already 

been implemented in an OpenStack cloud environment via ROP and a network 

channel. Toolstack in Xen architecture allows full management of operating virtual 

machines (VMs) on a cloud platform in real time. Toolstack could fall into the hands 

of a hostile VM if it is able to bypass the security perimeter and raise its privilege 

level. If the attacker has access to the tool stack, they can not only take over the host 

system but also any virtual machines (VMs) operating on the same host. 

Attack Scenario 
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The effectiveness of the suggested assault against the planned architecture of 

OpenStack is evaluated, based on the attack presented in chapter 5. Two virtual 

machines have been started up to analyse the breach. More virtual machines can be 

created if necessary. In order to begin using newly created virtual machines (VMs), an 

OS must be installed and set up on each one. The customer can set up their virtual 

machines with whichever OS they like. Each virtual machine (VM) has been set up 

with a unique operating system for the purposes of testing. 

 
Figure 5.3: Attacking Machine Console 

 

Ubuntu 15.10 is installed on the first virtual machine, and Windows is installed on the 

second. Both virtual machines can use either a private IP address or a floating IP 

address. The Internet and other external resources can be accessed with the use of 

floating IP addresses. While public IP is used for external communication between 

VMs, private IP is utilised for inside VM communication. Assigning each virtual 

machine to a unique slice of the network provides a layer of logical separation. 
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Analysis Results 
 

In this section, we detail the experimental results that were used to assess the whole 

method in a real-world setting, looking at how well domains could be exploited by 

stealing the ToolStack and how efficiently physical resources could be used by virtual 

machines. The following indicators are used to assess the efficacy of the suggested 

method: Two things stand out: 1) a non-root VM performing a root action, and 2) the 

attacker VM's use of hardware resources both before and after the attack. 

Virtual Machine with No Root Permissions Performing Root Tasks The attack 

approach is verified by inspecting a set of root commands produced by the (attacker) 

non-root VM in the testing environment. These commands, annotated with the actual 

truth about an attack's presence, are displayed during each experiment run. 

In Figure 5.3, we see the login prompt for the attacking computer (a1) after using the 

ssh command, which necessitates a key pair set during instance formation. After 

executing the attack strategy, the attacking VM not only gains access to higher-level 

resources but also communicates with dom0, the system's root domain. Once 

connected, the attacking VM takes control of a Toolstack and could potentially modify 

or delete the victim VMs as depicted in Figure 5.4. 

 
Figure 5.4: Co-located VM Deletion Command 
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After taking control of the Toolstack, an attacker machine can conduct a denial-of- 

service assault against a physical machine by establishing many useless virtual 

machines and reserving a lot of resources for them. Attack results for the OpenStack 

server's test instance are displayed in Figure 5.5. Figure 5.6 displays the instance list 

following the delete action. 

 

 
Figure 5.5: Co-located VM Deletion 

 

 
Figure 5.6: VMs List After Deletion 
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Resource Allocation 

 

All co-located VMs' total resource allocations are displayed in Table 5.1 below. But 

table 5.2 summarises how much resources each VM used throughout the course of a 

week. Table 5.2's resource usage values are not static; they change over time based 

on how many virtual machines (VMs) are being used and what applications are 

being run on them. A runtime measurement was taken to observe the resource use of 

attacker VMs after a privilege escalation attack was executed. 

Table 5.1: Resource Allocation of Each VM. 
 

Co-located VMs Memory (MB) Disk (GB) CPU (Hrs) 

VM1 745.8482 6.25 709.45 

VM2 937.6591 9.13 1054.764 

VM3 3109.675 17.45 989.243 

 

Table 5.2: One Week Resource Utilization of Each VM. 
 

Co-located VMs Memory (MB) Disk (GB) CPU (Hrs) 

VM1 1024 15 1 

VM2 2048 25 2 

VM3 3072 40 3 

 
 

In Figure 5.7, we can see how the attacking virtual machine's resource consumption 

changed before and after the attack was launched. The pre-attack consumption of 

resources is depicted by the dashed lines. Since the attacking VM utilises ROP to 

increase its privilege level, it increases the processing load even if it is running the 

same set of code in its local memory, which is the main cause of the disparity in 

resource utilisation. 
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Figure 5.7: Resource Comparison of Attacking VM Before and After Attack 

 

Threat to Microsoft's Cloud 

 

Microsoft's cross-cloud Azure System may be used to conduct the same kind of attack 

analysis. As a public cloud, Azure competes with the best. In the lab, Azure is set up 

as the primary IaaS. Microsoft Azure's cloud application hypervisor technology allows 

businesses and individuals to entirely encapsulate and abstract a multi-virtual machine 

application and its environment, allowing it to run unmodified on any cloud, public or 

private. 

Setup of a Network 

 

Every virtual machine (VM) in Azure can have its own unique network setup, complete 

with a static IP address. One must set the Static IP, Netmask, Gateway, and DNS server 

for this interface. Azure's support for SDN allows for the creation of a virtual switch 

to be generated based on the IP address of the VM and the netmask of the interfaces. 

The same virtual switch is used for all interfaces in the same subnet. 
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The following characteristics apply to a gateway's SDN if it has been assigned via 

the user interface: 

If a Gateway IP has been allocated to a guest VM (that is, if the VM has been 

configured to act as a Router), then Azure's SDN will behave in line with the VM's 

Gateway configuration. 

Azure's SDN will add a virtual Router to the virtual switch with the specified Gateway 

IP if the guest virtual machine does not already have one. 

Simply doing nothing if the Azure user interface does not have a default Gateway 

specified for the SDN to utilise. 

Two virtual machines, VM1 and VM2, have been set up to simulate a basic network 

topology for the sake of this experiment. Each virtual machine has two network 

interface controllers (NICs), which are isolated from one another. While one virtual 

machine (VM1) is running as root in dom0, the other (VM2) is running as a non- 

privileged user in domU. An attacking VM, VM2, exploits a network channel to 

connect to dom0, the cloud's root domain, as explained in Section 5.2.1. If VM3 

takes command of the Toolstack, he can potentially instal or remove the designated 

virtual machines. 

A Microsoft Azure account has been set up. Microsoft Azure VM2 has been built for 

testing purposes. The proposed attack has been tested in VM2, the primary working 

domain. After that, ssh into VM2. As illustrated in Figure 5.8, we now build two more 

virtual machines under the root account (VM2), named MyLinuxVM and MyWinVM. 

Now we'll use the ssh command to log into one of the child virtual 

machines (VM), called "myLinuxVM," which will be used in the attack. 
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Figure 5.8: Sub VM List 
 
 

Figure 5.9: SSH to Sub-VM (attacking) 

 
Once the attack mechanism is in place, the attacking machine will destroy any other 

co-located VMs, as seen in Figure 5.10. 

 

Figure 5.10: Deleting Co-located VMs 
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Figure 5.10 shows a non-root user using the delete command, which normally requires 

the root user's permission. Finally, all of the co-located virtual machines are displayed 

in Figure 5.11. 

 

Figure 5.11: List of All VMs After Attack 

 

Table 5.3 summarises the variations in susceptibility to this attack across popular 

cloud service providers. 

Stopping Network-Channel Attacks 

 

The advantages and disadvantages of several defences against the suggested attack are 

addressed. 

Algorithm that is Unaffected by Network Channels 

 

The primary line of defence could be to alter the OpenStack cloud's open source 

code to make network-based side-channels less granular. The primary step in initiating 

the described attack is reusing the code in order to bypass the security perimeter and 

enter the root domain of the system. Careful analysis of the code and limitations on 

access to the live system can effectively thwart this assault. There is now a firewall-

like security perimeter in place to protect the system. The xenapi connection 

verification code is depicted in Figure 5.12. 



169  

Table 5.3: Cloud Providers that are Vulnerable to This Attack 
 
 

 
Such a security perimeter's purpose is to prevent intruders from reaching the primary 

domain. When a new security perimeter is implemented, its underlying logic looks at 

the code's internal state to spot malicious connectivity from unauthorised users. 

Because these codes are already in the system's memory and the security perimeter 

has previously inspected such codes, it treats all of them the same and has vetted them, 

existing security rules cannot prevent such attacks. Extending the reach of the cloud 

infrastructure calls for a direct link between the cloud's top-level domains (root and 

root). As was previously mentioned, Xen's xapi serves as the mechanism 
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through which such connections are made. The proposed security api will do an 

internal xapi check and verify the VM's dual registration status upon receiving a 

connection request. If that's not the case, the connection will be accepted. The 

suggested security perimeter includes a specialised API that verifies, at runtime, if 

the local domain of this xapi is connected to any xenapis. If the function returns true, 

the connection request will be denied. The only catch with this type of security barrier 

is the time it takes for the network to react. The typical root-to-root link for a growing 

cloud is seen in Figure 5.13a. The activation of the security check in case of a root-root 

connection via xapi is depicted in Figure 5.13b. For the purpose of determining 

whether to allow or deny the connection, this security check will look at the xapi's 

source code. Figure 5.14 depicts the problem encountered while attempting to access 

the root directory after the security check API has been executed. 

 

Figure 5.12: Searching of Xenapi in Xapi 
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Discussion 

 

In this section, we'll go over the most important results from the chapter's empirical 

analysis of Privilege Escalation using the RoP attack. 

The goal of this research is to find potential entry points into the main open-source 

OpenStack cloud platform and the commercial cloud platform, Microsoft Azure, by 

examining the configuration of the underlying hypervisor. 

When cloud growth is authorised, it was found that careful network configuration is 

required. Given that an attacker can successfully breach the network by making an 

unauthorised connection to the root domain via network expansion using ROP. 

 

Figure 5.13: Root-Root connections 
 

It was intriguing to see that the tool stack of the root domain, from which other co- 

located VMs may be managed or controlled, could be successfully controlled in this 

experimental situation. 
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Figure 5.14: Error While Accessing the Root 

 

It was demonstrated that the exploitation of this attack setting can be thwarted 

through thorough inspection of the request for a network connection from non-root 

VMs. 

The criteria for evaluation (Section 5.3) are as follows: 

 

The attack tactic is assessed for its ability to carry out all of the goals for which it was 

developed. All of these attack tactics have been successfully developed, as shown in 

Figure 5.2, and its functional parameter is evaluated by looking at their inference 

ability. All of the events could be inferred, as demonstrated by the results. The study 

also revealed that the assault model was successful in its intended role. 

In the context of this research, "expressiveness" refers to the degree to which the 

Privilege escalation assault is capable of performing a wide variety of operations when 

applied to the network environment. Figures 5.5 and 5.6 demonstrate that a non-root 

VM may successfully impersonate a root VM, providing compelling evidence for the 

attack's viability and allowing for an evaluation of the expressive parameter. 

As can be seen from the examination, the ability to illicitly connect to the root domain 

and control tool stack is the approach's greatest strength. The biggest 
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drawback of this method is that it only supports the XEN architecture and not the 

other hypervisors like KVM and VMWare. 

Summary 

This chapter has covered the topic of how to use the ROP (return-oriented 

programming) methodology. As a result of this vulnerability, the Xen hypervisor is 

subject to a privilege escalation attack, as the domain separation between root and non-

root VMs is compromised. Previous ROP-based attacks have targeted specific 

software components like operating systems and applications, as well as libraries 

like libc; however, they have never attempted to exploit network channels by recycling 

previously used code. Because virtualization is so pervasive, learning more about its 

domain isolation properties is essential. 

This study focuses primarily on the isolation qualities (or lack thereof) of a popular 

open-source virtual machine manager known as OpenStack as well as the commercial 

cloud service known as MS-Azure. The obstacles that must be conquered in order to 

carry out this assault include privilege escalation, ROP, and the difficulty of 

penetrating the root domain of a system that is currently functioning. A new attack 

model that was sufficiently influential in managing the victim VM has been created 

by the integration of these many innovative techniques, which have led to the 

discovery of new novel ways. The empirical evaluation of privilege escalation reveals 

that it is successful in penetrating the security perimeter of cloud providers. [Case in 

point:] [Case in point:] It is of utmost significance to take note of the fact that the 

utilization of return oriented programming (ROP), which generates very high 

risk, is present in practically every conceivable configuration that is covered in this 
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chapter. A countermeasure option has also been presented, and it involves directly 

editing the open source code of OpenStack, which is the main cloud platform. In a 

nutshell, the overall strategy that was detailed in the experimental assessment is 

capable of resolving the issues that were discovered throughout the course of the 

research, and the researchers were also successful in accomplishing their primary goal. 

The following chapter provides a synopsis of the research effort that was given in this 

thesis and focuses on the most important contributions. In addition to this, a number 

of unsolved research difficulties in the field are discussed, and a variety of potential 

future study areas are outlined. 
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Chapter 6 

Summary and Conclusions 
 

 

Summary 

 

The purpose of the study that is given in this thesis is to investigate whether or 

not a newly discovered flaw in the current network architecture of cloud computing 

can be made use of in some malicious way. In addition to this, the presentation 

included the introduction of innovative cross-VM attacks in addition to their empirical 

study and characterization in leading cloud computing architecture. These attackers' 

countermeasure solutions have also been presented as potential solutions. Within the 

realm of cloud computing, an in-depth discussion is held regarding the analytic 

requirements of leading cloud systems as well as the benefits these requirements 

provide to the advancement of research and technical processes. In particular, this 

study gives an examination as well as a method to illustrate the architectural 

components that are contained inside the environment of cloud computing. These 

studies are then exploited for practical utilisation, such as the exploitation of network 

channels, the impersonation of conventional network cards, the use of RoP in 

conjunction with network channels, the privilege escalation of non- root users, and they 

have also been used to increase the security perimeter of cloud computing systems. 
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Overview of Thesis 
 

In this section, the most important findings of this thesis are summarized for your 

convenience. 

In Chapter 2, we discussed the idea of a system model and the various 

components that make up the model, as well as the evolution of the current distributed 

system to cloud computing. Cloud computing's deployment patterns, service models, 

and attack vectors are among the many aspects of its concept and taxonomy that are 

dissected in great detail here. The idea of security, as well as the ways in which it 

might be utilized to improve research on cloud computing, is investigated and 

addressed in considerable detail. It has come to light that although cloud isolation in a 

shared environment is currently a topic of ongoing research, there is still a difficulty 

in determining the level of security and privacy it offers. Following this, a 

demonstration of the concept of system architecture models and how they might be 

utilized to improve the security of cloud computing is given. We present and analyze 

in depth the current state of the art in investigation for cloud components, and we also 

identify current gaps in the relevant body of literature. In conclusion, a presentation 

on the significance and usefulness of cloud analytics is given, which includes a 

discussion of the ways in which it may be utilized to improve the practical and 

commercial operation of cloud computing. Using impersonation and Linux's regular 

tool, this chapter revealed the gap in exploitation of network channel, which is the 

primary contribution of the thesis. This contribution was accomplished by combining 

the two. 
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The network architecture of the cloud concept is the primary topic of discussion 

in Chapter 3. This chapter contains a description of the system model, its components, 

its configurations, as well as various service models and advanced network 

capabilities, together with their respective constraints, which are employed inside open 

source and commercial cloud computing systems. The analysis infrastructure also 

reveals the inner network devices that are employed during communication and 

consists of the means by which network traffic enters and leaves the system. 

Everything that allows for the entry and exit of network traffic is part of this 

architecture. This chapter concludes with a summary of the primary cloud models' 

network architecture, service models used to accomplish isolation, and the network 

devices through which all network traffic from co-located virtual machines flows. 

Implementing isolation is also covered in this chapter. 

The cross-VM network channel assault is demonstrated in Chapter 4 using two 

of the most prominent open source and commercial cloud platforms, namely 

OpenStack and Oracle Ravello System. An original tactic was utilized in the assault 

that was carried out, which consisted of impersonating a TAP interface and 

establishing a network mirror within the bridge interface, which is the point through 

which the network traffic of all virtual machines that were co-located passed. This 

effective experimental configuration enables attackers to compromise the privacy of 

co-located VMs by redirecting the network traffic of such VMs to a defined 

destination point that is under the attacker's control. As the attacking VM is not 

exceeding the resource limit that has been allotted by the cloud provider, and as all 

footprints are removed, this study will most likely leave very little to no trace on the 
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cloud architecture. An empirical analysis of cloud setup, including their setups, 

constraints, and mitigation method, is also presented in this chapter. The purpose of 

this analysis is to evaluate the attack in a real-time situation. The purpose of the 

experiment was to make use of the underlying network channel in order to monitor the 

network traffic produced by virtual machines that were co-located. The graph that 

was generated as a result displays the amount of resources that were used by the 

attacker machine. This attack presents a challenge because the virtual machine that is 

doing the attacking can use resources up to a limit that has been set, and it does not 

break any of the resource utilization factors. In the end, we have also researched 

ways to overcome the obstacles of separating regular resource patterns from target 

attacks coming from VMs. This was done as part of our work toward completing the 

project. A countermeasure method has also been given in the form of a patch to the 

open source code of a cloud platform. This update restricted the connection of any 

external device without the appropriate parameter defined by the cloud model. 

In Chapter 5, a new creative study is presented that raises the privilege level of 

a non-root user, as well as an empirical evaluation of an assault that successfully 

crosses the security perimeter of cloud providers. In the cloud model, domains have 

been defined so that the privilege levels of users, such as root and non-root users, 

can be distinguished. Users without root privileges often occupy domU, while root 

users are located in dom0. Users with the root privilege in dom0 have the ability to 

supervise non-root users in domU. It has been demonstrated in this chapter how a non-

root user can break out of domU and build a connection with dom0. 

Additionally, it has been demonstrated how a non-root user can carry out the 
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responsibilities of a root user. In order to accomplish this, the attacking machine made 

use of RoP, which is a process that runs code already present in the memory of cloud 

platforms, in connection with network channel. The findings of the analysis 

demonstrate that such an attack poses a significant risk in each of the three cloud 

scenarios that were covered in this chapter. At the very end, a countermeasure 

approach that modifies the open source code of the leading cloud platform, namely 

OpenStack, has been offered. 

Major Findings of Research Study 

 

One of the most important things that has come out of this research has been an 

investigation into how cross-VM settings might be exploited in the network 

architecture of the cloud model. A literature study and the development of 

experimental procedures that deal with real-time settings are both parts of the mixed- 

methods approach that has been taken with this thesis. This methodology is known 

as a mixed-methods approach. Because of this, the following contributions have 

been made. 

TAP Impersonation and Mirroring 

 

This thesis offers some crucial new insights into the network architecture of the 

cloud computing model as well as some specific new perspectives on the issues that 

are unique to this branch of the scientific discipline. In specifically, the following have 

been uncovered by this thesis: 

• The significance of the idea of network architecture in cloud computing, 

particularly as it relates to the flow of network traffic for virtual machines (VMs). In 

cloud computing networking, there is a significant number of small network devices 
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that are often engaged in the flow of network traffic for virtual machines (VMs). These 

network devices might be heterogeneous and possibly complicated in nature. 

• Conceiving of a zero-day attack in the form of TAP Impersonation and Mirroring 

in a contemporary cloud computing environment, with the goal of successfully 

rerouting the network traffic of other co-located virtual machines (VMs). But before 

we can launch this attack with any degree of success, we need to solve a few 

fundamental difficulties. 

• There are five key problems that have been identified with this attack; these 

difficulties set this region apart from others in a significant way and call for a unique 

security response. These difficulties are now publicly known thanks to the attack. 

Some examples of these problems are as follows: i.) investigating the existing cloud 

computing network architecture in detail. 

ii) Penetration of the current network architecture iii) prioritising its own network 

traffic above that of any other virtual machines sharing the same physical host (VMs). 

iv) the redirection of data packets originating from the co-location VM v) eradicating 

all physical evidence of the attack by hiding any weapons or other implements used; 

• In addition, a countermeasure method is offered, which, at first glance, appears to 

prevent these attack strategies from being carried out in the contemporary cloud 

environment. 

Privilege Escalation using RoP in conjunction with Network Channel 

Additionally, the thesis provides contributions in the form of insights into existing 

practices of hypervisor architecture in cross-VM scenarios. These contributions 
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include a significant exploitation of privilege escalation utilizing RoP. The following 

are a few of the realizations that have resulted from this work: 

• The practices of conventional privilege escalation attack strategies are insufficient, 

suffer from methodological limitations (old technologies), and are easy to counteract 

due to the advanced security feature of the cloud computing model. This is the case 

because of the fact that cloud computing is a model. 

• The assault that is being presented addresses important issues related with the 

escalation of privilege level, which comprises the following: I making efficient use 

of RoP ii) access to the root domain from a domain that is not the root domain by 

exploiting a point of presence (RoP) in conjunction with a network channel iii) a 

control tool stack for managing the other virtual machines (VMs). 

• The repercussions of this attack are so alarming that it puts other co-located virtual 

machines (VMs) in jeopardy in terms of the data and resources they possess. 

• A countermeasure approach to this attack is also offered, which prohibits unlawful 

connections from virtual machines that do not have root privileges. 

Revisiting the Research Goals 

 

In this section, the primary contributions made by the thesis are discussed by returning 

to the study objectives outlined in Section It ought to be obvious at this point that there 

is a solid mapping between the contributions and the initial research topics, which are 

as follows: 

1. Conducting research on the network architecture and the components that are 

associated with it in order to develop a zero-day attack model for the purpose of 

exploiting a vulnerability in the network architecture of the cloud computing model. 
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The first objective has been accomplished by the invention of a TAP impersonation 

and mirroring attack model, which is detailed in Chapter 4. 

2. The research of return-oriented programming (RoP) and associated approaches for 

the exploitation of the hypervisor, as well as the identification of the benefits and 

drawbacks of this method. 

The Privilege Escalation assault, which is implemented by the exploitation of RoP in 

conjunction with network channel as outlined in Chapter 5, has been successful in 

achieving the second target. This attack was provided via the Privilege Escalation 

attack. 

3. In order to suggest a remedy for mitigating the problem, evaluate the entire strategy 

by applying it to real-world scenarios that were created from the study of the relevant 

literature. 

The Evaluation and Mitigation techniques, which are discussed in Sections 4.8 and 

5.7, have been successful in achieving the third objective of the project. 

Future Work 
 

On the basis of the findings presented in this thesis, the following part will examine 

some of the potential future avenues that research could proceed in. 

Implementation of Cloud Model on Mobile Platforms 

 

Numerous cloud service providers have moved their operations onto mobile 

platforms, which are part of the cloud platform. Implementing the previously carried 

out attack on mobile infrastructure is something that could be done in the future. It is 

impossible to deny that the introduction of mobile applications has also ushered in a 
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new era that is fraught with opportunities for malicious actors to launch assaults. 

When a user is using an app or exchanging information on mobile platforms, 

contextual information plays a more significant role. Examples of this type of 

information include location. It has already been demonstrated that co-location in 

and of itself poses a significant risk. The attacking machine will first attempt to co- 

locate with the target as the first phase in the attack. Extending the design of mobile 

applications such that user data can be kept private is one potential area for future 

research and development. 

RoP on KVM or other VMM 

 

It has been demonstrated that RoP poses a significant risk to cloud models. 

Experiments with RoP were carried out in OpenStack, which is a cloud platform that 

runs xen in the background and is free to use. It's possible that in the future, we'll be 

concentrating on KVM or some other hypervisor in cloud model. Because each 

hypervisor utilizes its own unique setups and settings, exploiting a hypervisor calls for 

the utilization of a variety of distinct illusions. 

Analysis Extension 

 

The study that is described in this thesis has the potential to be expanded so that it can 

investigate a variety of other system contexts. As was discussed in chapter 5, the 

extension of workload models involves selecting virtual machines (VMs) based on the 

resource use of each candidate. It is feasible to do an analysis of the VMs based on the 

tasks that they perform individually. It is possible that future work will involve 

applying the workload analysis method that has been outlined in order to determine 

the characteristics and behavior of the attacking machine in comparison 
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with individual activities. In addition, the workload model does not include the 

development constraints of tasks onto servers. These limitations can be incorporated 

to investigate the behavior of attacking machines in comparison to non-constrained 

jobs. However, the model does not include this information. 

Conclusions 

 

This thesis details research on the challenges of privacy breaches for co-located VMs 

in the cloud paradigm, specifically with regard to traffic redirection of target machines 

and privilege escalation. These issues were uncovered as a direct result of the research 

presented in this thesis. The main contributions of this thesis are the impersonation 

attack, which may redirect the live network traffic of other co-located VMs, and the 

privilege escalation, which can use RoP to exploit network-channel. 

Impersonation attack redirects real-time network traffic of other co-located VMs. 

These assaults are carried out in real time on open source and commercial cloud 

platforms, each of which has been designed to meet a unique set of security needs. The 

evaluation of these assaults that is described in this thesis reveals a flaw in the network 

channel of cloud architecture that can be exploited by an attacker machine. When 

carrying out this implementation strategy, it is crucial to take extra precautions to 

guarantee the security measures taken when setting up the network channel in the 

cloud model. We cannot stress the significance of this enough. 
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